Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сложные эфиры других неорганических кислот

    Другим важным представителем сложных эфиров неорганических кислот является азотный эфир глицерина—т. н. нитроглицерин [СзН5(0М02)з]. Он представляет собой тяжелую маслообразную жидкость (т. пл. 14 °С), характеризующуюся чрезвычайной взрывчатостью. Пропитанный нитроглицерином трепел носит название динамита и применяется в качестве бризантного взрывчатого вещества. В смесях с пироксилином и некоторыми другими добавками нитроглицерин дает студнеобразную массу, которая служит для изготовления бездымных порохов. [c.565]


    Теоретические основы экстракции.- Экстракцией называется извлечение вещества из одной жидкой фазы в другую жидкую фазу. С водой не смешиваются малополярные органические жидкости (с низкой диэлектрической постоянной). Подавляющее большинство неорганических соединений, имея ионную природу, растворяется в них плохо. В водном растворе эти соединения диссоциируют на ионы, которые гидратируются молекулами воды. Переход соединения в органическую фазу становится возможным, если все или часть молекул воды, координированных ионом, будут удалены, и получен нейтральный комплекс. Образование нейтральных соединений и уменьшение степени гидратации наблюдается прн образовании солей с органическими кислотами, аминами (если металл входит в состав аниона), сольватов с нейтральными экстрагентами (спиртами, кетонами, простыми и сложными эфирами). При образовании сольватов молекулы экстрагента замещают молекулы воды в гидратной оболочке катиона либо присоединяются к воде гидратной оболочки. Такого рода взаимодействие возможно, если органические вещества содержат атомы кислорода, азота и других элементов, способных быть донорами электронов, а металлы — акцепторами. [c.332]

    Из органических реактивов под действием воды разлагаются алкоголяты металлов, галогенангидриды карбоновых кислот, многие сложные эфиры карбоновых и неорганических кислот, соли некоторых слабых оснований и кислот и ряд других органических соединений, имеющих легкоподвижный заместитель. Например, под действием воды разлагаются пропилат и ызо-пропилат алюминия, эфиры азотистой, борной и кремневой кислот бромистый и хлористый ацетилы, хлорангидриды валериановой, ызо-валериа-новой, коричной, масляной, 1-нафтойной, 2-нафтойной, пальмитиновой, пропионовой и других карбоновых кислот аммоний лимон- [c.72]

    Характерной особенностью карбоновых кислот наряду с другими реакциями является реакция этерификации, т. е. способность аналогично неорганическим кислотам образовывать сложные эфиры со спиртами. Эта важная реакция имеет внешнюю аналогию с реакцией нейтрализации кислоты щелочью (хотя сложные эфиры нисколько не напоминают соли). В отличие от нейтрализации, которая, как известно, представляет собой ионную реакцию, а потому идет моментально и необратимо, этерификация, как и громадное большинство реакций органических веществ, хотя и может быть ионной, протекает медленно. [c.207]


    В данную товарную позицию входят сложные эфиры других неорганических кислот и их соли, исключая  [c.194]

    Сложный эфир. Соединение, состоящее из двух вполне различимых фрагментов один из них представляет собой спиртовой остаток, а другой образован либо неорганической кислородсодержащей кислотой (кислота, у которой кислый водород связан с кислородом), либо органической кислотой. Чаще всего в органической химии встречаются сложные эфиры карбоновых кислот [c.428]

    Известно множество сложных эфиров фенолов и неорганических кислот по методам получения фосфатов, боратов, сульфатов и других подобных эфиров имеется обзор [93]. Получение фосфатов осложняется образованием пиро- и полифосфатов и трудностями [c.212]

    Метанол — сырье для многих производств органического синтеза. Основное количество его расходуется на получение формальдегида. Он служит промежуточным продуктом в синтезе сложных эфиров органических и неорганических веш еств (диметилтерефталата, метилметакрилата, диметилсульфата), пентаэритрита. Его применяют в качестве метилирующего средства для получения метиламинов и диметиланилина, карбофоса, хлорофоса и других продуктов. Метанол используют также в качестве растворителя и экстрагента, в энергетических целях как компонент моторных топлив и для синтеза метил-трет-бу-тилового эфира — высокооктановой добавки к топливу. В последнее время наметились новые перспективные направления использования метанола, такие как производство уксусной кислоты, очистка сточных вод, производство синтетического протеина, конверсия в углеводороды с целью получения топлива. В табл. 12.3 представлена структура потребления метанола по основным направлениям в нашей стране и в Западной Европе (данные 1985 года). [c.269]

    Пластичные смазки занимают промежуточное положение между твердыми смазочными материалами и маслами. В простейшем случае смазки можно рассматривать как двухкомпонентные системы, состоящие из масла (дисперсионной среды) и загустителя (дисперсной фазы) [6, 57—59]. В качестве дисперсионной среды, на долю которой приходится 75—95 % объема смазки, используют различные смазочные жидкости. Большинство смазок (более 95 % от общего выпуска) готовят на нефтяных маслах. В отдельных случаях при эксплуатации различных машин и механизмов в экстремальных условиях [58, 60, 61 ] для смазывания их узлов трения используют смазки, приготовленные на полисилоксанах, сложных эфирах, полигликолях, синтетических углеводородных маслах и других смазочных жидкостях. Дисперсной фазой (5— 25 %) могут являться соли высших жирных кислот (мыла), твердые углеводороды, высокодисперсные модифицированные силикагели, бентониты и другие органические и неорганические продукты. Дисперсная фаза образует в смазках трехмерный структурный каркас, в ячейках которого удерживается масло. Поэтому при небольших нагрузках смазки ведут себя как твердые тела, а при критических, превышающих прочность структурного каркаса — обычно (0,5 — 20)-10 Па —, они текут подобно маслам. После снятия нагрузки смазки опять приобретают свойства твердого тела. Благодаря этому применение смазок позволяет упростить конструкцию узла трения. [c.67]

    Образование сложных эфиров является характерной реакцией для глицерина, как и вообще для всех спиртов. Сложные эфиры глицерина образуются как с органическими, так и с неорганическими кислотами, с ангидридами и хлорангидридами кислот. Они составляют основную часть всех природных жиров, и свойства их изложены в другом разделе курса. [c.63]

    В 1853 г. в России вышла работа, в которой некоторые положения, только что высказанные Жераром, были, с одной стороны, подвергнуты критике, а с другой — развиты дальше. Это было сделано в магистерской диссертации Бекетова [9]. Как уже говорилось, основой теории типов была реакция двойного разложения, к которой Жерар стремился свести и другие реакции. По Жерару, например, сложные эфиры и амиды образуются в результате реакций сочетания, представляющих частный случай реакций двойного разложения. Характерным для реакций сочетания является выделение элементов воды, соляной кислоты и подобных неорганических веществ, а также обратимость процесса. Для выражения основности получаемых соединений Жерар предложил формулу [c.67]

    В качестве одного из растворителей, входящего в состав смывки, щироко используют метиленхлорид. Он наименее токсичен из всех хлорированных углеводородов, используемых в технике. В смывках метиленхлорид применяют совместно с другими растворителями спиртами, кетонами и сложными эфирами. В некоторые смывки с целью ускорения и улучшения проникновения их в старые покрытия вводят органические или неорганические кислоты. Практика применения таких смывок с добавкой небольших количеств ортофосфорной кислоты показала, что кислота существенно улучшает [c.244]


    К ней способны многие неорганические кислоты, а также производные кислот. В более широком смысле под этерификацией понимают и,другие реакции образования сложных эфиров, например сульфатирование олефинов  [c.205]

    Количество замещенных гидроксильных групп зависит от условий реакции и выражается обычно числом у, которое обозначает количество замещенных гидроксилов на 100 глюкозных остатков макромолекулы целлюлозы. Значительное применение находят метиловый, этиловый, бензиловый, оксиэтиловый и другие простые эфиры целлюлозы. Широко используются и сложные эфиры целлюлозы с органическими и неорганическими кислотами, которые получаются этери-фикацией кислотами, ангидридами или хлорангидридами. [c.368]

    Смешанные ангидриды органических и неорганических кислот обычно не выделяют, хотя они часто являются интермедиатами в том случае, если ацилирование проводят с помощью производных органической кислоты при катализе неорганическими кислотами. Серная, хлорная, фосфорная и другие кислоты образуют сходные ангидриды, большинство из которых либо нестабильны, либо их выделение затруднено вследствие того, что положение равновесия смещено в неблагоприятную сторону. Такие интермедиаты образуются из амидов, кислот, сложных эфиров, а также ангидридов. Органические ангидриды фосфорной кислоты более устойчивы, чем ангидриды большинства других кислот так, например, R OOPO(OH)a можно синтезировать в виде соли [605]. Смешанные ангидриды карбоновых и сульфоновых кислот (R OOSO2RO получаются с высокими выходами при обработке сульфоновых кислот ацилгалогенидами или (что хуже) ангидридами [606]. [c.139]

    В большинстве работ по фотоврсстановлению красителей применялись относительно простые восстановители. Например, первичные и вторичные спирты, кетоны и карбоновые кислоты, кото рые содержат рядом с карбонильным остатком метильную, метиленовую или метиновую группы простые и сложные эфиры, амины, неорганические ионы и т. д. Все эти соединения доноры электронов или водородных атомов. Исходя из аналогии в структуре следует ожидать, что тем же путем могут реагировать целлюлоза и кератин шерсти. Чаще всего отщепление водородных атомов происходит от реакционноспособных метильных, метиленовых и метиновых групп восстановителя. Такие же группы могут присутствовать и в волокнистых материалах. Данные флеш-фотолиза водных растворов Эозина, содержащих тирозин или триптофан, свидетельствуют об образовании семихинона Эозина с одной стороны и ти-розильных и индолильных радикалов с другой [240]. Это согласуется с механизмом переноса атома водорода. [c.401]

    Эфиры представляют собой органические кислородсодержащие соединения, являющиеся изомерами соответствующих спиртов и получаемые путем нагревания этих спиртов в присутствии серной кислоты (или каким-либо другим способом). Различают простые и сложные эфиры. Простые эфиры имеют структуру R-0-R, в которой атом кислорода соединяет радикалы R (где R — одинаковые или различные радикалы типа Hj, С2Н5, gHj и др.). Сложные эфиры являются производными кислот (органических или неорганических) и спиртов. Они содержатся в эфирных маслах и составляют главную часть растительных и животных жиров (см. главу 5). [c.160]

    Синтетические материалы на основе полимеров производных акриловой и метакриловой кислот. Акриловая, а также мет акриловая кислоты в присутствии органических или неорганических перекисей и кислорода легко полимеризуются при температурах ниже 100 С. Полимеры акриловой (так же как метакриловой) кислоты и ее производных (сложные эфиры, нитрилы, амиды,—см. стр. 238) называются полиакрилатами. Это обширный и разнообразный класс полимеризационных пластических масс, получивший большое техническое значение. Полимеры производных акриловой кислоты бесцветны, светостойки и прозрачны некоторые из них представляют собой твердые, упругие стекла другие—более мягкие, каучукоподобные и даже воскообразные вещества. [c.251]

    Этерификация спиртов, механизм которой был улсе рассмотрен на стр. 97, может быть осуществлена со всеми неорганическими и органическими кислотами или их производными (галоидангидридами, ангидридами и т. п.). С получающимися при этом весьма важными продуктами, сложными эфирами, мы подробно ознакомимся в другой главе. Здесь мы приведем лишь одно из общих свойств эфиров, заключающееся в том, что при нагревании с другими спиртами или другими сложными эфирами они, как показали Клайзен, Пурди, Бертони, Халлер, Анри и др., вступают в реакцию обмена, причем спиртовые остатки более или менее полно меняются местами. Эта реакция носит название переэтерификации и каталитически ускоряется в присутствии небольших количеств кислот или щелочей  [c.116]

    При выборе метода выделения фенола, встречающегося в природе, необходимо учитывать не только свойства соединения, как упоминалось выше, но также и химический состав биологического источника. Растительный материал состоит в основном из нерастворимой целлюлозы и лигнина, а в свежем виде может содержать также большое количество (70—80%) воды. Кроме того, могут присутствовать хлорофилл, воски, жиры, терпены, сложные эфиры, растворимые в воде соли, гемицеллюлозы, сахара и аминокислоты. Из свежего или сухого материала, как правило, сначала выделяют с помощью неполярного органического растворителя (например, петролейного эфира, гексана, бензола, хлороформа или эфира) нефенольные, неполярные вещества. Фенольные соединения можно затем выделить путем экстракции ацетоном, этанолом, метанолом или водой, причем выбор растворителя определяется числом гидроксильных групп и остатков сахара в молекуле. В некоторых случаях растительные материалы подвергаются непосредственной экстракции щелочью, но это не всегда приводит к хорошим результатам. Фенолы из растительного материала затем очищаются путем ряда экстракций и осаждений. С этой целью сырой материал переносят в несмешивающийся растворитель, такой, как эфир, бутанол или этилацетат, и смесь последовательно экстрагируют разбавленными растворами оснований в порядке возрастания активности сначала ацетатом натрия (для удаления сильных кислот), а затем бикарбонатом натрия, карбонатом натрия и едким натром. Водные экстракты, содержащие искомые продукты, подкисляют и вновь экстрагируют бутанолом, эфиром или этилаце-татом. Процедуру повторяют до получения кристаллического продукта. Подобное фракционирование в настоящее время осуществляется путем автоматической подачи несмешивающихся растворителей по принципу противотока (Хёрхаммер и Вагнер [9]). Фенолы можно отделять от других продуктов, содержащихся в растениях, путем осаждения с помощью нейтрального или основного ацетата свинца. Этим методом до некоторой степени отделяются о-диоксисоединения (дают осадок) от монозамещенных соединений (не дают осадка). Соли свинца разлагают серной кислотой, сероводородом или катионообменными смолами и свободные с )енолы элюируют из неорганических солей спиртом. [c.36]

    Под действием оснований некоторые сложные эфиры неорганических кислот можно расщепить до олефинов. В растворах сложные эфиры таких кислот, как серная, сернистая, и некоторых других подвергаются элиминированию по механизмам Е1 или Е2 подобно тозилатам и другим сложным эфирам сульфокислот. Показано, что под действием такого реагента, как бис(тетра-н-бутиламмоний)оксалат (В1иМ+)2(СОО-)2, този-латы в гораздо большей степени подвергаются элиминированию, чем замещению [173] (см. разд. 17.10). При нагревании арилсульфонатов в таких растворителях, как диметилсульфоксид (ДМСО) или ГМФТА, олефины получаются с очень высокими выходами [174]. [c.49]

    Сольволитические методы составляют самую большую группу зметодов синтеза сложных эфиров, поскольку все производные кислот так или иначе способны к взаимопревращениям. По уменьшению относительной реакционной способности эти производные располагаются в следующий ряд хлорангидрид > ангидрид кислоты > > сложный эфир > амид, нитрил > соль. Можно ожидать, что сложные эфиры, находящиеся в середине этого ряда, легко будут образовываться из хлорангидридов или ангидридов кислот, существовать в равновесии с другими эфирами (в условиях кислотного катализа) и с несколько большим трудом образовываться из амидов и солей. Получение эфиров из солей облегчается, если при этом происходит выделение или осаждение нерастворимой неорганической. соли. Короче говоря, сложные эфиры могут быть получены из кислот (реакция этерификации), а также из соединений пяти других приведенных выше типов. Кроме того, для синтеза сложных эфиров можно применять и другие исходные вещества, например ке-тены — соединения, родственные ангидридам, и 1,1,1-тригалоген-замещенные или -дигалогензамещенные простые эфиры, имеющие ту же степень окисления, что и сложные эфиры. Единственным в своем роде методом получения является рассмотренный пример Т1ир0лиза медных солеи (разд. А. 12), при котором происходит необычная ориентация. [c.282]

    Добавка растворимого вещества может значительно понизить поверхностное натяжение растворителя но если вещество вызывает повышение поверхностного натяжения, этот эффект невелик, потому что растворенное вещество вытесняется из поверхностного слоя, как будет объяснено ниже. В зависимости от их влияния на поверхностное натяжение растворенные вещества называют поверхностно-активными и поверх-ностно-неактивными. В случае поверхности раздела водный раствор — воздух поверхностно-неактивными являются неорганические электролиты, соли органических кислот и оснований с низким молекулярным весом и некоторые нелетучие неэлектролиты, например сахар и глицерин. Поверхностно-активными считаются органические кислоты, спирты, простые и сложные эфиры, амины, кетоны и т. п. Влияние поверхностно-активных веществ на поверхностное натялсение воды может быть велико, как это видно из рис. 8.5. Особенно эффективно понижают поверхностное или межфазное натяжение мыла и другие моющие средства. Они образуют поверхностные пленки на частицах грязи при стирке. Поскольку добавка некоторых веществ, например жирной кислоты, понижает поверхностное натяжение (изобарный потенциал поверхности), эти вещества стремятся самопроизвольно концентрироваться в поверхностном слое. Гиббс вывел уравнение, связывающее адсорбцию на поверхности и изменение поверхностного натяжения. [c.246]

    Подобно другим органическим и неорганическим кислотам, фосфорная кислота и сфаты легко реагируют с диазоалканами, причем в благоприятных условиях сложные эфиры образуются с количественными выходами. Например, Рейхштейн и Шиндлер [262] из 21-диазопрогестерона и фосфорной кислоты получили дезоксикортикостеронфосфат. Атертон и сотр. [9] показали возможность синтеза бензиловых и бензгидриловых эфиров с помощью фенилдиазометана и дифенилдиазометана. [c.138]

    Кулькес [56] использовал реакцию ацетиленовой тройной связи с ацетатом ртути для определения некоторых двузамещенных ацетиленовых соединений. Ацетат ртути предпочтительно присоединяется к тройной связи, и избыток ацетата определяют, прибавляя хлорид натрия и титруя высвободившуюся уксусную кислоту. Этот метод достаточно быстрый, однако анализу мешают примеси, реагирующие с ацетатом ртути этиленовые соединения и неорганические и некоторые органические галогениды, комплексно связывающие ион ртути. Ряд органических соединений, например сложные эфиры и сульфонаты, образует выпадающие в осадок вещества, другие же окисляются ионом ртути. [c.362]

    В литературе описан ряд методов получения изоцианатов. Большинство из них можно классифицировать по типу используемых реакций а) фосгепирование аминов или их хлоргидратов б) разложение азидов кислот в) реакции гидроксамовых кислот г) перегруппировка К-заме-щепных амидов д) реакции двойного обмена между цианатами и сложными эфирами органических или неорганических кислот или неорганическими галогепидами е) термическое разложение замещенных мочевин или уретанов ж) другие реакции. Сочетание экономических факторов, физических и химических свойств получаемых продуктов определяет особенности промышленного производства различных изоцианатов. Свойства большинства самых важных изоцианатов, производимых в промышленных масштабах, приведены в табл. Х1-5. Наиболее общим методом производства изоцианатов является реакция фосгена с первичными аминами (82, 83] или их солями [79, 84]. [c.349]

    Бромистоводородная кислота, 40%-ный раствор бромистого водорода в воде — прозрачная бесцветная или слегка желтоватая жидкость с резким запахом. Применяется в неорганическом анализе для определения серы и селена, для отделения олова ог мышьяка и сурьмы в органическом анализе — при определении серебра, для омыления сложных эфиров и других соединений. Используется также в органическом синтезе для получения бромор-ганических соединений. [c.27]

    Кроме того, существовала и другая, возможно самая су- цественная, причина отрицательной реакции на попытку возродить гипотезу Авогадро дуалистическая схема, применявшаяся Берцелиусом в неорганической химии со второго десятилетия XIX в., подкрепленная его электрохимической теорией, начала проникать постепенно и в органическую химию. В 1819 г. при выражении химических формул органических кислот Берцелпус исходил из дуалистического взгляда на их соли по аналогии с неорганическими [24, стр. 161]. В 1828 г. Дюма на основании исследований сложных эфиров распространил лх ализм и на эти соединения и, наконец, в 1832 г. эта [c.96]


Смотреть страницы где упоминается термин Сложные эфиры других неорганических кислот: [c.122]    [c.292]    [c.167]    [c.386]    [c.746]    [c.91]    [c.190]    [c.399]    [c.55]    [c.91]    [c.22]    [c.120]    [c.188]    [c.131]    [c.17]    [c.109]    [c.116]    [c.91]   
Смотреть главы в:

Древесина -> Сложные эфиры других неорганических кислот




ПОИСК





Смотрите так же термины и статьи:

Кислоты неорганические

Эфиры других кислот

Эфиры сложные неорганических кислот



© 2025 chem21.info Реклама на сайте