Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Амиды анализ

    Безингер и Гальперн с сотрудниками [45—481 предложили общую схему анализа азотсодержащих соединений нефти. Им впервые удалось раскрыть химическую природу главной части так называемого нейтрального азота, на долю которого приходится от 50 до 80% общего содержания азота в сырых нефтях. Ту часть нейтральных азотистых соединений, которую путем гидрирования при помощи литийалюминийгидрида удается перевести в основание, эти исследователи относят к амидам кислот, приписывая им,как наиболее вероятную, следующую структуру Значение величины а  [c.351]


    На основании данных, полученных при комбинировании методов функционального (химического) и спектрального анализов азотсодержащих соединений нефтей ряда месторождений Советского Союза, эти исследователи подтверждают свое, ранее высказанное предположение, что нейтральные азотистые соединения являются амидами карбоновых кислот. [c.351]

    Получение производных — важный этап в анализе органических соединений. Каждому представителю данного класса соединений соответствует производное с определенной температурой плавления (например, температура плавления амида уксусной кислоты 82° С, амида пропионовой кислоты 79° С, амида масляной кислоты П5°С). В ряде руководств по анализу органических соединений приводятся таблицы температур плавления производных наиболее употребляемых органических веществ. По температуре плавления производного можно сделать заключение о строении соответствующего ему вещества, если оно было ранее описано. Выбор реактива для получения производного определяется доступностью и устойчивостью реактива, простотой, удобством, скоростью реакции, выходом и четкой температурой плавления производного важно также, чтобы температуры плавления производных изомеров или соседних гомологов резко отличались друг от друга. [c.227]

    Частоты деформационных колебаний гораздо меньше, чем частоты валентных колебаний тех же групп, так что почти все полосы деформационных колебаний располагаются в области отпечатков пальцев . Исключение составляют полосы первичных аминогрупп (1590—1650 см 1) и групп НН во вторичных амидах (1510—1570 см" ). Из деформационных колебаний других водородсодержащих группировок наибольшее значение для структурного анализа имеют антисимметричное и симметричное деформационные колебания метильных групп (1430—1470 и 1370— 1380 см ), ножничное колебание метиленовой группы (1445—1485 см ) и особенно — плоскостные и вне-плоскостные деформационные колебания водорода у двойных связей и ароматических колец (см. П1, а также рис. 1.7 и 1.8). [c.15]

    Для анализа аминов, амидов. нитрилов. Максимальная рабочая температура 275°С [c.112]

    Несмотря на простоту, метод имеет ограничения. Этот метод применим для анализа аминов, амидов, нитрилов. В тех случаях, когда азот находится в окисленной форме или входит в состав гетероциклических соединений, количественное образование аммиака наблюдается не всегда. [c.815]


    Из результатов анализа следует, что во фракции, выделенной спиртобензолом, существует разбаланс между содержанием общего и слабоосновного азота. Это можно объяснить неполной диссоциацией комплексов и присутствием вторичных продуктов, например сульфоксидов (1030 см , рис. 9), потенциал полунейтрализации которых близок к амидам. [c.56]

    Природа реакций в N-метилацетамиде на платиновых электродах, вероятно, не исследована. Ситуация в этой области напоминает ситуацию с ДМФ. Па основании анализа данных по окислению амидов на платиновых электродах в ацетонитриле можно предположить, что предельный анодный потенциал для N-метилацетамида должен быть более положительным, чем для ДМФ. Потенциалы пиков циклической вольтамперометрии в ДМФ и N-метилацетамиде составляют соответственно 1,51 и 1,81 В по ПКЭ. [c.19]

    Поглощение в ближней инфракрасной области определяется переходом молекулы с одного колебательного уровня на другой. Типичной частотой является частота, соответствующая максимуму полосы поглощения амид А — 3300 см (длина волны 3,0 мкм), что отвечает примерно Ю " с . Анализ инфракрасных спектров обычно начинается с рассмотрения валентных колебаний двухатомной молекулы. Представим, что два ядра молекулы соединены пружинкой. Колебательную энергию такой молекулы можно рассматривать как энергию гармонического осциллятора. Согласно квантовомеханическому подходу, энергия осциллятора принимает только дискретные значения, а соответствующие энергетические уровни располагаются на одинаковом расстоянии друг от друга, равном hv, где v — частота кванта света, поглощение которого повышает энергию до значения, соответствующего следующему энергетическому уровню. В основном (невозбужденном) состоянии молекула уже обладает энергией нулевых колебаний , равной половине энергии, необходимой для перехода на следующий уровень. [c.9]

    АНАЛИЗ ПОЛИПЕПТИДОВ. Полипептиды, как и прочие амиды, можно гидролизовать водными растворами кислот или щелочей. После полного гидролиза полипептида можно при помощи аминокислотного анализатора установить его качественный и количественный аминокислотный состав, но не точную последовательность аминокислот. Если перед гидролизом обработать полипептид реактивом Сэнгера, то можно будет затем идентифицировать его N-концевую аминокислоту, так как она даст устойчивое окрашенное производное анилина, которое не разрушается при гидролизе. [c.402]

    Эти кислоты могут приводить к коррозии аппаратуры с образованием нерастворимых солей железа. Кроме того, они взаимодействуют с МЭА с образованием амидов, что приводит к дополнительным потерям МЭА. Следовательно, в данном случае при накоплении побочных продуктов в растворе возможно ускорение процесса деградации МЭА. Последнее подтверждается анализом результатов промышленной эксплуатации установок выделения двуокиси углерода из топочных газов, содержащих 4—5% кислорода [139]. Показано, что [c.210]

    Остроумный метод анализа поверхностей красок, лаков, пластиков, металлов или стекол с применением метода прессования таблеток с КВг бьш описан Джонсоном [69, 70]. Порошок КВг используется для абразивного истирания поверхности, при этом удаляется слой образца толщиной 50—100 А. Затем из этого порошка прессуют таблетку и получают вполне хорошие спектры. Если требуется, то обработку можно проводить повторно и последовательно изучать различные слои. Для того чтобы гарантировать воспроизводимость удаления слоев с поверхности, можно использовать шлифовальный станок. Более быстрым истирающим действием обладает бромистый калий, смешанный с обрезками стальной проволоки, которую потом удаляют магнитом. В качестве примеров можно привести определение углеводородов на стекле, фталевого эфира на нержавеющей стали и амидов на полиэтилене. Исследовались также причины адгезионного разрушения лакокрасочных покрытий, Для исследования распределения концентраций по толщине на внутренних поверхностях артерий и вен они подвергались абразивному действию струи порошкообразного КВг [71], [c.94]

    На рнс. 11.11 представлены дифрактограммы изомерных полифениле1- фтал-амидов. Анализ этих дифрактограмм показывает, что полимеры являются кристаллизующимися. Наиболее высококристаллическими являются поли-о-фениленизофталамид и поли-п-фенилентерефталамид. Дифрактограмма последнего содержит три разрешенных пика, два из которых очень узки и интенсивны. Для других изомеров имеется либо большое число пиков, либо их худшее разрешение, илн н то и другое вместе. Данные о способности к кристаллизации полифе-ниленфталампдов и других ароматических полиамидов приведены ниже [5]  [c.76]

    Наиболее полно функционально-групповой анализ азотистых соединений разработан Н. Н. Безингер и Г. Д. Гальиерном [35,51]. Авторы предлагают схему функционально-группового анализа, которая позволяет дифференцировать азотистые соединения на три группы 1) свободные основания, 2) нейтральные соединения, восстанавливаемые алюмогидридом лития до оснований (условно обозначенные как амиды кислот), 3) нейтральные соединения, не восстанавливающиеся алюмогидридом лития (остаточный азот). [c.43]


    Аминосоединенжя можно дифференцировать в соответствии со степенью их замещенности, проводя три титрования хлорной кислотой в уксуснокислой среде титруя исходный образец (определение суммы оснований) и аликвотные части образца после их обработки фталевым (перевод первичных аминов в нейтральные фталимиды и определение суммы вторичных и третичных аминов) или уксусным ангидридом (перевод первичных и вторичных аминов в ацетамиды и определение третичных аминов) [184, 195]. Такой подход в сочетании с восстановлением LiAlH использован для группового анализа нефтяных амидов и нитрилов карбоновых кислот [196], при этом амиды, в зависимости от их строения, восстанавливаются в первичные, вторичные или третичные, а нитрилы — только в первичные амины [197, 198). [c.25]

    Групповой состав нефтяных КС весьма разнообразен в различных нефтях и нрямогонных нефтяных дистиллятах обнаружены карбоновые кислоты, фенолы, простые и сложные эфиры, кетоны, лактопы, амиды, ангидриды и некоторые другие классы кислородсодержащих веществ. Наиболее распространенными в сыры нефтях считаются КС кислого характера, в первую очередь кислоты и фенолы, общее содержание которых принято косвенно выражать в форме так называемого кислотного числа (количества мг КОН, расходуемого на титрование 1 г вещества). Обобщение приведенных в работах [410—413, 416 и др.] результатов определения кислотных чисел (более 460 анализов) показывает, что средняя органическая кислотность сырых нефтей закономерно сни- жается о увеличением возраста и глубины залегания (табл. 3.3 [c.87]

    Среднее квадратическое отклонение анализов по кислотным числам составляет 0,36 мг КОН/г, что находится в удовлетворительном согласии с точностью анализа по ГОСТ 1734-47 (0,3 мг ХШ1г). Результаты же опытов по амиди-рованию и этерификации, полученные по этой методике, показали удовлетворительную сходимость. Максимальная относительная ошибка, вычисленная по среднему квадратическому отклонению, составляет не > 7,2%. [c.155]

    Сложность и многокомпонентность объектов исследования, отсутствие точных методов анализа, относительно незначительные количества азоторганических соединений в нефтях обусловила довольно медленные темпы развития исследований в этой области. Все эти трудности стало возможным преодолеть в связи с применением в нефтехимии современных физических и физико-химических методов анализа. Появляются целые серии работ советских. 13—8] и зарубежных авторов 19—11]. Эти интенсивные исследования принесли интересные сведения о природе азотистых соединений нефтей были обнаружены АОС пиридинового и хинолкно-вого ряда, производные анилина, акридина, индола, карбазола, а также циклические амиды кислот. Азотистые основания, составляющие обычно 50—20% от общего азота нефтей, оказались наиболее доступными для изучения. Имеющиеся литературные данные связаны в основном с этим классом соединений. [c.109]

    Сульфвровавие эфнров фенола. Обработкой анизола серной кислотой [294, 295] при обыкновенной температуре можно получить некоторое количество о-суЛьфокислоты, если только весовое отношение кислоты к анизолу меньше 4. В противном случае образуется только пара-изомер и 2,4-дисульфокисло(га. Если вести сульфирование в присутствии уксусной кислоты или уксусного ангидрида, то получается, повидимому, только п-сульфокислота [296]. Нагревание анизола с 10 весовыми частями серной кислоты при 90° в течение 30 мин. приводило к образованию только 2,4-дисульфокислоты взяв 2 части серной кислоты и ведя реакцию при 150—160°, удалось выделить лишь следы 4-сульфокислоты и ничего больше. Так как в продукте реакции содержалось значительное количество различных сульфокислот неизвестного строения, то отсутствие анизол-2,4-дисульфокислоты обусловлено, повидимому, отщеплением метильной группы. Если бы главным продуктом реакции была фенол-2,4-дисульфокислота, ее вряд ли удалось бы обнаружить при применявшемся методе анализа т. е. при обработке продукта реакции пятихлористым фосфором с последующим превращением полученных сульфохлоридов в амиды. К сульфокислоте, содержащей фенольную группу, этот метод идентификации, разумеется, неприменим. Такое объяснение не совсем убедительно, так как при нагревании бис-(л-метоксифенил)-суль-фопа [297] с серной кислотой до 160—180° образуется не демети-лированное соединение, а л-метоксибензолсульфокислотс. Олеум [c.45]

    Карбамид МНгСОННг, по данным рентгеноструктурного анализа, может существовать в двух кристаллических модификациях тетрагональной и гексагональной. Чистый карбамид имеет тетра-гональнук> структуру, каждая кристаллическая ячейка которой состоит из четырех молекул. Это плотно упакованный кристалл не имеющий свободных пространств, в которых могли бы размес титься молекулы другого вещества. В процессе комплексообразо вания происходит перестройка кристаллической структуры карб амида из тетрагональной в гексагональную. В этом случае кри сталлическая ячейка состоит из. тести молекул карбамида расположенных по спирали и повернутых друг относительно дру га под углом 120°. При таком построении между молекулами карбамида образуется свободное пространство (канал), в котором размещаются молекулы другого вещества. Диаметр канала в узкой части составляет 4,9 А, а в широкой — около 6А, поэтому комплекс с карбамидом могут образовывать те вещества, молекулы которых имеют диаметр поперечного сечения меньше диаметра канала. Из компонентов, содержащихся в нефтяном сырье, только молекулы н-алканов имеют поперечный размер (3,8Х4,2 А) меньше диаметра канала в гексагональной ячейке карбамида. Поэтому необходимым структурным элементом молекул веществ, определяющим их способность образовывать комплекс с карбамидом, является наличие длинной парафиновой цепи нормального строения. [c.210]

    Из-за наличия ближайшего окружения возникает вопрос о возможности существования в конденсированных фазах открытых конфигураций комплексов (линейной, угловой, квадратной и др.). На первый взгляд кажется, что те направления, по которым центральный ион доступен извне, обязательно будут заполнены частицами среды и поэтому открытая конфигурация дополнится до закрытой. Это дополнение происходит, но дополняющая частица зачастую расположена на таком большом расстоянии, которое соответствует нулевой кратности связи. Вдобавок она не обязательно ориентирована подходящим образом. Поэтому рентгеноструктурный анализ обнаруживает в водных растворах линейные ионы [Ад(Н20)2]+ и [Ад(NN3)2]+. Растворы НдСЬ и [НдСЬ] с добавками Ь С1 и Ь1Вг в амидах (Е), по данным спектров комбинационного рассеяния, содержат как почти тетраэдрические ионы [c.28]

    Особую ценность приобретают возникающие реагенты в тех случаях, когда необходимо определять микропримеси различных компонентов. Так, тиоацет-амид был применен для определения микропримесей кадмия, свинца, висмута и цинка при анализе жаростойких сплавов на основе никеля с молибденом или вольфрамом, микропримесей молибдена в титановых [c.211]

    Анализ белков. — Белки обычно гидролизуют кипячением с 20,%-ной соляной кислотой или 35%-ной серной кислотой. Щелочной гидролиз сопровождается глубокой рацемизацией и применяется толыко лри определении триптофана и тирозина, чувствительных к минеральным кислотам. Ферментативный гидролиз протекает медленно и, вероятно, не полностью, однако он не осложняется деструкцией лабильных продуктов, образующихся ири гидролизе. Если аспарагиновая и глутаминовая кислоты присутствуют в белке в виде амидов,, то кислотный гидролиз превра1цает амидный азот в соответствующие аммонийные соли. Методом Кьельдаля определяют количество общего- [c.654]

    Определение азота мочевин ы.—Fox и Geldard (lo . it.) рекомендуют следующий способ анализа гашеного и умасленного цианамида. Экстрагируют 2 г кальцийциа амида 400 см3 воды в течение 2-х часов прибавляют 2 г безводного углекислого натрия для осаждения кальция и взбалтывают Va часа- Фильтруют вытяжку через сухой фильтр, берут пипеткой по 25 см3 фильтрата для анализа на мочевину эти порции сливают в склянки, подкисляют разбавленной соляной кислотой, и продувают воздух до полного удаления углекислоты полнота этого удаления будет выявлена отчетливостью реакции при нейтрализации. Раствор очень точно нейтрализуют, применяя индикатор метил-рот, и определяют мочевину, как описано на стр. ИЗ. [c.117]

    Амиды кислот, как правило, представляют собой хорошо кристаллизующиеся, легко очищаемые вещества. Поэтому они служат-для идентификации как первичных и вторичных аминов (преимущественно в виде ацет- и бензамидов, получаемых из соответствующих ангидридов или хлорангидридов), так и карбоновых кислот (в виде незамещенных амидов, анилидов, бензиЛамидов). Кислоты для этой цели выгодно сначала перевести в хлорангидриды (см. разд. Г, 7,1.5,4), и последние ввести в реакцию с аммиаком или анилином, В ходе качественного анализа карбоновые кислоты оказываются, однако, часто в водном растворе, В этом случае рекомендуется получать анилиды по следующей методике. [c.85]

    Получение амидов карбоновых кислот аминолизом хлорангидридов карбоновых гкнслот (общая методика для качественного,анализа). Растворяют 0,5 г хлорангидрида карбоновой кислоты в 10 мл безводного диоксана (в случае трудно растворимых хлорангидридов можно без вреда использовать большее количе- [c.88]

    Амиды и нитрилы карбоновых кислот в общем случае нельзя обнаружить с помощью пробы Рояна, поэтому проводят следующий анализ. [c.304]

    В последнее время показано [80], что диборан является эффективным агентом для восстановления амидов первичных и вторичных, аминов. Восстановление в тетрагидрофуране при низкой температуре требует от 1 до 8 ч и дает для ряда амидов выходы от 79 до 98%, что было рпределено газохроматографическим анализом, выделением пикр.атов нли титрованием. Восстановление ряда 2,6-пипера-зиндионов дибораном дает пиперазины с выходами около 60% [811. Восстановление амидных групп дибораном в присутствии сложно- эфирных групп, по-видимому, осуществляется избирательно [821. . [c.481]

    Рамановская спектроскопия основана на исследовании спектров рассеяния света. При столкновении фотона с молекулой может иметь место упругое соударение, при котором фотон не теряет энергию, но изменяет направление своего движения. Такое рассеяние известно под названием рэлеевского и лежит в основе метода определения молекулярных весов соединений. Соударения могут быть также иеупругими они характеризуются тем, что энергия молекулы и фотона изменяется. Поскольку эти изменения носят квантовый характер и определяются колебательными и вращательными уровнями молекулы, анализ спектра рассеянного света (спектра Рамана) дает почти ту же информацию, что и обычный инфракрасный спектр. Необходимо, однако, помнить один момент правила отбора в этих двух случаях различаются. В инфракрасной спектроскопии разрешены одни переходы, в раман-спектро-скопии — другие. Таким образом, имеет смысл снять и тот и другой спектр исследуемого образца. До недавнего времени раман-спектроско-пия находила весьма ограниченное применение из-за малой интенсивности рассеянного света. Однако использование для возбуждения лазеров существенно повысило ценность указанного метода [16—20]. В качестве примера на рис. 13-4,5 приведен раман-спектр 1-метилурацила. Заметим, что интенсивность полосы амид II (относительно полосы амид I) в раман-спектре значительно меньше, чем в инфракрасном спектре поглощения. Особый интерес представляет резонансная раман-спектроскопия [19—21], где используется лазерный пучок с длиной волны, соответствующей длине волны электронного перехода. Рассеяние света при этом часто существенно усиливается на частотах, которые отличаются от частоты лазера на частоту рамановского рассеяния, происходящего на группах хромофора или на группах молекулы, соседствующей с хромофором. Несмотря на определенные экспериментальные трудности, указанный метод позволяет изучать структурные особенности какого-либо конкретного участка макромолекулы. [c.13]

    Анализ табл. 12.3.1, в которой приведены примеры кислот и аминов, образующих амиды, не позволяет определить жесткие границы этих компонентов — структурное разнообразие их действительно велико. Почти то же самое можно сказать и об аминной компоненте — хотя здесь и можно отметить преобладание аминов (З-фенилэ-танового ряда, но все-таки даже среди них имеют место существенные вариации. [c.338]

    А. получают взаимод. ацетона с уксусным ангидридом в присут. ВРз (выход 80-85%) либо с этилацетатом в присут. jHjONa или амидов Na и Li (выход 40%). Применяют в аналнт. химии при экстракц. разделении мн. элементов, напр. А1, Со, Си, Ре(1П), Мо, Мп, РЬ, Ti, спектрофото-метрич. определении Ве, гравиметрич. определении Se и Zr, прн анализе неорг. в-в методом жидкостной хроматографии. [c.226]

    К. применяют для анализа мн. неорг. (праггически все металлы, галогены, 8 н др.) н орг. в-в (ароматнч. амины, иитро- и нитрозосоединения, фенолы, азокрасителн, алифатич. амиды и др.) определения воды в орг. в-вах установления толщины н анализа металлич. покрытий изучения процессов коррозии исследования кинетики н механизма хим. р-ций (в т. ч. каталитических) определения констант равновесия р-ций установления числа электронов, участвующих в электрохим. и хим. взаимодействиях, и т.д. Кулонометрич. детекторы широко используются в про-точно-инжекционном анализе и хроматографии (см. Детекторы хроматографические). [c.554]


Смотреть страницы где упоминается термин Амиды анализ: [c.124]    [c.130]    [c.382]    [c.77]    [c.215]    [c.196]    [c.216]    [c.93]    [c.287]    [c.427]    [c.12]    [c.177]    [c.295]    [c.444]    [c.86]   
Органическая химия (1974) -- [ c.657 , c.724 , c.725 ]




ПОИСК







© 2025 chem21.info Реклама на сайте