Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные закономерности-протекания химических процессов

    ОСНОВНЫЕ ЗАКОНОМЕРНОСТИ ПРОТЕКАНИЯ ХИМИЧЕСКИХ ПРОЦЕССОВ [c.168]

    Цикл включает передачи Производство серной кислоты , Катализ , РастворЬ , Горение и взрывы , Общие свойства металлов , Ряд напряжений металлов , Коррозия металлов , Электролиз , Производство алюминия , Промышленные способы получения металлов , Производство стали , Окислитель-но-восстановительные реакции , Классификация химических реакций , Закономерности протекания химических реакций . Построение и содержание телепередач цикла направлено не только на правильное усвоение учащимися основных понятий, но также на совершенствование методической работы учителя. Принимая передачи, учитель привыкает при демонстрации опытов и объяснении учебного материала обязательно указывать учащимся конкретные свойства вещества, раскрывать взаимосвязь свойств со строением, фиксировать условия протекания химических реакций, определять возможное направление процесса в других условиях. [c.92]


    Физическая химия изучает различные свойства веществ в зависимости от их химического состава, строения и внешних условий, влияние внешних условий и воздействий на протекание химических реакций и закономерности химических процессов. Основное внимание в физической химии уделяется изучению направления и скорости химического процесса, а также его конечного результата, т. е. состояния равновесия, а главной задачей является предсказание хода химического процесса и его результата. Важной проблемой современной физической химии является установление связи между строением вещества и его реакционной способностью. [c.5]

    Лабораторные работы делятся на две части первые знакомят студентов с основными закономерностями протекания химических процессов, вторые — со способами синтеза различных веществ. Дано описание элементов техники этих работ. Наиболее сложные из них имеют краткое теоретическое введение. Для подготовки к каждой лабораторной работе приводится список литературы. [c.2]

    Физическая химия — наука, изучающая закономерности протекания химических процессов. Основная задача ее — предсказание направления химических процессов, характера их протекания во времени и конечных результатов при различных условиях проведения. [c.5]

    Используются квантовомеханические и структурные представления, а также основные термодинамические и кинетические закономерности протекания химических процессов. [c.2]

    В курсе Процессы и аппараты изучаются физико-химические основы процессов, используемых во всех отраслях химической технологии, а также рассматриваются принципы устройства и методы расчета аппаратов, предназначенных для проведения этих процессов. Выявление общих закономерностей протекания различных процессов и разработка методов расчета аппаратуры являются основными задачами науки о процессах и аппаратах химической технологии. [c.13]

    Прежде всего предпринята попытка при рассмотре-нии теоретических разделов глубже подчеркнуть взаимосвязь физики и химии —при изложении атомно-молекулярного учения и основных законов химии, строения атома и периодического закона, строения молекул и ти-пов химических связей, строения вещества и закономерностей протекания химических процессов, — и все изучение фактического материала собственно неорганической и органической химии строить на этой основе. [c.3]


    Следует хорошо сознавать, что уравнение реакции очень часто отражает только конечный, суммарный итог химического процесса и не всегда показывает, как именно протекает химическая реакция. Современные методы исследования кинетики и механизма химических реакций позволяют установить основные закономерности протекания различных процессов и на основе этих теоретических закономерностей управлять химическими реакциями в лабораториях и в промышленности (см. гл. V). [c.181]

    Вопросам изучения химической кинетики посвящено много капитальных работ В этих работах показано, что большинство химических процессов (особенно каталитических, ценных и протекающих с одновременным образованием большого числа продуктов) характеризуются сложными зависимостями. Ниже изложен некоторый минимум сведений об основных закономерностях протекания химических реакций, который необходим при рассмотрении вопросов математического моделирования химических процессов. [c.11]

    Сложнейшей проблемой принципиальной разработки технологического процесса является масштабирование. В химической промышленности невозможно арнведенне лабораторных процессов к промышленным посредством точного копирования лабораторных установок. Переход от лабораторных условий к производственным означает такую перемену масштабов, что возникает целый ряд сложных инженерных проблем, которые невозможно учесть на стадии лабораторных исследований основные факторы, влияюшие иа процесс, безопасность эксплуатации, проектирование оборудования, транспортировка продуктов, стоки и выбросы, период действия катализатора, предельно допустимые концентрации нежелательных примесей и т. д. Более высокие скорости, температуры и давления, изменение закономерностей протекания процессов с увеличением масштаба установки, значительные различия в сырье и материалах — все это обусловливает невозможность непосред-ствепиого перехода от лабораторных исследований к производству. [c.92]

    Необходимость резкого сокращения сроков разработки технологии новых и усовершенствования действующих химических производств, их сложность и разнообразие потребовали принципиально иного подхода к проблеме математического описания скоростей реакций и расчета кинетических констант. Это обусловлено прежде всего тем, что уравнения кинетики, содержащие информацию об основных закономерностях протекания химических превращений, являются первоосновой математической модели химического процесса и предопределяют не только выбор типа реактора, но и позволяют подойти к расчету его оптимальных технологических и конструктивных параметров с позиций общих инженерных принципов химической технологии. [c.5]

    Основы физической и коллоидной химии позволяют заложить фундамент развития качественных и количественных представлений об окружающем мире. Эти знания необходимы для дальнейшего изучения таких специальных дисциплин, как агрохимия, почвоведение, агрономия, физиология растений и животных и др. Современное состояние науки характеризуется рассмотрением основных физико-химических процессов на атомно-молекулярном уровне. Здесь главенствующую роль играют термодинамические и кинетические аспекты сложных физико-химических взаимодействий, определяющих в конечном счете направление химических превращений. Выявление закономерностей протекания химических реакций в свою очередь подводит к возможности управления этими реакциями при решении как научных, так и технологических задач. Роль каталитических (ферментативных) и фотохимических процессов в развитии и жизни растений и организмов чрезвычайно велика. Большинство технологических процессов также осуществляется с применением катализа. Поэтому изучение основ катализа и фотохимии необходимо для последующего правильного подхода к процессам, происходящим в природе, и четкого определения движущих сил этих процессов и влияния на них внешних факторов. Перенос энергии часто осуществляется с возникновением, передачей и изменением значений заряда частиц. Для понимания этой стороны сложных превращений необходимо знание электрохимических процессов. Зарождение жизни на Земле и ее развитие невозможно без участия растворов, представляющих собой ту необходимую среду, где облегчается переход от простого к сложному и создаются благоприятные условия для осуществления реакций, особенно успешно протекающих на разделе двух фаз. [c.379]

    К главным задачам физической химии можно отнести изучение и объяснение основных закономерностей, определяющих направленность химических процессов, скорость их протекания, влияние на них среды, примесей, излучения и т. п., условия получения максимального выхода необходимых продуктов. Для современной физической химии центральной является проблема установления связи между строением вещества и его реакционной способностью. Сегодня нет и не может быть химика, творчески работающего в любой области, который не использовал бы знание физической химии в конкретных исследованиях. Современная физическая химия служит и теоретическим основанием химической технологии. [c.6]


    Методы химической кинетики нашли широкое применение при изучении механизмов химических реакций. Исследование того или иного химического процесса включает установление его кинетических закономерностей, т. е. определение влияния температуры, концентра-1ЩИ реагентов, давления и других параметров процесса на скорость и направление химических реакций. Полученные в результате подобного исследования данные позволяют вскрыть основные закономерности, протекания реакций, обнаружить факторы, влияющие на скорость превращения, и выразить их количественно в терминах химической кинетики — в виде констант скоростей реакций и энергий активации. [c.8]

    Уже на первых стадиях развития этой области науки были выявлены основные закономерности протекания радиационно-химических реакций, позволившие выделить процессы, развивающиеся по цепному механизму (полимеризация мономеров в жидкой и твердой фазах, привитая сополимеризация мономеров к полимерной подложке, галогенирование, сульфохлорирование и др.) и характеризуемые значениями радиационно-химического выхода (на 100 эв поглощенной энергии) до 1С , и нецепные процессы, значения радиационно-химического выхода которых редко превышают несколько единиц. [c.7]

    Выше мы рассмотрели некоторые основные закономерности влияния давления на протекание химических процессов. [c.29]

    В химии экспериментально можно исследовать, например, реакции химических соединений в условиях регулируемых температуры, давления и т. д. При этом можно установить определенные химические зависимости и сформулировать их затем как химические закономерности. Основными предпосылками научного метода исследования являются соответствующее планирование экспериментов, строгий контроль условий их проведения, а также непредвзятость при наблюдениях и публикации результатов. Основные законы химии, равно как и принятые объяснения физиологических процессов, выведены на основании результатов экспериментов, спланированных и осуществленных множеством исследователей в ряде различных лабораторий. Современный исследователь никогда не удовлетворяется полностью предложенным им объяснением процесса или реакции до тех пор, пока его выводы не получат экспериментального подтверждения в других лабораториях. Недостаточно доработанные теории, основанные на ограниченном и недостаточно надежном экспериментальном материале, могут помешать исследователю правильно и непредвзято трактовать результаты его опытов. Многие теории, объясняющие протекание химических процессов, которые были предложены на основании ряда экспериментальных [c.22]

    Основной задачей изучения каталитического процесса на гетерогенных катализаторах является нахождение связи между каталитической активностью, химическим составом и характером промежуточного поверхностного взаимодействия катализатора с реагирующими веществами. Знание природы промежуточного взаимодействия реагирующих веществ с катализатором, характера активных центров, закономерностей протекания реакции позволяет вести целенаправленный подбор избирательно действующих катализаторов и выдвигать теоретические предположения о механизме отдельных типов каталитических реакций. В связи с этим необходимо систематическое исследование новых и известных каталитических систем и природы их действия (характера адсорбции на каталитической поверхности компонентов реакции, природы промежуточного адсорбционного комплекса). [c.31]

    Константа скорости простой реакции прежде всего будет определяться закономерностями протекания элементарного акта. Элементарным химическим актом называется единичный акт взаимодействия или превращения частиц (молекул, радикалов, ионов, атомов и др.), в результате которого образуются новые частицы продуктов реакции или промежуточных соединений. В процессе элементарного химического акта происходит изменение расположения ядер атомов и электронной плотности в частицах, в результате чего рвутся или возникают новые химические связи. Основные типы элементарных химических актов можно разбить по их молекулярности на три группы  [c.556]

    Технологический режим. Протекание процессов селективной очистки определяется, кроме химического состава сырья и строения растворителя, следующими технологическими факторами кратностью растворитель сырье, температурным режимом, подачей антирастворителя в зону экстракции (для процесса фенольной очистки). Характер основных закономерностей процесса селективной очистки представлен на рис. 2.60. [c.219]

    Обсуждаемый здесь путь построения математической модели реактора по уровням предполагает, что при построении модели данного уровня глубоко изучены и экспериментально подтверждены все существенные химические и физические закономерности, определяющие свойства этого уровня. В таком случае закономерности приобретают предсказательную силу физических законов, они инвариантны в пространстве и автономны во времени. Это означает, что закономерности протекания процессов в составных частях данного уровня модели, а также закономерности взаимодействия между этими частями выражаются в форме, не зависящей от масштаба рассматриваемого уровня и момента времени. Отдельные структурные части математической модели реактора — внутренняя поверхность катализатора, одиночное зерно, свободный объем в пространстве между зернами и т. д.— могут рассматриваться как элементарные динамические звенья или группы звеньев. Каждое такое звено обладает своими инерционными свойствами, которые определяют изменение во времени состояния этого звена при количественных изменениях как в его внешних связях, так и внутри его. Количественной мерой инерционности отдельного звена может являться характерное время нестационарного процесса, или, иначе, масштаб времени М. Величина его может быть оценена как отношение емкости звена к интенсивности его внешней связи. Характерное время составной части модели реактора определяется масштабами времени входящих в эту часть звеньев и связями между звеньями. Связи между звеньями чаще всего бывают распределенными и обратными. Поэтому величина масштаба времени составной части находится в сложной зависимости от масштабов времени всех звеньев. Исследование этой зависимости необходимо нри построении существенной математической модели, так как позволяет в итоге учесть основные свойства лишь тех элементов, которые оказывают решающее влияние на статические и динамические характеристики всего реактора. [c.67]

    Основными задачами применения термодинамического метода к химическим процессам является выявление закономерностей в энергетике протекающих процессов, их направленности и глубины протекания на основе законов термодинамики. [c.149]

    Понятие о химической кинетике. Скорость химических реакций. Термодинамический подход к описанию химических процессов позволяет оценить энергию взаимодействия и наиболее вероятные направления протекания реакций. При этом нет необходимости прибегать к конкретному рассмотрению механизма процесса, к экспериментальному его осуществлению. Однако классическая термодинамика рассматривает только равновесные системы и равновесные процессы, т. е. процессы, которые протекают бесконечно медленно. С термодинамических позиций невозможно анализировать развитие процесса во времени, поскольку время (как переменная) не учитывается при термодинамическом описании. Поэтому вторым этапом в изучении закономерностей протекания химических процессов является рассмотрение их развития во времени, что представляет собой основную задачу химической кинетики. В реальных уело-ВИЯХ протекание химических реакций связано с преодолением энергетических барьеров, которые иногда могут быть весьма значи тельными. Именно поэтому термодинамическая возможность осуществления данной реакции (AG<0) является необходимым, но недостаточным условием реализации процесса в действительности. Хи мическая кинетика кроме выяснения особенностей развития процесса во времени (формально-кинетическое описание) изучает [c.212]

    Влияние этих факторов на закономерности протекания химических процессов раосматривается в специальной области — макрокинетике. Основные вопросы диффузии подробно излагаются в ряде монографий (например в [820—824]), поэтому мы здесь эти вопросы только напомним. [c.385]

    Книга является практическим руководством к лабораторным занятиям по общей и неорганической химии для студентов химико-технологических вузов. В первой части собраны работы, знакомящие студентов с основными понятиями химии и общими закономерностями протекания химических процессов (работы реакции окисления — восстановления, термохимия электролитическая диссоциация, гидролиз, комплексо образование и др.). Вторая часть практикума посвя щена химии элементов. В начале работ даны теоретические введения, в конце — контрольные вопросы и задачи. [c.2]

    Закономерности протекания химических реакций обычно изучаются при рассмотрении процесса синтеза аммиака. Часто, посвятив один или два урока этой теме, учитель просто не имеет возможности вернуться к ней в дальнейшем. Задачи, связанные с расчетами скоростей химических реакций и химического равновесия, стоят особняком в школьном курсе, соответствующий мэтерпал предстаален очень отрывочно. Поэтому, приближаясь к экзамену в 11-ом юиссе, многие просто выкинули из головы этот материал девятого. А между тем, задачи из этих разделов не столь уж редко встречаются в экзаменационных билетах. Поэтому мы коротко остаЕювимся на основных понятиях, изучаемых по этому вопросу в школьном курсе. [c.267]

    Детальное рассмотрение химических процессов с молекулярнокинетической точки зрения показывает, что большинство из них протекает по так называемому радикально-цепному механизму. Особенность цепных реакций заключается в образовании на промежуточных этапах свободных радикалов — нестабильных фрагментов молекул с малым временем жизни, имеющих свободные связи -СНз, -СгНа, С1-, N , HOj- и т. п. Связанная система сложных реакций, протекаюищх г.оследовательно, параллельно и сопряженно с участием свободных радикалов, называется цепной реакцией. По цепному механизму развиваются многие процессы горения, взрыва, окисления н фотохимические реакции. Значение цепных реакций в химии и в смежных с нею областях науки (биологии, биохимии) очень велико. Выдающаяся роль в изучении цепных процессов принадлежит советскому ученому акад. Н. Н. Семенову, сформулировавшему основные закономерности протекания таких реакций. Основные стадии цепных реакций зарождение цепи, продолжение цепи, разветвление цепи и обрыв цепи. Зарождение цепи — стадия цепной реакции, в результате которой возникают свободные радикалы нз валентно-насыщенных молекул. Эта стадия осуществляется разными путями. Так, при синтезе хлористого водорода из водорода и хлора образование радикалов осуществляется за счет разрыва связи С1—С1 (по мономолекулярному механизму) под воздействием кванта света b + Av l- +С1-. А при окислении водорода зарождение цепи происходит за счет обменного взаимодействия по бимолекулярному механизму Н2-гО = Н--f-НОг. Образование свободных радикалов можно инициировать введением посторонних веществ, обладающих специфическим действием (инициаторов). В качестве инициаторов часто используют малостабильные перекисные и гидроперекисные соединения. [c.219]

    Лая объяснения закономерностей протекания реакций окисления < 1 е(П) кислородом в водных растворах высказываются различные гипоте-, зы и предположения, однако единого взгляда на механизм не существу-, ет. Более подробно механизмы окисления желеэа (П) в водных 11астворах изложены в гл. I. Однако окислительно-восстановительные процессы в. реальных условиях электрсосаждения железа исследованы недостаточно. Более глубокое понимание физико-химических превращений, происходящих, в электролитах железнения, связано с изучением термодинамической и кинетической устойчивости систеш, химических равновесий с учетом основных закономерностей термодинамической, химической й электрохимической кинетики. з [c.54]

    Так появилась необходимость в дальнейшем усовершенствовании науки о химической технологии, а по существу в развитии нового научного направления по созданию теоретических основ химической технологии. Его основная задача — разработка методов нахождения оптимальных инженерных решений на базе системного подхода, т. е. рассмотрения химического производства как сложной системы, состоящей из большого числа взаимодействующих типовых процессов, на основе детального анализа закономерностей протекания этих процессов. Возникли новые научные дисциплины химическая кибернетика, оптимизация химико-технологических процессов и др. Все они опираются на закономерности протекания типовых процессов химической технологии. Теоретические основы химической технологии в нашей стране разрабатываются Н. М. Жаворонковым, В. В. Кафаровым, В. А. Малюсовым и многими другими учеными. [c.8]

    Значительную часть материала пятой главы занимает разбор случаев, когда следует учитывать эффекты разделения в импульсном реакторе протекание реакций в условиях непрерывного хроматографического разделения названо нами хроматографическим режимом проведения реакций. Хроматографический режим, основные закономерности протекания которого установлены в Советском Союзе, открывает новые возможности проведения реакции и управления химическим процессом. Конкретные особенности этого явления определяются агрегатным состоянием подвижной и неподвижной фаз, фазовой локализацией и типом химических реакций, а также способом осуществления разделительйрго процесса. Проведение реакций в хроматографическом режиме позволяет иногда не только обходить термодинамические затруднения, но и, в определенных случаях, существенно влиять на селективность процесса. Можро ожидать, что различные варианты проведения хроматографического режима, предложенные в последнее время у нас и заграницей, получат в недалеком будущем и практическое применение. [c.6]

    Основной теоретической задачей в химической кинетике является создание такой системы взглядов и уравнений, которая позволила бы, исходя из молекулярных параметров реагирующих компонентов и внешних условий протекания процесса, вычислить его скорость. К молекулярным параметрам относятся масса реагирующих молекул, их форма и размеры, порядок связи отдельных атомов и атомных групп в молекуле, энергетическая характеристика отдельных связей, совокупность возможных энергетических состояний молекулы. Под внешними условиями понимается давление (или концентрации), температура, условия, в которых осуществляется процесс (например, проведение реакции в статических условиях или в потоке). В решении этой задачи важным этапом является применение молекулярно-кинетической теории к интерпретации кинетических закономерностей при химических превращениях, поэтому настоящая глава и посвящается тем основам молекулярно-кине-тической теории, которые будут использованы далее при решении поставленной задачи. [c.89]

    Низкие по точности модели принято классифицировать как приближенные, и область их применения обычно ограничивается прикидочными расчетами, в результате которых выявляются качественные характеристики объекта.. Получение же количественных оценок, как правило, производится на базе точных моделей. Получение количественных зависимостей за практически приемлемое время счета возможно как результат снижения размерности задачи поиска (сокраш ения числа просматриваемых варианток) или как результат разработки точных и быстродействующих моделей. В первом случае основным приемом является использование различного рода ограничений, основанных на физико-химических, технологических и другого рода предпосылках (применение эвристических правил, эволюционной стратегии, фундаментальных закономерностей протекания процесса). Во втором случае задача заключается в разработке быстродействующих алгоритмов решения уравнений математического описания, использования аппроксимационных моделей. Снижение размерности пространства поиска оптимального варианта широко используется при разработке алгоритмов синтеза технологических схем (см. гл. 8). Обычно с решением этой же задачи связана и разработка аппроксимационных моделей. [c.426]

    Основные фудности математического описания процесса на основе его физико-химических закономерностей в большинстве случаев связаны с многомерностью решаемой задачи и, как следствие этого, большим количеством значимых факторов, определяющих характер его протекания. Пренебрежение некоторыми из факторов с целью упрощения исходной системы [c.7]

    В 1930-х годах появились первые научные исследования по кинетике реакций, протекающих в проточных системах. Начало этим исследованиям было положено химиками — специалистами в области катализа А. А. Баландиным, Г. К. Боресковым, М. Г. Слинь-ко и М. И. Темкиным (СССР), А. Ф. Бентоном (США), Э. Винтером (Германия). В 1932 г. Г. К. Боресков впервые в качестве одной из основных задач конструирования и расчета трубчатых контактных аппаратов для сернокислотной промышленности назвал обеспечение максимальной скорости процесса и максимального использования контактного объема . Отмечая отставание теории и недостаточное знание закономерностей протекания даже таких важных каталитических процессов, как окисление сернистого газа, он предложил метод проведения этой реакции в условиях не одной оптимальной температуры для всего процесса, а оптимальной кривой изменения температур, характерной для каждого процесса и катализатора . Эти пионерские исследования были продолжены в 1936—1937 гг. с целью установления оптимальных условий контактного процесса — температурного режима и состава исходной газовой смеси. Работы эти следует считать своеобразной экстраполяцией химической кинетики на ту область, которая до 1940-х годов была объектом химической технологии, как науки сугубо прикладной, лишенной права на фундаментальные исследования. [c.152]


Смотреть страницы где упоминается термин Основные закономерности-протекания химических процессов: [c.129]    [c.152]    [c.34]   
Смотреть главы в:

Практикум по химии -> Основные закономерности-протекания химических процессов




ПОИСК





Смотрите так же термины и статьи:

Закономерность процессов

Основные закономерности

Основные закономерности процесса



© 2025 chem21.info Реклама на сайте