Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Виды горения топлив в двигателях

    Режимная работа двигателя как на бедных, так и на богатых смесях невыгодна. В первом случае горючая смесь разбавляется большим количеством инертного азота и лишним кислородом, скорость и температура горения снижаются, двигатель не развивает нужной мощности. Во втором - кислорода недостаточно, образуются продукты неполного сгорания топлива, увеличивается количество нагаров, двигатель дымит, расход топлива возрастает, а мощность снижается. Необходимо стремиться обеспечить полное сгорание топлива с возможно меньшим коэффициентом избытка воздуха. В зависимости от вида топлива, условий его сгорания коэффициент избытка воздуха может быть различным (табл. 6). [c.16]


    При взаимодействии металла с сухими газами (воздухом, газообразными продуктами горения топлива и др.) при высоких температурах происходит газовая химическая коррозия. Этот вид коррозии возможен и при низких температурах, если при этом на поверхности металла не конденсируется жидкость, проводящая электрический ток. Газовой коррозии подвергаются детали газовых турбин, двигателей внутреннего сгорания, арматура печей подогрева нефти и другие изделия, работающие при повышенных температурах в среде сухих газов. При проведении многочисленных технологических процессов обработки металлов в условиях высоких температур (нагрев перед ковкой, прокаткой, штамповкой, при термической обработке - закалка, отжиг, сварка) на металлургических и трубопрокатных заводах также возможна газовая коррозия. При взаимодействии металла с кислородом воздуха или содержащимся в других газах происходит его окисление с образованием окисных продуктов коррозии. В отдельных случаях, например при воздействии на металл паров серы или ее соединений, на поверхности металла могут образоваться сернистые соединения. [c.17]

    При сгорании углеводородных топлив наблюдается выделение дисперсных частиц углистых веществ, близких по составу к углероду. Образующиеся при горении твердые частицы уносятся с продуктами сгорания и при большой концентрации могут быть заметны в виде дыма. Часть твердых выделений отлагается на поверхностях камеры сгорания в виде нагара. Образование нагара в двигателе зависит от следующих свойств топлива фракционного и химического состава, плотности, содержания смолистых веществ, серы и других примесей. Кроме того, нагарообразование зависит от конструкции камеры сгорания и от полноты процесса сгорания. [c.82]

    К этому виду можно отнести процесс горения топливо-воздушных смесей в карбюраторных двигателях. На отдельных режимах работы воздушно-реактивных двигателей процесс горения можно также рассматривать с точки зрения горения однофазной горючей смеси. [c.162]

    Некоторые аспекты конструкций и работы дизельных двигателей. Компрессионное зажигание в дизельном двигателе отличается от искрового зажигания в карбюраторном двигателе тем, что в нем чистый воздух сжимается до образования смеси воздуха и паров топлива, а топливо в жидком виде впрыскивается строго дозированными порциями за несколько градусов угла поворота коленчатого вала до верхней мертвой точки поршня двигателя в цикле сжатия, т. е. раньше, чем оно будет увлечено потоком воздуха на горение. Дизельное топливо воспламеняется при взаимодействии с высоконагретым сжатым воздухом и равномерно сгорает в течение всего цикла расширения при обратном ходе поршня. Для обеспечения мгновенного зажигания впрыскиваемого топлива весьма важно, чтобы оно обладало необходимыми характеристиками воспламенения, обычно выражаемыми цетановым числом. [c.221]


    II давлении в камере сгорания предпламенные процессы подготовки топливо-воздушной смеси развиваются достаточно быстро в наиболее благоприятных условиях на периферии факела. На кадрах 3 ж 4 рис. 69 видно возникновение очагов пламени на периферии факела, когда развитие его еще продолжается. В дальнейшем наблюдается медленное обгорание факела (кадры 5—14). Развитие процесса горения в объеме камеры сгорания происходит за счет турбулентного горения на периферии факела распыленного топлива, а также вследствие образования новых очагов самовоспламенения. Такой вид горения соответствует нормальному — плавному горению топлива в двигателе, [c.171]

    В зависимости от свойств топлива и условий его горения в камере сгорания двигателя различаются пять видов горения нормальное, неустойчивое, неполное, резонансное, эрозионное. Возникновение той или иной формы горения заряда зависит от ряда условий и причин, которые не всегда могут быть четко установлены [2, 25, 54]. [c.176]

    Прошло то время, когда различные явления горения в двигателе можно было рассматривать изолированно друг от друга современные исследования как топлив, так и двигателей подчеркивают необходимость рассмотрения всех явлений как одного целого. Существуют и другие проблемы, представляющие интерес в настоящее время, такие, как работа двигателя Дизеля на газолине, 1 азовых турбин на топливе с широкими пределами кипения, а также двигателей Дизеля на остаточных топливах. Кроме того, представляет интерес создание двигателя, работающего на всех видах топлива, причем здесь будет особенно плодотворным общий взгляд па проблему горения. [c.257]

    Второй вид горения наблюдается в том случае, когда воспламенение топлива происходит в различных частях пространства камеры сгорания. Такая многоочаговая вспышка топлива ведет к образованию многочисленных местных перепадов давления, вызывающих появление ударных волн. Эти ударные волны будут вызывать стуки в двигателе даже в том случае, если скорость нарастания давления па один градус угла поворота коленчатого вала (жесткость) будет невысокой по сравнению с плавным факельным сгоранием топлива. [c.195]

    Как видно из уравнений (13) и (24) скорость тепловыделения во времени при горении топлива в двигателе с точностью до постоянных множителей можно представить в виде суммы двух экспо- [c.87]

    Научно-технической стандартной величиной является высшая теплопроизводительность топлива, соответствующая тому условию, что все водяные пары продуктов сгорания и остальные продукты охлаждаются до 18 . Однако в реальных условиях горения в двигателе образующаяся вода уносится в виде паров. [c.211]

    Горение — сложный, быстро протекающий химический процесс взаимодействия горючего и окислителя, сопровождающийся появлением пламени, излучающего энергию в виде тепла и света. Этот процесс лежит в основе превращения химической энергии топлива в механическую в тепловых двигателях. [c.112]

    Положительными факторами, наблюдаемыми при переводе двигателя с бензина на СНГ, являются более устойчивое и спокойное горение, а также полное отсутствие явления смыва и выгорания масла со стенок цилиндра. СНГ, будучи чистым, свободным от серы топливом, не вызывает такого корродирования клапанов, уплотнительных поршневых колец, поршней и стенок гильз цилиндров, какое возможно при работе на серо- и свинецсодержащих бензинах. Поступая в цилиндры в виде чисто газовой смеси, СНГ не растворяют смазочного масла, в результате чего рабочие свойства его сохраняются значительно дольше, чем при работе на бензине. [c.216]

    Теоретически эффективность превращения химической энергии в электрическую с выделением или поглощением теплоты очень мала, поэтому уже давно предпринимались попытки создать устройство, непосредственно превращающее химическую энергию в электрическую, т. е. топливный элемент. Этим термином определяется химический источник электрического тока, в котором осуществляется реакция окисления газообразного, жидкого или твердого топлива, и который дает возможность получать энергию, выделяющуюся при этой реакции непосредственно в виде электрического тока (рис. 116). Нахождение технически приемлемых форм топливного элемента позволило бы значительно повысить к. п. д. процесса горения по сравнению с обычно принятыми методами использования горючего для турбин, двигателей генераторов и т. п. [c.490]

    Известно, что до сих пор основным источником энергии (в том числе электрической) является химическая энергия различных видов топлива, в первую очередь угля, природного газа, нефти. Но на пути к преобразованию энергии горения в электрическую энергию она проходит через целую цепь превращений. Сначала она превращается в тепло при сгорании топлива, затем в механическую работу двигателя и лишь после этого в [c.490]


    В большинстве случаев различного рода топки, камеры сгорания двигателей и т. п. содержат в качестве одного из основных элементов устройства для подготовки горючей смеси. Нередко эти устройства выполняются в виде форсунок для распыла топлива перед зоной горения. Иногда применяются и другие конструкции. Какими бы ни были устройства для подготовки горючей смеси, если только они существуют, процесс смесеобразования может самым существенным образом сказаться на горении и, в частности, на возбуждении вибрационного горения. Проще всего это видно из таких соображений. Смесеобразование может характеризоваться известной неравномерностью. Если эта неравномерность будет к тому же иметь периодический характер, то в зону горения будет попадать смесь с периодически изменяющимся коэффициентом избытка воздуха или с периодически изменяющимся соотношением между горючим в жидкой и паровой фазе и т. п. Это может приводить как к появлению колеблющегося тепловыделения, так и к подвижности фронта пламени, а следовательно, к поддержанию колебаний. Подобный случай уже рассматривался в 25. Однако упомянутый случай не исчерпывает всех возможностей и поэтому приведенные здесь общие соображения целесообразно несколько конкретизировать, описав более подробно типичные механизмы поддержания колебаний, связанные с процессом смесеобразования. [c.286]

    Найденное соотношение следует использовать при написании уравнений, связывающих возмущенные параметры течения слева и справа от поверхности разрыва S, являющейся, как известно, идеализированной неподвижной плоскостью теплоподвода. Чтобы написать свойства поверхности Е, используем зависимости, приведенные в гл. IV. Из сказанного выше ясно, что в уравнениях, описывающих процесс горения в жидкостных реактивных двигателях, не следует пренебрегать колебанием подачи газообразной массы в камеру сгорания, поскольку даже при постоянной подаче жидкого топлива сгорание (т. е. превращение в газ) может происходить с переменной скоростью. Пренебрегая объемом, занимаемым каплями топлива, можно считать, что моментом поступления массы в камеру сгорания является момент перехода топлива в газообразное состояние. Поэтому напишем уравнения для области горения сг в виде (15.5), не пренебрегая членом бМ.  [c.477]

    Двухкомпонентные топлива мягче, имеют меньший срок годности при хранении и в большей степени подвержены выщелачиванию в морской воде, чем однокомпоиентные. Двухкомпонентные топлива, частицы которых имеют форму шариков или хлопьев с большим отношением площади поверхности к объему, используются в патронах для. пистолетов, ружей и винтовок. Эти сорта в большей степени склонны к разрушению в морской воде, чем зернистые топлива с меньшнм отношением площади поверхности к объему, применяемые в боеприпасах более крупного калибра. Двухкомпонентные топлива используются также в минных метательных зарядах и во многих ракетных двигателях. Топливо для мин имеет вид пластинок или выдавленных гранул с относительно высоким отношением площади поверхности к объему и высокой скоростью горения. Свойства двухкомпонентных топлив приведены в табл. 166. [c.492]

    Периодические колебания горения классифицируются в соответствии с поддерживающими их элементами конструкции двигателя. Частоты в диапазоне 10—200 Гц (низкочастотная неустойчивость) возникают в результате взаимодействия процесса горения и системы подачи топлива. Высокочастотная неустойчивость (выше 1000 Гц, за исключением очень больших камер сгорания) ассоциируется с акустическими характеристик ками объема камеры. Промежуточные частоты обычно обусловлены гидравлическими и тепловыми явлениями в системе впрыска или механическими вибрациями двигателя. Сильные колебания (случайные или периодические) в камере сгорания обычно рассматриваются как нежелательные, поскольку они могут привести к возрастанию тепловых нагрузок на элементы двигателя и, таким образом, уменьшить его ресурс. По аналогии с классическими видами акустических колебаний в цилиндрическом объеме высокочастотная неустойчивость подразделяется на продольную, радиальную и тангенциальную. Случается и сочетание двух или трех видов. Тангенциальные высокочастотные колебания являются самыми разрушительными. Зачастую размах таких колебаний достигает величины среднего давления в камере, а тепловой поток в стенку возрастает при этом больше чем на порядок. Сохранение таких колебаний в течение 0,3 с обычно приводит к разрушению камеры сгорания. [c.173]

    Назначение. Антиоксиданты вводятся в топливо для того, чтобы ингибировать окисление углеводородов кислородом воздуха. Низкомолекулярные продукты окисления - пероксиды, спирты, кислоты и другие кислородсодержащие соединения -вступают в реакции полимеризации и поликонденсации с образованием высокомолекулярных продуктов, которые содержатся в топливе в виде смол или выпадают из них в отдельную фазу. Чем больше в топливах смол, тем больще образуется отложений в двигателе и в топливной системе. В результате процессы смесеобразования и горения отклоняются от оптимальных. Топливо сгорает неполностью, КПД двигателя снижается, а в ОГ увеличивается концентрация токсичных продуктов. Кроме того, из-за наличия осадков ухудшаются прокачиваемость и фильтруемость топлив. Чем ниже окислительная стабильность топлив, тем меньше допустимые сроки их хранения. Пероксиды, образующиеся при окислении бензинов, снижают их 04, причем снижение может достигать пяти единиц, [c.92]

    Требования по качеству масел для двухтактных бензиновых двигателей связаны со спецификой применения масел и конструкцией двигателей. Необходимо, чтобы небольшое количество масла, поступающего в цилиндр в виде тумана, во время горения топлива достаточно хорошо смазывало все поверхности и смывало с них загрязнения, не засоряло свечи и окна цилиндров и не допускало прихватывания поршней. Для поддержания чистоты двигателя применяются высокоэффективные моющие присадки - детергенты, не содержащие металлов, которые при сгорании не образуют (либо образуют малое количество) золы. Зола и нагар способствуют ускорению износа двигателя и вызывают преждевременное (калильное) зажигание preignition). Масла должны обладать высокими антикоррозионными свойствами, особенно при применении в двигателях морских моторных лодок (с учетом влияния соленой морской воды). Кроме того, масло в течение продолжительного времени должно хорошо защищать от коррозии в режиме простоя двигателя. В некоторых случаях к маслам предъявляются дополнительные требования -смешиваемость с бензином и сохранение смазывающих свойств в условиях низких температур. [c.117]

    Стандартные виды топлива для двигателей внутреннего сгорания — автомобильный бензин (газолин, моторный бензин, петроль) и автодизельное топливо (газойль). Основное преимущество СНГ перед ними — чистота, поскольку в СНГ нет свинца, очень низкое содержание серы, окислов других металлов, ароматических углеводородов и других загрязняющих примесей. Особенно это касается свинца, который для улучшения антидетонационных свойств в обязательном порядке добавляют в бензин в виде тетраэтилсвинца и который засоряет запальные свечи, является потенциальным отравителем атмосферы, а также серы, которая в виде SO2 или SO3 выбрасывается в атмосферу вместе с продуктами сгорания. Использование СНГ облегчает запуск двигателя в холодное время года, обеспечивает более ровное и устойчивое горение внутри рабочего пространства цилиндров двигателя. Тот факт, что при сжигании СНГ обычно полностью отсутствуют загрязнения, объясняет и большую долговечность работающих на СНГ двигателей по сравнению с двигателями, работающими на [c.213]

    Здесь следует, однако, подчеркнуть, что, как мы видели, основной упор в двигательном эксперименте (включая и эксперимент в бомбах) был сделан на доказательство того, что несгоревшая часть топлпво-воздушной смеси подвергается в случае детонации предпламенным изменениям, протекающим по типу холоднопламенного окисления или многостадийного низкотемпературного воспламенения. Сам же химизм такого низкотемпературного окисления и воспламенения в этих работах не изучался. Можно констатировать поэтому, что принятие рядом двигателистов основных положений концепции Неймана объяснялось не получением прямых ее подтверждений, хотя бы и в условиях двигателя, а тем, что она давала правдоподобное объяснение чрезвычайно большой скорости, с которой, как было предположено, сгорает в случае детонации некий конечный объем топливо-воздушной смеси ( ядро ), А это и было основным, что интересовало исследователей процессов горения в двигателе, так как подобное практически мгновенное сгорание позволяло объяснить рождение ударной волны, распространяющейся далее в виде детонационной волны. [c.182]

    Абляционные материалы успешно использовали в неохлаждае-мых камерах горения реактивных двигателей для корректировки полета на низкой высоте. В этих реактивных двигателях, работающих на жидком топливе, поток жидкого топлива недостаточен для обеспечения регенеративного охлаждения. Таким образом, здесь требуются какие-то другие виды охлаждения. Некоторые абляционные армированные пластмассы имеют значительную долговечность при огневых экспозициях порядка 22 мин. Кроме того, они успешно выдерживают несколько тысяч повторных запусков двигателя. Внешний вид 800-граммового реактивного двигателя в разобранном состоянии показан на рис. 17. Передняя часть камеры сгорания изготовлена из [c.452]

    В настоящее время применяется два типа двигателей внутреннего сгорания двигатель Отто и двигатель Дизеля. В качестве моторных топлив применяются чаще всего углеводороды в жидкой фазе и при обычных температурах. В двигателе Отто топлизо-воздушная смесь поступает в цилиндр сжатие ее производится ходом поршня вверх, а зажигание—искрой. В двигателе Дизеля сжатие воздуха также производится ходом поршня вверх, а топливо впрыскивается в камеру сгорания в конце такта сжатия в распыленном виде. В большинстве типов двигателей Дизеля температура и давление сжатого воздуха сами по себе достаточны для зажигания топлива. Двигатели эти часто называются двигателями с воспламенением от сжатия. Процессы горения для этих двух методов сжигания топлива очень различны, и от этого сильно зависят конструкция двигателя и требуемые свойства топлива. Прежде чем приступить к обсуждению процессов горения, полезно кратко рассмотреть термодинамику работы двигателя с целью уяснить себе факторы, определяющие к. п. д., или экономию топлива, и мощность двигателя. [c.389]

    К цепным реакциям относится и горение топлива, т.е реакция с кислородом, протекающая с выделением теплоты и со световым излучением. В двигателях внутреннего сгорания цепной характер реакции может вызывать микровзрывы (детонацию), для их предупреждения в топливо вводят антидетонаторы, на которых происходит обрыв цепей. При определенных условиях горение водорода и других видов топлива также может привести к взрыву. По цепному механизму протекают реакции полимеризации многих полимеров, окисления, га-логенирования, высокотемпературного разложения углеводородов и др. [c.189]

    Другая часть углеводородов (более токсичных) представляет собой полициклические ароматические углеводороды, образующиеся при горении топлив в результате пиролиза наиболее тяжелых фракций топлива и смазочного масла. В составе этой части углеводородов присутствуют канцерогенные соединения, в частности, бенз(а)пирен (С Нц) в концентрации до 0,5 мг/м Подобные соединения обладают высокой полярностью, адсорбируются на поверхности и в порах частиц сажи и выбрасываются в атмосферу из двигателей в виде дыма. Заг1 знение атмосферы такими продуктами приводит к увеличению легочных заболеваний, в том числе злокачественного характера, населения пфодов. [c.101]

    Принципиально возможны и другие приемы как первичной, так и вторичной турбулизации газо-воздушного потока. К числу распространенных приемов первичной турбулизации втекающего в топку воздуха принадлежит применение закручивающих аппаратов в виде косых лопаток, размещенных в кольцевом воздушном сечении, окружающем форсунку для жидкого топлива или сопло для газа (фиг. 18-7) [Л. 17, 54 и др.]. Ро.яь таких закруток не ограничивается только пер Вичной турбулизацией топочного потока и заслуживает специальн10Г0 рассмотрения. Несколько реже применяются вторичные турбулизаторы, так как размещение их в потоке высоких температур встречает некоторые технические трудности. На фиг. 18-8 показан такого рода турбулизатор, носящий не совсем соответствующее ему название стабилизатора горения , применявшийся в топках некоторых турбокомпрессорных реактивных двигателей и представляющий собой корзинообразное тело. Последнее состоит из полых стержней (ребер) и глухого днища, охлаждаемых вторичным воздухом, с боковыми [c.192]

    Твердые Р.т. (TFT), подразделяемые на баллиститные (прессованные - нитроглицериновые пороха) и смесевые (литые), применяют в виде канальных шашек, горящих по внешней либо внутр. пов-сти зарядов. Смесевые топлива-гетерог. смеси окислителя (как правило, NH4 IO4, 60-70%), горючего-связующего (разл. каучуки, напр, бутилкаучук, иитрильные, полибутадиены, 10-15%), пластификатора (5-10%), металла (порошки А1, Ве, Mg и нх гидридов, 10-20%), отвердителя (0,5-2,0%) и катализатора горения (0,1-1,0%) = 200 с. Осн. преимущества применения перед ЖРТ отсутствие необходимости предварит, заправки им РД перед стартом и постоянная готовность к нему относит, простота конструкции и эксплуатации двигателя. 342 [c.175]

    Прежде всего следует помнить что все жидкое и большая 1асть твердого топлива сжигается в настоящее время в распыленном состоянии т е в виде аэрозоля Поэтому распылению жидких топлив превращению угля в пылевидное топливо и горению аэрозолей посвящена обширная литература - Для ракет НОИ техники большое значение имеет процесс горения металлических порошков Образующийся при этом аэрозоль из металлических окислов существенно сни жает коэффициент полезного действия ракетных двигателеи и это явление в настоящее время является предметом интенсивного исследования Интересные применения аэрозоли получили как теплоносители и охладители для реакто ров и как рабочее тело в магнитогидродинамических двигателях [c.418]

    В гл. 1 характеристики ракетных двигателей на химическом топливе рассматривались в общем виде с учетом влияния процессов химического превращения, включая неравновесные химические реакции. В этой главе рассмотрены главным образом методы прогнозирования реальных характеристик горения ТРТ с учетом различных потерь и основных эффектов, вызывающих отклонение от идеальных характеристик ТРТ, таких, как эрозионное горение, вращение РДТТ и деформация заряда. Описываемые методы разработаны Межведомственной комиссией по ракетным двигателям на химическом топливе (США) во второй половине 1960-х гг. и описаны в работе [122J. С тех пор эти методы не претерпели каких-либо существенных изменений, хотя база данных значительно расширилась [26] и разработаны более сложные вычислительные программы, такие, как SPP (программа расчета характеристик ТРТ [34, 52, 105]). [c.102]

    Бензпирен. Одним из канцерогенных веществ, который поступает в атмосферу при горении углеводородных топлив, является, 3,4-бензпирен — полициклический ароматический углеводород (кристаллическое вещество желтого цвета, т. пл. 179°С, т. кип. 500—510°С, хорошо растворим в органических растворителях и нерастворим в воде). В зависимости от температуры дымовых газов он может менять свое агрегатное состояние, оседая в виде капель жидкости или в виде твердого вещества на поверхности почвы и накапливаясь со временем. В силу этого 3, 4-бенэпирен загрязняет не только атмосферу, но и почву и водоемы. Органами здравоохранения в нашей стране установлены очень жесткие нормы ПДК этого вещества 0,1 мкг/100 м воздуха и 15—16 мкг/100 м продуктов сгорания топлива. Содержание канцерогенных веществ в атмосферном воздухе промышленных предприятий и в крупных городах возрастает в зимнее время года, когда сжигается больше топлива. Для автомобильных бензинов на образование канцерогенов может влиять и содержание в них тетраэтилсвинца. К сожалению, влияние фракционного и химического состава топлива на образование канцерогенов при сжигании топлива в различных двигателях внутреннего сгорания не исследовалось. Недостаточно изучен и меха-нием образования 3,4-бензпирена при сгорании топлива. Однако известно, чto своим возникновением он обязан пиролизу углеводородных топлив. Вероятно, при горении низкомолекулярных газов 3,4-бензпирен образуется в результате реакций синтеза, а при горении тяжелых углеводородных топлив — в результате деструкции высокомолекулярных соединений и синтеза. [c.47]

    Назначение - снижение эмиссии черного дыма (частиц сажи) с отработавшими газами (ОГ) дизельного двигателя. На пред-пламенных стадиях горения в камере сгорания происходит интенсивный крекинг топлива, в результате чего образуется сажа. Затем она выгорает, но по ряду причин не полностью. При работе двигателя на богатой смеси (это происходит при форсировании двигателя или неисправности топливной аппаратуры) большое количество сажи сгорает лишь после рабочего хода поршня, и выделяющееся тепло бесполезно уходит с ОГ, тем-пратура которых повышается на несколько градусов против обычного. Часть сажи в составе черного дыма выбрасывается в атмосферу. Выбросы несгоревшего топлива в виде сажи означают механический недожог и снижение КПД двигается, но помимо этого сажа является переносчиком канцерогенных по-лициклических ароматических углеводородов, сорбируя их на своей поверхности. Если на автомобиле установлены каталитические нейтрализаторы или сажевый фильтр, то они быстро забиваются и требуют регенерации. Срок службы сажевого фильтра до забивки составляет 2-6 ч, и регенерация должна [c.66]

    Следует отметить важность этого обстоятельства, так как двигатель внутреннего сгорания, в обеих своих разновидностях потребляющий около 70% добываемой нефти в виде моторных топлив, в современном конструктивном решении чрезвычайно чувствителен к их углеводородному составу. Поэтому мероприятия по улучшению воспламенения и основного горения, направленные на уменьшение зависимости рабочего процесса в двигателе от углеводородного состава топлива, как бы увеличивают их ресурсы и снижают их TOiiMO Tb. Кроме тсршофорсироБанйя, мы испытали действие кинетического фактора—увеличение концентрации кислорода в воздушном заряде, а также суммарное влияние обоих факторов. [c.118]

    Размеры камеры сгорания должны быть таковы, чтобы смешение и химические реакции успели закончигься до входа в сопло двигателя. Необходимые размеры камеры определ яются величиной т — временем пребывания в камере топлива и его продуктов сгорания, которое находится по величине объема продуктов сгорания при температуре горения Т, давлении в двигателе р, объеме камера сгорания F, соотношению pV = ВТ и количеству топлива, сгорающего в 1 сек. Одпако нужно иметь в виду, что объем топлива по мере его сгорания в камере возрастает от очень малой величины (объема жидкого тела) до значения Fki а время пребывания вычисляется по этому большему объему. В ЖРД время пребывания топлива и его продуктов сгорания и 1еет порядок 0,003—0,008 сек [26]. При увеличении давления время пребывания в камере увеличивается, поэтому камера на том же расходе топливи может быть меньших размеров. [c.37]

    Одним из путей повышения энергетических возможностей смесевых тонлив является использование в их составе металлов в виде порошков различной степени измельчения. Однако применение металлсодержащих топлив привело в общем случае к усложнению описания процесса горения в ракетных двигателях. При всем многообразии проблем, которые возникают с введением в топливные композиции металлов, одной из наиболее важных становитс [ проблема полноты химического реагирования. Сжигание металлов, входящих в состав топлива, является более сложной задачей, чем сжигание органических соединений. Изучению горения металлов посвящено большое количество работ [1, 3, 25]. [c.57]

    Однако дальнейшие исследования показали, что практическое применение бороводородных топлив на газотурбинных, двигателях встречает ряд трудноустранимых препятствий. При горении бора-новых топлив возникает очень высокая температура и образуется громадное количество отложений окиси бора (В2О3). Окись бора плавится при 594° С и до 1030° С представляет собой вязкую массу. В условиях температур газотурбинного двигателя окись бора имеет вид плавленного стекла охлаждаясь, оно затвердевает, образуя Отложения. Поэтому ни одно бороводородное соединение до настоящего времени не нашло практического применения как топливо для газотурбинных двигателей. [c.34]


Смотреть страницы где упоминается термин Виды горения топлив в двигателях: [c.218]    [c.429]    [c.12]    [c.65]    [c.117]    [c.145]    [c.164]    [c.164]    [c.40]    [c.40]   
Смотреть главы в:

Физико - химические основы применения моторных, реактивных и ракетных топлив -> Виды горения топлив в двигателях




ПОИСК







© 2025 chem21.info Реклама на сайте