Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение углеводородов нефти

    Некоторые жидкие углеводороды (нефть, мазуты и растворимые в воде жидкости) практически не накапливают электростатических зарядов, так как обладают высокой электропроводностью. Все другие нефтепродукты и сжиженные углеводородные газы обладают высоким электрическим сопротивлением и в определенных условиях накапливают значительный заряд. Особенно большое влияние на электризуемость жидких углеводородов оказывает влажность воздуха, изменение которой может резко исказить данные об оценке склонности их к электризации (табл. 8). [c.150]


    Способ перегонки нефти, отнесенный ко второй группе [26], состоит в том, что в перегоняемый образец нефти добавляют перед нагревом определенное количество метанола, который образует азеотропную смесь с углеводородами нефти, кипящими в интервале 70-120 °С (температура кипения азеотропной смеси 63 °С). Этот способ мало распространен, и его применение связано с низкотемпературным получением топлив, содержащих метиловый спирт. [c.58]

    Определение углеводородов нефти [c.329]

    Раздельное определение углеводородов нефти и нафтеновых (а также сульфонафтеновых) кислот [c.256]

    Изучение состава нефтей и нефтяных дестиллатов затрудняется их сложностью и трудностью выделения из смесей многочисленных отдельных (индивидуальных) углеводородов. Помимо углеводородов нефти содержат кислородные и другие соединения, что еще в большей степени усложняет их исследование. Кроме того, при переработке нефтяного сырья образуется много новых углеводородов, не встречающихся в сырых нефтях. Предстоит выполнить еще значительную работу с целью определения строения сложных углеводородов и внесения большей ясности в существующие представления о химических превращениях их. [c.13]

    Описанный метод может быть применен также для определения сероводорода в нефти. Для этого в приборе перед реакционной трубкой помещается так называемая колонка предварительной отгонки, на которой задерживаются тяжелые углеводороды нефти, а растворенные газы и содержащийся в них сероводород продуваются воздухом в реакционную трубку с силикагелем № 3, обработанным уксуснокислым свинцом и содержащим 35% воды. [c.259]

    Как уже было указано выше, разделение нефти на индивидуальные углеводороды и другие соединения возможно лишь для низкокипящих фракций от бензинов до легких газойлей. Вследствие огромного числа составных частей более тяжелые фракции не могут быть разделены на индивидуальные компоненты существующими аналитическими методами. Поэтому разделение и определение классов углеводородов нефти так же важны, как и разделение и идентификация индивидуальных углеводородов, в особенности для высокомолекулярных нефтяных фракций. [c.24]

    Прочие способы. Очень точное определение производится по Родману, рекомендующему особый прибор с приемниками, охлаждаемыми жидким воздухом. Перегонка нефти при этом производится в вакууме. По новому методу опытной лаборатории Вестингауза определение воды производится конденсацией ее пара в и-образных трубках, опущенных в кидкий воздух. Но так как при этом, кроме воды, в них могут конденсироваться не только пары легких углеводородов нефти, но и растворимые в ней газы, конденсат испаряют через трубки с фосфорным ангидридом, не поглощающим нефтяных паров. [c.36]


    Реликтовые углеводороды интересны еще и тем, что они являются источником образования определенной части глубоко преобразованных углеводородов нефтей и таким образом облегчают исследование этой трудно анализируемой части нефти. [c.10]

    Относительно простой состав метилзамещенных алканов в нефтях группы позволил провести качественное и количественное определения углеводородов этого типа и в более высококинящих фракциях. В работе [13] сообщалось об определении этих углеводородов методом ГЖХ с использованием высокоэффективных капиллярных колонок. Метилзамещенные алканы большой молекулярной массы определялись методом молекулярной масс-спектрометрии [14]. Ти- [c.49]

    Сразу же после этих первых работ последовали многочисленные определения углеводородов ряда гопана в нефтях, углях, сланцах, рассеянном органическом веществе земной коры и пр. В результате было показано, что углеводороды этого ряда поистине вездесущи[49]. [c.130]

    Метод гомогенного восстановления оксидов азота аммиаком для очистки газов от оксидов азота в производстве химических продуктоа из углеводородов нефти п газа запатентован во Фран-плш. Он основан на селективном восстановлснии оксидов азота аммиаком в газовой фазе при отсутствии катализаторов и строго определенной температуре (920—970°С). [c.67]

    В настоящее время доказано, что основными природными органическими веществами, играющими важную роль в образовании углеводородов нефтей, являются водоросли, бактерии (особенно липиды их клеточных мембран), фито- и зоопланктон, а также высшие растения [1). Уже указывалось, что в процессах нефтеобразования основную роль играют липидные составляющие. Хотя в общем липидная часть всего растительного мира по своему составу достаточно однородна, т. е. представлена набором близких по типу строения молекул, все же существуют определенные вариации, позволяющие иногда определять преимущественное участие в образовании данной нефти тех или иных исходных веществ. [c.179]

    В этой главе основное внимание было уделено реакциям образования углеводородов нефтей, протекающим по карбоний-ионному механизму. Однако имеются предположения о том, что превращения биоорганических молекул в нефтяные углеводороды протекают также и с участием свободных радикалов, в образовании которых определенную роль играет перестройка кристаллической решетки вмещающих пород. Свободнорадикальный механизм преобразования рассеянного органического вещества позволяет снизить вероятную температуру нефтеобразования до значений 20—50° С, что имеет немаловажное значение для построения различных генетических корреляций. Более подробно эти вопросы рассмотрены в монографии Галимова [47]. [c.212]

    Безусловно, в распределении изомерных углеводородов нефтей имеются определенные тенденции к достижению равновесия, так как сами процессы генезиса нефти направлены в сторону образования термодинамически более устойчивых структур. В то же время полного равновесия среди нефтяных углеводородов не существует. Сложная, многокомпонентная система углеводородов, называемая нефтью, находится лишь на пути к достижению пол-лого состояния равновесия. При этом одни изомеры уже достигли его, другие же находятся в концентрациях, весьма далеких от равновесия. Поэтому в нефтях наблюдается лишь преобладание термодинамически более устойчивых структур (изомеров), однако полного достижения равновесия нет. [c.349]

    Рас. 58. График для определения теплоты сгорания жидких углеводородов нефти. [c.205]

    Изучение поведения различных структурных групп предельных высокомолекулярных углеводородов в условиях жидкофазной дегидрогенизации в присутствии платины, отложенной на угле и пассивированной железом, показало следующее. Метод избирательной каталитической дегидрогенизации в жидкой фазе может успешно применяться при исследовании фракций предельных высокомолекулярных углеводородов нефти гибридного строения с целью определения содержания в их молекулах числа изолированных и конденсированных гексаметиленовых колец. При отсутствии в молекуле исследуемого углеводорода пентаметиленовых колец ошибка не превышает +2%, а при наличии пятичленных колец +6%. [c.218]

    При газовой съемке отбирают пробы газов с глубин от 2—3 м и до 20—50 м в зависимости от геологических условий. Отбирают пробы пород и вод, которые затем дегазируют. Проводится микроанализ газов для определения углеводородов. Над нефтяным или газовым месторождением наблюдаются при этом повышенные концентрации углеводородных газов. Получается, как говорят, газовая аномалия. Интенсивность миграции газов из залежей может быть небольшой из-за очень плохой проницаемости покрывающих пород и быстрого рассеяния газов и верхних рыхлых слоев. Концентрации мигрирующих газов могут быть при этом столь незначительными, что газовую аномалию выявить не удается. В таких случаях следует проводить отбор проб с более значительных глубин. С глубин 20—50 м или более отбирают пробы газа или пород и подземных вод, из которых затем извлекают газ и подвергают микроанализу на углеводороды. Такой способ называют глубинной газовой съемкой. Выявленная газовая аномалия свидетельствует о наличии в толще пород нефтегазовой залежи. На рис. 41 приведены примеры газовых аномалий. Ряд газовых аномалий подтвердился последующим открытием новых месторождений нефти и газа. [c.92]


    Что же касается определений углеводородов в органическом веществе нефтематеринских пород, то получают величины содержания лишь оставшихся высокомолекулярных углеводородов. Сколько же образовалось нефти и газа в этих породах и мигрировало, по этим данным точно сказать нельзя. [c.164]

    Определение содержания каждого из многочисленных углеводородов нефти связано с большими затруднениями. Поэтому при исследовании состава нефти ее прежде всего подразделяют на фракции, отличающиеся по температурам выкипания. Бензино-лигроиновая фракция выкипает из нефти при температуре от нескольких десятков градусов до 200° С, керосино-газойлевая — от 200 до. 300 С, соляровая — от 300 до 350° С. После этого остается мазут. [c.239]

    В соответствии с инструкцией МОРПОЛА 73/78 суммарное определение углеводородов нефти в судовых сточных водах должно осуществляться методом газовой хроматографии с ИК-фотометрическим окончанием в случае необходимости. На основании данного нормативного документа разработана методика 150 9377-2. Однако она не может быть применена в исходном варианте и нуждается в совершенствовании, так как часть указанного в ней приборного обеспечения поставляется ограниченно или вообще отсутствует на российском рынке. Поэтому на основании методики 180 была разработана новая методика определения нефтепродуктов в сточных водах, в которой вместо капиллярной колонки использовалась насадочная колонка длиной 3 м и внутренним диаметром 3 мм, наполненная хроматоном с иммобилизованной на нем подвижной фазой ОУ-1. При этом требования по чувствительности определения соблюдены, причем, использование надежной, селективной колонки позволило упростить операции по пробоподготовке, а также исключить необходимость использования предколонки. [c.133]

    Эффективность производства органических продуктов в нефтехггмической промышленности характеризуют нефтяным эквивалентом (н. э.), т. е. суммой энергетических и сырьевых (в том числе углеводородов) затрат на всех стадиях производства продукта, эквивалентных по теплотворной способности определенному количеству нефти (теплотворная способность нефти- 10 000 ккал/кг). Нефтяной эквивалент для производства 1 т этилена и пропилена — 2,6—3,6, бензола и толуола — [c.149]

    Данные, опубликованные Чарлетом и др., а также Лиллардом и др., убедительно свидетельствуют о том, что по крайней мере у ароматических углеводородов в высококипящих нефтяных продуктах преобладают конденсированные структуры. В настоящее время нельзя сделать определенных выводов о структуре имеющихся в нефти высокомолекулярных циклопарафиновых углеводородов. Предположение о конденсированной структуре полициклических циклопарафиновых углеводородов нефти, принятое многими авторами, представляется вероятным, но не окончательным. Поглощение в инфракрасной области спектра при 10,4 //, часто наблюдав-3  [c.35]

    Вместе с тем накопленный фактический материал позиолил выявить определенные зависимости между свойствами и глубиной зал< гания нефтей и высказать предположения, связанные с генезисом нефти в условиях Апшерон-ского полуострова. При сопоставлении свойств всех пластовых нефтей каждого месторождения установлено, что в пределах одного отдела нродуктивной толщи принципиальной разницы в свойствах индивидуальных нефтей нет. В то же время по каждому месторождению нефти верхнего отдела продуктивной толщи отличаются от нефтей нижнего отдела, особенно по соотношению нафтеновых и парафиновых углеводородов. Нефти при переходе от верхнего отдела к нижнему характеризуются резким повышением вязкости, смолистости и способности к коксованию. Нефти верхнего отдела содержат больше светлых фракций, а в составе последних — больше нафтеновых и меньше ароматических и парафиновых углеводородов. Такая тенденция прослеживалась в нефтях всех основных месторождений Апшерона (Сураханского, Ка-линского, Балаханского, Карачухурского и др.). [c.8]

    На первый взгляд может показаться, что в изомерных углеводородах нефтей категории А имеются соотношения (для углеводородов одной степени замещения), близкие к равновесным. Однако вопрос этот решается далеко не так просто. Безусловно, в распределении изомерных углеводородов нефтей имеются определенные тенденции к достижению равновесия. Настоящее равновесие среди изомеров не имеет места. В нефтях может лишь наблюдаться преобладание термодинамически устойчивых структур. Наиболее приближены к состоянию равновесия некоторые метилалканы и диметилалканы [4]. Однако и в данном случае кажущееся равновесие между монометилалка-пами обусловлено главным образом термодинамическим контролем механизма образования ряда изомеров, а не реальным достижением состояния равновесия (подробности об этом см. в главе 5). [c.44]

    Качественное и количественное определение в нефтях (фракция 200—250° С) адамантанов стало значительно более надежным после разработки специального метода — гидрокрекинга, в процессе которого углеводороды неадамантановой структуры претерпевают деструкцию, в то время как адамантан и его гомологи остаются неизмененными [18]. [c.102]

    Безусловно, что состав исходной биомассы и геохимические условия ее преобразования не могли не отразиться на составе углеводородов нефтей. Более того, для каждого бассейна осадконакопления, давшего затем начало тел1 или иным месторождениям нефти, свойствен свой характерный набор некоторых исходных соединений, а следовательно, и некоторых конечных нефтяных углеводородов. Особенности состава исходного органического вещества данного региона представляют собой ценнейшую информацию, используемую для разведки нефтяных месторождений, для взаимной корреляции нефтей в залежах, для определения источников образования нефтей. [c.252]

    Достигнутые в последние годы успехи в определении состава и строения углеводородов нефти несомненны. Об этом свидетельствуют хотя бы внушительные цифры, характеризующие число углеводородов, идентифицированных в нефтях (свыше 700). Неизмеримо возросла также сложность решаемых задач. Достаточно напомнить хотя бы работы, связанные с определением пространственного строения изостеранов, кстати, впервые открытых именно в нефтях. Это не единственный пример того, когда новый тип углеводородов обнаруживается впервые в нефтях. Так было, например, 50 лет назад с ада-мантаном — углеводородом, на основе которого возникло новое оригинальное научное направление — химия полиэдранов. [c.259]

    Если суммировать результаты последований индивидуального состава углеводородов нефти, то к нзстоящему времени число выделенных или с несомненностью определенных составляет свыше 600. Наиболее изучены нормальные алканы. [c.106]

    Согласно принятому нами ранее определению [1], к высокомолекулярным веществам нефти мы относим ту ее часть, для которой характерен молекулярный вес выше 400 и которая содержит остаточную часть после отгонки фракции до 350—400° С. Эта часть нефти в случае легких нефтей составляет 30—35%, тогда как в тяжелых высокосмолистых нефтях содержание ее достигает 60% и более. Компонентный состав ее включает углеводородную и неуглеводородную, или гетероатомную, части. Соотношение этих компонентов в сильной степени зависит от химической природы нефтей и колеблется в довольно широких пределах. В нефтях легких и средних, особенно нафтенового и нафтеново-парафинового основания, резко преобладает углеводородная часть, в тяжелых же, высокосмолистых, нефтях ароматического основания неуглеводородные компоненты составляют половину и больше остаточной части нефти. Углеводородные компоненты составляют наиболее легкую часть, молекулярный вес которой колеблется в пределах 400—800, и лишь небольшая ее часть характеризуется более высоким молекулярным весом. Среди высокомолекулярных углеводородов нефти резко преобладают структуры гибридного, или смешанного, типа, в молекулах которых присутствуют одновременно структурные звенья разного типа ароматические, нафтеновые и алифатические. Из высокомолекулярных углеводородных компонентов негибридного строения в остаточной части присутствуют лишь парафиновые углеводороды. С повышением молекулярного веса углеводородов повышается содержание в них циклических структур, преимущественно ароматических, а также степень копденспрованности последних. [c.20]

    Прошедшее с тех пор время внесло, конечно, весьма существенные изменения в общую картину состояния проблемы. Сильно увеличилось число исследований в области высокомолекулярных соединений нефти и расширилась их география. Значительно расширился набор экспериментальных методов разделения этих веществ на основные компоненты и анализа их элементного состава и химического строения. Унифицированы и стандартизованы методики, аппаратура и материалы, применяемые при исследовании высокомолекулярных компонентов нефти, что делает результаты более надежными, воспроизводимыми и сопоставимыми. Накоплен большой экспериментальный аналитический материал по свойствам и элементному составу неуглеводородных -Компонентов и высокомолекулярных углеводородов нефти, что позволяет сделать некоторые обобщения по элементному составу этих составляющих компонентов нефти. К сожалению, имеются серьезные расхождения по содержанию в неуглеводородных компонентах нефти такого важного элемента, как кислород, который обычно определяют по разности. Противоречия имеются и в данных по содержанию металлов (вероятно, из-за недостаточной унификации методов их определения). По-прежнему объектами исследования чаще всего служат высокомолекулярные соединения тяжелых нефтяных остатков, т. е. продукты, подвергавшиеся длительному высокотемпературному воздействию в процессах переработки и, следовательно, претерпевшие более или менее глубокие химические изменения. Особенно сильным изменениям подвергается неуглеводородная, т. е. смолисто-асфальтеновая, часть. Соединения же эти в неизменном состоянии, выделяемые из сырых нефтей и природных асфальтов в условиях, исключающих их химические изменения, изучены значительно слабее. Экспериментальных данных, позволяющих надежно и с достаточной полнотой оценить характер химических превращений высокомолекулярных компонентов нефтей в процессах высокотем- [c.44]

    Опыты проводились в тех же условиях, т. е. при температуре-315—320 С, в жидкой фазе и с применением в качестве катализатора платины на угле, приготовленной по описанной в литературе-рецептуре [78]. Дегидрогенизации подвергались жидкие парафиновоциклопарафиновые углеводороды, не образующие кристаллических комплексов с тиокарбамидом и выделенные из высокомолекулярной предельной части ромашкинской нефти. Процесс осуществлялся в три стадии при общей продолжительности 30 ч по следующей методике исходную фракцию высокомолекулярных предельных углеводородов нефти нагревали 10 ч с 15—20% катализатора. Количество выделявшегося газа измеряли через определенные промежутки времени (первая стадия) жидкие продукты реакции отделяли от катализатора и подвергали хроматографическому разделению. Во второй стадии при тех же условиях дегидрировали предельные углеводороды, выделенные из катализата первой стадии. Жидкие продукты реакции снова подвергали хроматографическому разделению , на третью стадию дегидрогенизации брали только предельную часть, [c.219]

    Здесь уместно отметить, что утверждение Квптковского и Петрова [124] о полной непригодности методов структурно-группового анализа для исследования нефтяных высокомолекулярных углеводородов, содержащих ароматические структуры, слишком категорично и недостаточно мотивировано. Их расчеты проведены на примерах сравнительно простых двойных и тройных смесей из синтетических углеродов, не вполне моделирующих сложные многокомпонентные -системы, какими являются даже узкие фракции высокомолекулярных углеводородов нефти. Известно, что чем сильнее отклоняется явление по своим характеристикам от средних значений, тем реже оно повторяется. Во всяком случае, пока нет более точных методов определения строения сложных гибридных структур высокомолекулярных углеводородов нефти, структурно-групповыми методами анализа следует пользоваться, даже если ошибки определений будут составлять 15—20%. Правда, такие отклонения уже легко будет обнаружить по данным элементарного анализа и константам ( , п и др.). Методы структурно-группового анализа дают полуколичественную характеристику, в общем правильно отражающую сочетание структурных элементов в усредненной молекуле многокомпонентных смесей. На примерах индивидуальных синтетических соединений и их смесей надо вести дальнейшие исследования по выяснению закономерностей, связывающих свойства со строением молекулы. [c.252]

    При техническом анализе нефтей применяют также сернокислотный способ определения смол. Но содержание сернокислотных смол (т. е. определенных этим способом) дает лишь приближенное представление о характере нефти. Условность этого определения заключается в том, что с серной кислотой реагируют не только смолистые вещества, но частично и асфальтены, а также некоторые высокомолекулярные углеводороды нефти часть смолистых веществ может и не реагировать с серной кислотой. В итоге содержание сернокислотных смол в нефти, как правило, выше, чем силикагелевых в ромашкипской нефти соответственно 34 и 10,24% (масс.). Однако определять содержание сернокислотных смол значительно проще и быстрее, чем силикагелевых (около 1,5 и 12—14 ч соответственно). Этим и объясняется сохранение этого метода в качестве стандартного (ГОСТ 2550—44). Содержание смол в различных нефтях Советского Союза колеблется в весьма широких пределах в малосмолистой бариновской нефти (Куйбышевская область) силикагелевых смол всего 2,33% (сернокислотных 9%), в радаевской иефти (той же области) — 22% (сернокислотных 56%). [c.62]

    Таким образом, при сопоставлении расчетной и экспериментальной вязкости удается рассчитать среднюю степень ассоциации молекул дайной жидкости, которая служит критерием оценки степени отклонения данной жидкости от состояния молекулярного раствора. Оценка склонности углеводородов нефти к ассоциации в широком шгтервале температур возможна путем соответствующих элементарных расчетов на основе исследования их вязкостно-температурных свойств [40] и может служить классификационным признаком отнесения исследуемого углеводорода к сильно-, средне- и слабоассоципрующим жидкостям в определенном диапазоне температур. [c.21]

    Много внимания уделялось определению состава нефтей. Так, Менделеев выделил из нефтей пентан и гексан. Бейльштейн и Курбатов, изучая состав низкокипящих дистиллятных фракций нефти, обнаружили наличие в них соединений общей формулы СпНгп, обладающих свойствами предельных углеводородов. Исследование фракций кавказских нефтей Марковниковым и Оглоб-линым показало, что такие соединения содержатся в кавказских нефтях в значительных количествах и представляют собой новый класс циклических углеводородов, названный ими нафтенами. Марковников показал, что нафтены в основном содержат шестичленные кольца, но число углеродных атомов в кольце может быть отличным от шести. Работы по исследованию нафтенов были продолжены Зелинским и его учениками Наметкиным, Казанч ским и др. С целью более тщательного изучения химических свойств, а также для идентификации выделенных из нефтей углеводородов Марковников и особенно Зелинский синтезировали [c.4]

    Из приведенного сравнения видно, что отличительные признаки смол заключаются в растворимости в алканах (а также в углеводородах нефтн), возможности разделения на узкие фракции однотипных групп веществ (например, моноциклические, бициклические и др.), малая степень ароматичности, поЛидисперсность и отсутствие структуры. Смолы представляют собой вещества, занимающие область между углеводородными маслами и асфаль-тенами. Именно благодаря полидисперсности, широкому интервалу молекулярных масс, отсутствию относительно сформированной молекулы,, небольшому размеру и малой степени ароматичности, межмолекулярные взаимодействия у них не приобретают решающего значения. Поэтому их можно разделить на фракции одноптипиых веществ. Вследствие этого в книге [242] предложены критерии, позволяющие более четко определить понятое асфальтены и смолы. К смолам можно отнести растворимые в углеводородах нефти высокомолекулярные гетероатомные полидисперсные бесструктурные соединения нефти, которые можно разделить на узкие фракции однотипных соединений. Начиная с определенного размера и степени ароматичности относительно сформированных полициклических молекул, решающим фактором становится меж-молекулярное взаимодействие, приводящее к формированию структуры (в известной степени сравнимой с процессом кристаллизации у полимеров), степень упорядоченности которой зависит от их химической природы. [c.269]

    Жидкие углеводороды нефти —нафтеновые, ароматические, нафтено-ароматические и их алкильные производные — находятся в масле в состоянии молекулярного раствора. Ароматиче,-ские, нафтено-ароматические углеводороды а также смолистые вещества могут, видймсГ/Iff определенных условиях образовывать также ассоциированные комплексы, разрушающиеся при нагреве. [c.87]

    Деградацию углеводородов нефти можно осуществить с помощью штамма Rliodo o us erythiopolis, выделенного автором из природных образцов нефтесодержащих почв Крайнего Севера. Новый штамм обладает выраженной способностью к биодеградации легких и тяжелых фракций в воде и в почве. Из полученных данных следует, что штамм был способен использовать не только легкие фракции, такие, как гексадекан, дизельное топливо, но и в определенной степени тяжелые фракции нефти, т.е. разлагать широкий спектр углеводородов. Максимальная деструкция наблюдалась па 3 сутки и составляла для парафина 90%, дизельного топлива 85%, нефти 80% [5]. [c.87]

    Получив его одобрение и поддержку, мы провели цикл работ, позволивший разработать метод определения в сырых нефтях общего количества нормальных алканов, содержание каждого ирщивидуального нормального углеводорода в них и количество углеводородов нефти, образующих комплекс с карбамидом. [c.28]

    Недостаточная изученность процессов взаимодействия углеводородов нефти с различными химреагентами, а также отсутствие методов установления закономерностей взаимодействия компонентов пластовой среды в зависимости от состава, свойств к условий применения химреагентов затрудняют решение задачи по определению перспективности химических веществ для нефтедобычи.-Изыскание и выбор химреагентов осуществляются в основном опытным путем. Более целесообразным является комплексный подход [2], основанный на физико-химических исследованиях характеристик основных свойств химреагентов и изменений их под действием геологических и технологических факторов пластовой среды с помощью различных современных инструментальР1ых методов, лабораторных и промысловых исследований. В условиях конкретных нефтяных месторождений необходимо, чтобы подобранные опытным путем химические вещества и их композиции обладали следующим комплексом физико-химических свойств. Они должны растворяться в воде и органических соединениях понижать поверхностное натяжение на границе раздела фаз и улучшать смачиваемость породы водой обладать высокими нефтеотмывающими и вытесняющими свойствами улучшать реологические свойства нефти предотвращать или не вызывать отложение асфальто-смолистых и парафиновых веществ в пористой среде и скважине не способствовать при взаимодействии с глиной ее набуханию не стимулировать образование водонефтяных эмульсий б [c.6]


Смотреть страницы где упоминается термин Определение углеводородов нефти: [c.25]    [c.199]    [c.8]    [c.130]    [c.175]    [c.668]    [c.24]   
Смотреть главы в:

Технический анализ нефтепродуктов и газа -> Определение углеводородов нефти

Технический анализ нефтепродуктов и газа Издание 3 -> Определение углеводородов нефти




ПОИСК







© 2024 chem21.info Реклама на сайте