Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ОСОБЕННОСТИ СТРОЕНИЯ РАСТВОРОВ И МЕТАЛЛОВ

    ОСОБЕННОСТИ СТРОЕНИЯ РАСТВОРОВ И МЕТАЛЛОВ [c.17]

    НЕКОТОРЫЕ ОСОБЕННОСТИ СТРОЕНИЯ ДВОЙНОГО СЛОЯ НА ГРАНИЦАХ РАЗДЕЛА МЕТАЛЛ — РАСПЛАВ И ПОЛУПРОВОДНИК - РАСТВОР [c.137]

    Остановимся на некоторых особенностях строения и роста фазовых оксидных слоев. По структуре и свойствам эти слои делят на сплошные (плотные) и пористые. Примером сплошных слоев могут служить пассивирующие слои на тантале, цирконии, алюминии, ниобии. Сплошные слои имеют стеклообразную или аморфную структуру, обладают достаточно большим электрическим сопротивлением и иногда проявляют выпрямляющее действие, проводя ток лишь тогда, когда металл является катодом. Типичным примером пористых слоев могут служить оксидные и гидроксидные слои на кадмии, цинке, магнии. Эти слои имеют кристаллическую структуру и низкое электрическое сопротивление (порядка нескольких омов). Возможно также образование слоев смешанного типа. Так, на алюминии в сернокислых растворах можно наблюдать сплошной слой со стороны металла и пористый со стороны раствора. Кроме того, при поляризации электрода или во времени могут происходить переход одного типа слоя в другой, кристаллизация аморфных слоев, изменение их состава и структуры. [c.368]


    Изучение электрохимических процессов на границе раздела металл — раствор. Известно, что строение двойного электрического слоя на границе раздела металл — раствор, содержащей ионы этого металла, является определяющей характеристикой электродных процессов. Ряд особенностей строения двойного электрического слоя может быть получен при исследовании обмена между металлом и раство-ром. [c.192]

    Изучая в начале данного курса строение атомов различных элементов, мы сосредоточивали внимание на свойствах отдельных, изолированных атомов — их электронной структуре, энергии ионизации, атомных и ионных радиусах и т. п. Попытаемся теперь разобраться в особенностях строения и свойств больших групп атомов, расположенных в непосредственной близости друг к другу. Известно, например, что магнитная восприимчивость изолированного атома или иона определяется наличием в его электронной оболочке неспаренных электронов (см. гл. 5). Однако й том случае, когда поблизости друг от друга находится большая совокупность атомов, как это имеет место в твердых металлах, взаимодействие между атомами способно существенно изменить их важнейшие свойства. При наличии в кристаллической решетке железа достаточно большого числа атомов этот металл приобретает ферромагнитные свойства, которыми не обладают ни соединения железа, ни растворы, содержащие его ионы. Учитывая эту особенность твердых веществ, обусловленную взаимодействием их атомов, рассмотрим расположение атомов в кристаллической решетке твердых металлов и познакомимся с теорией взаимодействия их электронов. Кроме того, в данной главе мы обсудим еще строение и свойства сплавов, так как они довольно близки в этом отношении к чистым металлам. [c.387]

    Три главы книги посвящены физико-химическому анализу жидких систем. К жидким логично относить как смеси жидких веществ при обычных температурах, так и расплавы металлов, солей, шлаков и др., а также растворы электролитов. Однако специфика жидкостей — характер связей и особенности строения, накладывает свой отпечаток на кривые состав—свойство жидких систем и требует применения специфических для различных типов жидкостей методов иссл едования, что оправдывает выделение из раздела Жидкие системы расплавов и водных растворов электролитов. [c.4]

    Сплавами называются гомогенные смеси металлов в расплавленном состоянии и продукты их затвердевания. Жидкие сплавы — это преимущественно растворы металлов один в другом. Однако в сплавах могут содержаться также и химические соединения в расплавленном состоянии. Природа затвердевших сплавов может быть очень разнообразной. Они могут быть квазигомогенными (см. ниже) или совершенно негомогенными, могут состоять из твердых растворов или из соединений металлов между собой или из комбинаций двух последних типов. Металлы,-образующие сплав, при затвердевании его могут выделяться таким образом, 1Т0 получается более или менее грубозернистая смесь из отдельных составных частей выделение металлов из расплава может при затвердевании и не наступить или наступить лишь частично металлы при охлаждении иногда могут вступать между собой в такие соединения, которые оказываются неспособными к существованию нри более высокой температуре это может происходить частично или полностью, подобные соединения могут вновь образовывать твердые растворы и т. д. Наблюдаемое в этой области разнообразие настолько велико, что изучение природы сплавов, их особенностей и свойств, а также свойств чистых металлов выделилось в особую отрасль знания — металлографию. Для исследования строения металлов и сплавов металлография пользуется главным образом тремя методами во-первых, термическим анализом, который подробнее будет рассмотрен ниже этот метод дополняется вторым, вспомогательным — микроскопическим исследованием шлифованных и полированных и затем соответствующими способами протравленных металлических поверхностей-, в последнее время возник третий метод металлографического исследования — рентгеноструктурный анализ. [c.606]


    Необходимо отметить весьма важные свойства металлов переходных групп, с которыми, несомненно, связаны и их высокая способность к пассивированию и их растворение. Известно, что поведение этих металлов в водных растворах является весьма сложным и зависит от множества факторов. Оно определяется возможностью протекания различных процессов на их поверхности комплексообразования, гидролиза, а также полимеризации, что обусловливается особенностью строения их электронных оболочек. Многие металлы, в том числе титан, цирконий, ниобий, тантал, молибден, ванадий, [c.74]

    Следует подчеркнуть, что так как в необратимых процессах важную роль играет не только общий скачок потенциала, но и особенности строения двойного электрического слоя на границе металл— раствор, то необходимо определить положение реагирующих частиц в двойном электрическом слое. Как первое приближение примем, [c.317]

    Однако сопоставление скачков потенциала (АЕ) на границах раствор — ртуть и раствор — воздух в случае ароматических соединений приводит к сильным расхождениям как по величине, так в ряде случаев и по знаку АЕ. Так, например, для орто- и паракрезола АЕ на границе ртуть — раствор соответственно равны —0,20 и —0,29 в, тогда как на границе воздух — раствор они имеют значения +0,01 и +0,26 в. Вначале сдвиг т. н. з. в отрицательную сторону в случае адсорбции на ртути ароматических соединений был связан с более плоской ориентацией молекул на поверхности ртути, при которой облегчается взаимодействие отрицательных атомов полярных групп с металлом. Однако в работах Геровича [40, 41] было показано, что такие соединения, как бензол, нафталин, антрацен, фенантрен и хризен, несмотря на их неполярный характер, также смещают т. п. з. в отрицательную сторону, причем адсорбируемость этих соединений при > О возрастает с увеличением числа бензольных колец в молекуле органического вещества. Эти результаты дали основание предположить, что аномальное поведение ароматических соединений на границе ртуть — раствор связано не только с их более плоской ориентацией, но и с особенностями строения бензольного кольца. [c.186]

    Особенность строения электронной оболочки атома водорода (как н гелия) не позволяет однозначно решить, в какой группе периодической системы он должен находиться. Действительно, если исходить из числа валентных электронов его атома, то водород должен находиться в I группе, что подтверждается также сходством спектров щелочных металлов и водорода. Со щелочными металлами сближает водород и его способность давать в растворах гидратированный положительно однозарядный ион Н+ (р). Однако в состоянии свободного иона Н+ (г) — протона — он не имеет ничего общего с ионами щелочных металлов. Кроме того, энергия ионизации атома водорода намного больше энергии ионизации атомов щелочных металлов. [c.272]

    Скорость электрохимической коррозии металлов зависит от сложного комплекса физико-химических, тепловых, механических и других факторов, называемых внутренними и внешними. К внутренним факторам, помимо рассмотренных в гл. 1 термодинамической стабильности металлов и их строения, относятся структурные особенности сплавов, способность металлов и сплавов к пассивации, влияние механических напряжений на коррозионный процесс, характер обработки и состояние поверхности сплавов н др. Внешние факторы включают характер агрессивной среды, концентрацию водородных ионов, температуру и скорость движения потока раствора, давление, влияние блуждающих токов, микроорганизмов и др. [c.15]

    Строение двойного электрического слоя для металлов группы платины в водных растворах электролитов отличается тремя главными особенностями 1) участием в образовании двойного слоя наряду с ионами раствора н молекулами растворителя адсорбирующихся на поверхности электрода атомов водорода и кислорода 2) ярко выраженным образованием прочных хемосорбционных связей между поверхностью металла и адсорбирующимися ионами, в результате чего многие, ионы при адсорбции частично или даже полностью теряют свой заряд (это явление получило название хемосорбции с переносом заряда) 3) диссоциативным необратимым характером адсорбции органических соединений. [c.182]

    Однако первоначальная теория электролитической диссоциации не достаточно объясняла многие свойства растворов электролитов, в особенности растворов тех веществ, которые имеют ионное строение в твердом состоянии (напрнмер, галогениды щелочных металлов). В теории не Принималось во внимание, что находящиеся в растворе ионы могут взаимодействовать с образованием сложных ассоциатов. [c.217]

    Особенность строения электронной оболочки атома вЬдорода (как й гелия) не позволяет однозначно решить, в какой группе периодической системы он должен находиться. Действительно, если исходить из числа валентных электронов его атома, то ВодороД должен находиться в I группе, что подтверждается также сходством спектров щелочных металлов и водорода. Со щелочными металлами сближает водород и его способность давать в растворах гидратированный положительно [c.299]


    Ребиндера) и показал (1930— 1940) пути облегчения обработки очень твердых и труднообрабатываемых материалов. Обнаружил электрокаииллярный эффект пластифицирования металлических монокристаллов в процессе ползучести при поляризации их поверхности в растворах электролитов. Исследовал особенности водных растворов поверхностно-активных веществ (ПАВ), влияние адсорбционных слоев на свойства дисперсных систем. Выявил (1935—1940) основные закономерности образования и стабилизации пен и эмульсий, а также процесса обращения фаз в эмульсиях. Установил, что моющее действие включает сложный комплекс коллоидно-химических процессов. Изучал образование и строение мицелл ПАВ, развил представления о термодинамически устойчивой мицелле мыл с лиофобным внутренним ядром в лиофильной среде. Выбрал и обосновал оптимальные параметры для характеристики реологических свойств дисперсных систем и предложил методы для их определения. Выяснил механизм гидратационно-го твердения минеральных вяжущих, Открыл (1956) явление адсорбционного понижения прочности металлов под действием металлических расплавов. Создал (19й0-е) новую область науки — физикохимическую механику. [c.420]

    При растворении в амфотерном растворителе — воде или спирте — лишь немногие углеводороды (и ограниченное число их производных) способны реагировать как кислоты и основания, и обмен водорода в СН-связях, наиболее перспективный для выяснения реакционной способности и особенностей строения органических соединений, происходит сравнительно редко. Кислотные свойства веществ очень усиливаются при их растворении в таком протофильном растворителе, каким является, например, жидкий аммиак. Это было ранее показано в работах по кислотному катализу в жидком аммиаке, по электропроводности растворов в нем и другими физико-химическими измерениями (о кислотах и основаниях в жидком аммиаке см. обзор [7]). Уксусная кислота, сероводород и даже п-нитрофенол становятся равными по силе соляной, азотной и хлорной кислотам. Это и понятно все перечисленные кислоты в жидком аммиаке превращаются в аммонийные соли, и фактически реакцию аммонолиза катализирует одна и та же кислота — ион аммония. Такие вещества, как мочевина и ацетамид, практически нейтральные в воде, в жидком аммиаке частично ионизируют и превращаются в ионы С0(МН2)МН", Hз ONH . Названные вещества катализируют реакцию аммонолиза и реагируют со щелочными металлами с выделением водорода. В аммиачном растворе амид калия (сильное основание) нейтрализует слабые кислоты — инден, флуорен, трифенилметан, дифенилметан и т. д. с образованием окрашенных анионов углеводородов  [c.38]

    Следует подчеркнуть, что поскольку в необратимых процессах важную роль играет не только общий скачок потенциала, но и особенности строения двойногоэлектрическогослояна границе металл — раствор, необходимо определить положение реагирующих частиц в двойном электрическом слое. Как первое приближение примем, что все падение потенциала сосредоточено в плоской части двойного электрического слоя (г = 0) и поверхностная концентрация частиц равна их объемной концентрации. Кроме того, необходимо учесть, что потенциальная кривая I на рис. 47, в отличие от аналогичной кривой на рис. 29, относится не к конеч- [c.313]

    Описанные особенности строения фаз внедрения зачастую делают неоднозначным выбор базисного вещества — твердого раствора внедрения. Действительно, при малых концентрациях внедренных атомов базисным веществом целесообразно называть чистый металл, а металлоид рассматривать как примесь, размещенную в междуузлиях. Типичным примером такой системы является аустенит — твердый раствор углерода в -у-железе, в котором атомы углерода занимают окта-позиции ГЦК подрешетки железа. При описании таких систем можно с успехом пользоваться аппаратом статистической термодинамики (гл. 2), оперирующим с междуузельными атомами, в частности, определять химический потенциал металлоида по (2.45)  [c.99]

    Успехи электрохимии в значительной мере зависели от развития чисто физической стороны учения об электричестве. До тех пор, пока в распоряжении химиков не было способов измерения силы тока, напряжения и сопротивления и эти понятия не были точно определены, исследования в области электрохимии были сильно о раничены. Большим успехом явились поэтому работы Ома и в особенности установленный им в 1825 г. закон, с которым мы уже познакомились и за признание которого Ому пришлось вести упорную борьбу. Лишь установление этого закона сделало возможным дальнейшие исследования сопротивления растворов или обратной величины — электропроводности, рслившие свет на вопр >с о строении растворов. Следует также отметить, что наряду с сопротивлением Ома, Фехнер вскоре ввел еще другое понятие сопротивления, а именно переходное сопротивление, существующее, по его мнен ю, в местах соприкосновения проводников первого и второго рода Понятием этим неоднократно пользовались в дальнейшем теперь оно оставлено. К такому представлению могло привести неправильное толкование таких явлений, как образование плохо проводящей плёнки или слоя газа на границах металлов и жидкости, а также изменение напряжения в этих местах вследствие появления продуктов разложения или изменения концентрации электролита при прохождении тока. Последнее явление, названное поляризацией, наблюдалось уже Риттером и впоследствии было подробно изучено. Мы вернемся к этому ниже в отдельной главе. [c.42]

    Внутреннее строение рассматриваемых систем, особенно пересыщенных растворов, изучено пока недостаточно. Па основании рентгеноструктурного изучения жидких металлов [71] в последних при температурах, близких к температурам кристаллизации, установлено наличие группировок ближнего порядка, которые являются, по-видимому, основой для зарожде шя центров кристаллизации. Современные структурные представления о растворах электролитов [72] указывают на существование в них квазикристаллической упорядоченности молекул в пределах первых двух-трех координационных сфер. Естественно полагать, что структура пересыщенных растворов отличается от структуры стабильных ненасыщенных растворов, но тем не менее на.иичие ближнего порядка в структуре растворов не вызывает сомнений. Представляется очевидным, что в предкристаллизационный период действие МП стабилизирует молекулярные группировки ближнего порядка, флуктуирующие в объеме исходной фазы, что способствует возникновению центров кристаллизации. Падо полагать, что влияние МП на образование зародышей новой фазы в метастабильных и термодинамически открытых системах связано с процессами, происходящими па уровне сложных гетерофазных образований, где весьма малые энергетические воздействия МП могут вызвать значительные эффекты. [c.77]

    Благодаря отмеченным особенностям строения нативной целлюлозы ее растворению, а также и превращению обычно предшествуют процессы набухания в тех или иных реагентах. В частности, действие концентрированных растворов едкого натра и гидроокисей других щелочных металлов на волокно целлюлозы приводит к его значительному набуханию и образованию нового соединения — щелочной целлюлозы (алкалицел-люлозы), что сопровождается изменением степени кристалличности целлюлозы и повышением ее реакционной способности. Этот процесс — процесс обработки целлюлозных материалов концентрированными растворами щелочей — носит название мерсеризации. При обработке нативной целлюлозы растворами едкого натра различной концентрации и при разных температурах получаются отличающиеся друг от друга структурные модификации щелочной целлюлозы, что, по-видимому, связано с различной степенью разрушения кристаллической структуры исходной целлюлозы. [c.8]

    Указанные особенности строения увеличивают прочность связи между металлом и органическим реактивом кроме того, реактив вытесняет молекулы воды из гидратной оболочки ионов. Все это обусловливает часто малую растворимость или малую диссоциацию таких солей. Уксуснокислый кальций и уксуснокислый магний хорошо растворимы и довольно хорошо диссоциируют. Щавелевокислый кальций трудно растворим щавелевокислый магний довольно плохо растворим, а раствор его почти не проводит электрического тока вследствие малой диссоциации. Щавелевокислые соли многих металлов трудно растворимы, а соли редкоземельных металлов и тория мало растворяются даже в сильных кислотах. Щавелевокислые соли многих других металлов очень мало диссоциируют и вследствие этого имеют ряд особых свойств. Так, из раствора соли Ре2(Сг04)з ионы Са + не осаждают ионов щавелевой кислоты или осаждают только частично. Раствор соли Сг2(С204 з при действии гидроокиси аммония не образует осадка гидрата [c.106]

    Возникновение двойного электрического слоя нри соприкосновении металла с раствором неизбежно вызывает изменения состава ])ас-твора. В случае электродов с высоко развитой поверхностью эти изменения оказываются весьма значительными и могут быть установлены обычными аналитическими методами. Тако11 метод изучеггия двойного электрического слоя получил название адсорбционного. Соче тание адсорбционного метода с методом снятия кривых заряжении (А. Н. Фрумкин, А. И. Шлыгин, В. И. Медведовский, А. Д. Обручева, Р. X. Бурштейн н др.) позволило установить ряд важных особенностей строения двойного электрического слоя. В частности, были установлены дипольный характер адсорбированных на металле атомов водорода и кислорода, объяснен эффект перезарядки золя платины при переходе от атмосферы водорода к атмосфере кислорода (Н. А. Бах, И. А. Балашова), а также различия в поведении водородного и кислородного угля (Б. п. Брунс, С. Д. Левина, Е. М. Кучинский). [c.168]

    Таким образом, общие кристаллохимические свойства исследуемых цеолитов определяют близкие значения их обменной емкости, ряды подвижности катионов и селективности, характер изотерм обмена и резко выраженную селективность к крупным катионам одно- и двухвалентных металлов, вьюокую скорость обмена. Особенности строения их алюмокремнекислородных каркасов обусловливают различную зависимость селективности, коэффициентов активности обменивающихся ионов в твердой фазе и скорости от размера катиона и степени обмена, а также уменьшение максимальной обменной емкости эрионита в реакциях с водносолевыми растворами. [c.99]

    Вопросы для самопроверки 1. Каковы особенности строения атомов элементов семейства железа — Ре, Со, N1 Как можно с точки зрения заполнения 3 -орбиталей в атомах этих элементов объяснить магнитные свойства этих металлов 2. Какую степень окисления проявляют железо, кобальт и никель в соединениях Напишите формулы оксидов и гидроксидов. Каков их характер 3 Почему гидроксид железа (И) неустойчив на воздухе Ответ подтвердите уравнением реакции. 4. Как можно гидроксид кобальта (П) и гидроксид никеля (П) превратить в гидроксид никеля (И1), в гидроксид кобальта (III) 5. Какая из солей РеС12 или РеСЬ в большей степени гидролизуется Напишите уравнения происходящих реакций. 6. Как исходя из оксида железа (III) можно получить феррат калия КгРе04 7. Как гидроксиды Со(ОН)з н Ы1(0Н)з взаимодействуют с концентрированной соляной кислотой Напишите уравнения окислительно-восстановительных реакций. 8. Ионы Ре (II) в растворе можно обнаружить по появлению синего окрашивания турнбуллевой сини. Напишите уравнение реакций хлорида железа (II) с красной кровяной солью. 9. Напишите уравнения реакции взаимодействия диметилглиоксима [c.58]

    Многие исследователи пытались усовершенствовать теорию электровыделения металлов, привлекая представления об электронном строении их ионов. Одна из та <пх попыток принадлежит Лайонсу (1954). По Лайонсу, величина металлического перенапряжения зависит от характера электронных структур разряжающихся ионов и выделившегося на катоде металла. При этом перенапряжение будет особенно большим в двух случаях. Во-иервых, если аквакомплексы (илн иные комплексы) образованы нонами за счет электронов, находящихся на внутреннн>. орбитах (внутрнорбитальпые комплексы), благодаря чему создаются наиболее прочные связи ионов в растворе. Во-вторых, если велика разница в электронных структурах иона и металла в этом случае требуется значительная энергия активации для их перестройки в процессе разряда. Разря- [c.466]

    При действии на растворы полисахаридов бактериями определенного вида протекают процессы, направленность которых приводит к получению новых сложных по химическому строению веществ — биополимеров. В зависимости от синтеза (температуры, концентрации растворов, содержания примесей и т. д.) при использовании различных видов и штаммов бактерий, свойства получаемых препаратов колеблются в широких пределах. В зарубежной практике бурения испытан ряд биополимеров ХЗ, ХР8 и др. По литературным данным, биополимеры обладают достаточно высокой стабилизирующей способностью в присутствии большого количества поваренной соли и водорастворимых солей двух-и поливалентных металлов. Некоторые из биополимеров обладают особыми свойствами селективного взаимодействия с выбуренными горными породами, флокулируя последние. При этом они не взаимодействуют или слабо взаимодействуют с другими компонентами промывочных жидкостей. Биополимеры с флокулирующими горные породы свойствами особенно перспективны при применении безглинистых промывочных жидкостей с низкой водоотдачей (водные растворы защитных коллоидов). Благодаря применению биополимеров такие системы в процессе бурения не обогащаются твердой фазой за счет выбуриваемых пород, т. е. не переходяг в естественные суспензии. Водные растворы биополимеров находят применение в качестве промывочных жидкостей при бурении [c.153]

    Из приведенных данных видно, что по величине энергии ионизации водород стоит шачительно ближе к фтору, чем к литию, и никакие металлические свойства свободному атому водорода, следовательно, не присущи. Точно так же положительно заряженный ион водорода не имеет ничего общего со свойствами ионов щелочных металлов, поскольку является элементарной частицей — протоном. Вместе с тем в электрохимическом ряду напряжений водород ведет себя как металл. Это объясняется тем, что электрохимический ряд напряжений служит характеристикой атомов металлов в водных растворах (см. гл. V, 11). При ионизации атома водорода в присутствии воды образуется ион гидроксония Н3О+, что сопровождается выделением энергии. Вследствие этого энергия ионизации атома водорода в водном растворе резко снижается и становится близкой к величине энергии ионизации атомов металлов. Заметим, что по некоторым физическим свойствам ион Н3О+ в растворе ведет себя подобно катионам щелочных металлов. Однако эти особенности не относятся к атому или иону водорода и не дают оснований рассматривать его как металл. Сходство строения внешней электронной оболочки атома водорода с внешними электронными оболочками атомов щелочных металлов носит, следовательно, такой же формальный характер, как и однотипность строения внешних электронных оболочек атома гелия и атомов элементов II группы. [c.160]

    В книге изложены современные теории прохождения тока через растворы электролитов приведены основные положения теории слабых и сильных электролитов рассматриваются электродвижущие силы гальванических элементов и скачки потенциалов, возникающие на границе фаз описываются концентрационные элементы и условия их применения анализируется строение, свойства и теория двойного электрического слоя даны сведения об электрокапиллярных и электроки-нетических явлениях приводится анализ природы и особенностей электродной поляризации рассматриваются современная теория и закономерности электроосаждения металлов из растворов их простых и комплексных солей представлены новейшие данные по коррозии металлов и явлению пассивности. [c.2]


Смотреть страницы где упоминается термин ОСОБЕННОСТИ СТРОЕНИЯ РАСТВОРОВ И МЕТАЛЛОВ: [c.5]    [c.184]    [c.142]    [c.467]    [c.70]    [c.14]   
Смотреть главы в:

Техника антикоррозионной защиты оборудования и сооружений -> ОСОБЕННОСТИ СТРОЕНИЯ РАСТВОРОВ И МЕТАЛЛОВ




ПОИСК





Смотрите так же термины и статьи:

Металлы растворов

Строение металлов



© 2024 chem21.info Реклама на сайте