Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение азота в металлах и сплавах

    Методам определения и исследования состояния газов в металлах посвящены работы [297, 453], анализ черных металлов и их сплавов описан в [164, 425]. Работа [264] посвящена рассмотрению конструкций промышленных приборов для определения примесей серы, кислорода, азота, углерода и водорода в металлах и неорганических материалах. [c.196]

    Дистилляционно-ацидиметрический метод определения азота в металлах и сплавах [c.234]


    Химические реакции, осуществляемые в процессе создания контролируемых атмосфер из СНГ в смеси с воздухом, весьма разнообразны. Они обязательно сводятся к удалению кислорода. Помимо остаточного кислорода и азота защитные атмосферы в различном соотношении содержат двуокись и окись углерода, водород, пары воды и углеводороды. Дальнейшее изменение состава газовой среды требует специальных реакций. Поскольку двуокись углерода может взаимодействовать с определенными металлами и углеродом, содержащимся в стали, ее содержание в этой атмосфере необходимо снижать или полностью исключать. Для обеспечения взаимодействия между углеродом и поверхностью сплава металла (карбюризация) дополнительно может быть конвертирован пропан, а для нитрирования (азотирования) поверхности стали — введен аммиак. При термообработке стали нежелательно иметь высокую точку росы избыточной влаги, поэтому перед подачей на термообработку газы следует предварительно осушать, а окись углерода удалять во избежание поверхностного науглероживания низкоуглеродистых марок стали. [c.318]

    Редкие металлы и сплавы на их основе. Метод определения азота 23685-79 Лигатуры алюминиево-бериллиевая и медно-бериллиевая. Общие [c.588]

    В зависимости от сплава и определяемого элемента применяют подставные электроды—медные, угольные или вольфрамовые. Оба электрода помещают в специальную камеру, из которой перед включением генератора откачивают воздух до давления 10 мм рт. ст. и наполняют ее каким-либо инертным газом или СО3 под давлением в несколько сотен миллиметров ртутного столба. Когда для определения газов применяют дугу, проба является анодом, ее плавят в специальной камере в атмосфере аргона или гелия. Второй электрод—угольный. Условия подбирают так, чтобы кислород или азот металла переходили в летучее [c.235]

    Прибор для определения азота в металлах и сплавах ТУ 25-11-244-76 кШС Колба для разложения навески, холодильник, дистилляционная колба, сосуд поглотительный [c.300]

    ОПРЕДЕЛЕНИЕ АЗОТА В МЕТАЛЛАХ И СПЛАВАХ [c.119]

    Методы определения азота в металлах, сплавах, стали, чугуне [c.243]

    Продолжением этих работ являлось исследование возможности определения азота при общих условиях анализа в более широком круге металлов и сплавов. [c.55]

    Оптимальные условия определения азота в металлах и сплавах [c.56]

    В основу классификации черных металлов положен их химический сослав В общем случае черные металлы — это сложные системы, которые помимо железа и углерода содержат разнообразные примеси (серу, азот, фосфор, кремний и др.), вносимые в металл из исходного сырья в процессе производства, а также металлы целенаправленно добавляемые с целью прида- ния сплаву определенных свойств. [c.43]


    Работы по контролю газов в металлах и сплавах спектральным методом ведутся уже около десяти лет, и в данной области имеются некоторые успехи. В настоящее время можно считать решенной проблему определения водорода в титане и его сплавах. Несколько лет производятся также определения азота в стали. Имеются работы по определению кислорода в стали, титановых, молибденовых и других сплавах. [c.190]

    Понятие анализ газов в твердых телах относится к определению водорода, азота, кислорода (иногда также углерода) и редких тазов в металлах, сплавах, полупроводниках, тонких [c.370]

    Спектральные методы применяют главным образом для определения азота в металлах и сплавах, а также при анализе газовых смесей. При определении связанного азота (например, в форме нитридов и др.) необходима предварительная атомизация азота. Газовые смеси анализируются по молекулярным спектрам. [c.123]

    Скорость поступления примесей в разряд при спектральном определении азота в металлах и сплавах зависит от формы его нахождения, что требует выбора оптимального режима возбуждения спектра для получения воспроизводимых результатов при анализе различных материалов [39]. [c.126]

    С применением вакуумной УФ-области разработаны только методы определения азота в рудах, металлах и сплавах, а методы анализа газовых смесей не разработаны. [c.128]

    В таблице 29 приведены характеристики различных методов определения азота в металлах, сплавах, сталях. [c.242]

    Методы анализа, описанные выше для металлов и сплавов, используются также для определения азота в окислах, карбидах и нитридах металлов. Иногда эти методы несколько видоизменяются в связи со спецификой объекта. Обзор хилшческих методов определения азота в нитридах бора, титана, циркония, хрома, молибдена, ниобия, тантала и ванадия приведен в работе [825]. [c.242]

    Определение общего количества азота можно осуществить путем восстановления нитрата активными металлами (сплавом Деварда, состоящим из 45%Al + 50% u + 5%Zn и др.) или раствором хлорида железа (II). [c.149]

    При вакуумной плавке растворенные в металлах газы — азот и водород — почти полностью удаляются при этом улучшаются физико-механические свойства металлов и сплавов. Аналитическое определение содержащихся в металлах растворенных газов также производится с применением вакуума. Растворы таких газов в воде, как ЫНз (нашатырный спирт) и НС1 (соляная кислота), широко применяются в различных отраслях промышленности и для лабораторных целей. В производстве этих ценных химических веществ предусматривают абсорбцию газов NH3 и НС1 водой при наиболее благоприятных условиях. [c.253]

    Методическая трудность при изложении данных по КР титановых сплавов связана с большим разнообразием сред, способных вызывать такое разрушение, от дистиллированной воды и обычных хлоридных растворов до спиртов и других органических жидкостей, горячих твердых и жидких солей, четырехокиси азота, жидких металлов и др. Это вызывает необходимость определенного отбора результатов, поэтому в данном разделе, как и во всей главе, основное внимание уделено КР в хлоридсодержащих водных растворах. Отчасти это обусловлено тем, что большинство экспериментов проводится именно в таких средах. Данные об охрупчивании в водороде во многих отношениях аналогичны данным по-КР -Там, где это возможно, для подтверждения выводов будут использованы результаты, полученные в других средах. [c.95]

    Процесс окисления имеет,кроме того, две характерных особенности. Первая особенность состоит в том, что во всех случаях металл насыщается атмосферным азотом. С определенного момента на микрошлифах наблюдается значительное количество нитридов алюминия в центральной части проволоки, которые отделены от окалины кольцом,-свободным от нитридов (рис. 42). Образование нитридов приводит к обеднению матрицы алюминием. В ходе окисления происходит укрупнение нитридов и расширение свободного от них кольца металла. Вторая особенность состоит в том, что на многих сплавах отдельные дефектные участки появляются с первых часов окисления. Цепочки окислов алюминия, часто совместно с нитридами алюминия, обнаруживаются при анализе, в [c.69]

    Рассказ о современных материалах и о роли химии в их разработке и получении можно существенно расширить и дополнить, если рассматривать и классифицировать их по структурному признаку. В твердофазном материаловедении понятие структуры — собирательное название характеристик материалов. Оно может означать как пространственное взаимное расположение атомов или ионов относительно друг друга (кристаллическая или рентгенографическая структура), так и взаимное расположение структурных элементов и фаз в поликристаллическом материале (микроструктура или керамическая структура). Иногда еще говорят о тонкой (реальной) кристаллической структуре, или субструктуре, имея в виду поверхностные и объемные несовершенства типа областей когерентного рассеяния, остаточных микроискажений и дефектов упаковки. Обычно твердые тела делят на две большие группы — кристаллические и некристаллические (аморфные или стеклообразные). Первые характеризуются наличием дальнего порядка в расположении атомов, ионов или молекул, а вторые — отсутствием такового. Согласно современной терминологии стеклом называют все аморфные тела, полученные путем переохлаждения расплава независимо от их химического состава и температурной области затвердевания, обладающие в результате постоянного увеличения вязкости механическими свойствами твердых тел. При этом процесс перехода из жидкого в стеклообразное состояние обратим. Промежуточную группу образуют стеклокристаллические материалы, многие из которых уже рассматривались. Это ситаллы, в том числе и шлакоситалл. В группу некристаллических материалов, помимо хорошо всем известных стекол, в последнее время входят аморфные металлы и сплавы переходных металлов с неметаллами. Аморфные металлы можно получать различными методами, но среди них лишь способ быстрой закалки из жидкого состояния имеет пока практическое значение, В настоящее время применяют два основных метода 1) расплющивание капель 2) быстрая закалка расплава на вращающемся металлическом диске или барабане, охлаждаемом до очень низких температур (чаще всего до температуры жидкого азота—196 " С). Аморфные металлические материалы, полученные в виде ленты, называют металлическими стеклами. Для изготовления массовых изделий из аморфных металлов чаще всего применяют метод ударного сжатия при прессовании аморфных порошков. Среди металлических стекол, находящих практическое применение, в первую очередь интересны материалы, сочетающие свойства сверхпроводников с удовлетворительными механическими свойствами, в частности высокой прочностью и определенной степенью деформируемости. Интересно, что и в этой области используют приемы частичной кристаллизации металлических стекол. По сути дела так получают стеклокристаллические материалы с требуемыми меха- [c.157]


    Кроме того, установлено сушественное снижение концентрации парамагнитного азота в кристаллах в случае присутствия в шихте для их синтеза примеси Т1 или 2г. Из характера кривых, приведенных на рис. 149—150, следует, что степень влияния, например, Т1 зависит от способа его введения в шихту. Минимальная концентрация парамагнитного азота в алмазах, как видно из рис. 152, достигается при использовании для синтеза сплава N1—Мп—Т1, причем эффект влияния возрастает с введением в шихту дополнительного источника азота в виде VN (см. рис. 149, кривая 3, рис. 150, кривые ) и 5). Следует отметить и тот факт, что независимо от способа введения влияние и 2г заметно при их массовом содержании в шихте от 0,1 до 1,2%. Обнаруженные зависимости трудно объяснить связыванием азота в среде кристаллизации путем образования нитридов титана или циркония, так как в этом случае эффективный диапазон концентраций Т1 и 2г должен зависеть от способа введения в шихту, а максимальное влияние Т1 и 2г должно проявляться при их введении в элементарном виде, а не в сплавах с компонентами шихты. Один из главных механизмов влияния добавок и 2г в среду кристаллизации на содержание азота в алмазах заключается, по-видимому, в значительном снижении растворимости азота в системе N1— Мп—И—С по сравнению с N1—Мп—С. При этом меньшая эффективность введения в шихту в элементарном виде объясняется тем, что определенная часть азота успевает раствориться в расплаве до образования гомогенной жидкости N 1—Мп—Т . Значительно меньшее влияние Т1 при увеличении его массового содержания в шихте (начиная с 1%) на растворимость азота в расплаве переходных металлов можно объяснить отрицательным и асимметричным отклонениями системы N1—Мп от законов совершенных растворов, что достоверно установлено, например, для случая растворения в ней углерода. [c.408]

    Концентрация свободных атомов элемента зависит не только от его концентрации в анализируемом растворе, но и от степени диссоциации молекул, в виде которых он вводится в пламя или же образующихся в результате химических реакций, протекающих в плазме. Вследствие этого при атомно-абсорбционном определении элементов, дающих термически устойчивые оксиды, например алюминия, кремния, ниобия, циркония и других, требуются высокотемпературные пламена, например ацетилен — оксид азота (N20). Тем не менее в низкотемпературных пламенах (пламя пропан — воздух) атомизируется большинство металлов, не излучающих в этих условиях вследствие высоких потенциалов возбуждения их резонансных линий медь, свинец, кадмий,, серебро и др. Всего методом атомной абсорбции определяют более 70 различных элементов в веществах различной природы металлах, сплавах, горных породах и рудах, технических материалах, нефтепродуктах, особо чистых веществах и др. Наибольшее применение метод находит при определении примесей и микропримесей, однако его используют и для определения высоких концентраций элементов в различных объектах. К недостаткам атомно-абсорбционной спектрофотометрни следует отнести высокую стоимость приборов, одноэлемеитность и сложность оборудования. [c.49]

    Иарли изучалась возможность определения азота в нефтяных коксах (сырых и прокаленных) с использованием эмиссионной спектроскопии. В литературе описаны методы определения азота в металлах и сплавах с применением различных режимов искрового источника возбуждения. Применение иск-РОЕОГО источника для получения атомного спектра азота при анализе нефтяных коксов не привело к положительным результатам. Исследование различных линий в видимой и инфракрасной области спектра при различных способах введения образца в разряд, создание контролируемой аргоновой атмосферы позволили получить нижний предел обнаружения азота около 0,3%, что совершенно недостаточно для прокаленных коксов. [c.134]

    Определение азота. В какой бы степени окисления азот не был в исследуемом образце, его предваригельно переводят в степень окисления -3. Нитраты и нщршы восстанавливают металлами (например, цинком в кислой среде) или сплавом Деварда (сплав Си, А1 и Zn) в щелочной среде  [c.54]

    Азот определяют методом дистилляции после растворения металла (сплава) в НдРа и Н2304. Азот, находящийся в металле в виде нитрида или твердого раствора, отгоняется в виде аммиака из щелочного раствора водяным паром и поглощается раствором серной кислоты в приемнике. Далее, в зависимости от содержания азота, определение заканчивают ацидиметрическим или фотй метрическим (реактивом Несслера) методами [94]. [c.211]

    Для определения количественного состава сплава серебра с медью образец сплава массой 0,3725 г растворили в азотной кислоте. Выделяющиеся оксиды азота удалили из раствора, который разбавили водой и подаергли электролизу на платиновых электродах до полного выделения металлов из раствора. Электролизер был последовательно соединен с медным кулонометром. Убыль массы воды в кулонометре при этом составила 0,2313 г. (Электролиз проводился в условиях, полностью исключакщих протекание на электродах побочных процессов.) [c.108]

    Наиболее широко применяемые методы при анализе металлов и сплавов имеют чувствительность на уровне частей на миллион (различные варианты вакуумной экстракции, вакуумной плавки и плавки в инертном газе). В качестве детекторов применяют манометры, газовые хроматографы, ИК-спектрометры и масс-спектрометры (Дальман, 1969 Маллит, Кальман, 1970 Ро-бош, 1971). Некоторые другие методы, включая спектрографический, радиоактивационный и химические, рассмотрены Бунша-хом (1970). Спектрографические методы непригодны при концентрациях-ниже 100 МЛН . Нейтронно-активационный метод приобретает все большую популярность для быстрого неразрушающего определения кислорода почти в любых материалах. Чувствительность этого метода 30 млн при навеске 1 г или 3 млн при навеске 10 г. При определении азота в металлах стандартным является метод Кьельдаля. В этой главе масс-спектромет-24  [c.371]

    Из множества предложенных реагентов следует отметить лишь некоторые PbgOi используют для разложения карбида кремния 5.1942] и при определении азота в сталях и других материалах [5.1943], РЬОо—для окисления сплавов железа 5.1944], углерода и карбидов в шлаках, содержащих карбид кремния, а также углерода в карбидах 5.1945] VgOg используют при определении серы в металлах 5.1946, 5.1947], горных породах 5.1948] и иОз 5.1949]. Нитриды кремния, алюминия и других элементов, которые полностью не разлагаются по методу Кьельдаля, могут быть переведены в оксиды и элементный азот нагреванием со смесью РЬО + РЬОо + РЬСг04 (1 1 1) при 1100 "С 5.1950]. При добавлении 13% В.,Оз температура плавления смеси умень- [c.273]

    Работы Скотникова и др. [307—310] посвящены использованию эмиссионного спектрального метода для определения азота в металлах и окислах металлов. Используется зависимость логарифма отношения интенсивности аналитической линии N II 3995 А к интенсивности фона, расположенного близ нее, от концентрации при различных условиях проведения анализа и объектов различной природы. Установлено, что оптимальными условиями для определения азота являются следующие емкость искрового контура 300—400 мкф, индуктивность 5—10 мкгн, давление СО в разрядной камере 200—300 мм рт.ст. Сделаны попытки создать единые условия определения азота для широкого круга металлов (Сг, Ti, V) и их сплавов с использованием нестандартного генератора низковольтной искры и вакуумной камеры [308]. [c.125]

    Наличие таких природных объектов, как атмосфера и природные газы, способствовало созданию и развитию газовых методов анализа. В дальнейшем оказалось удобным переводить химически связанный азот соединений в газообразные формы и измерять их с помош ью методов газового анализа. Основой этих методов служит выделение молекулярного азота в процессе разложения образца при нагревании. На этом основан появившийся в 1831 г. метод Дюма, предложенный им в основном для азотсодержаш,их органических соединений. В дальнейшем этот метод оказался пригодным и для других химических соединений азота. С увеличением температуры удалось выделить молекулярный азот при плавлении металлов. Эти методы нашли широкое применение при определении азота в металлах и сплавах. К этой группе методов перевода связанного азота в молекулярную форму примыкает и метод количественного окисления аммонийного азота до молекулярного. [c.147]

    Мокрые химические методы определения азота в металлах и сплавах разработаны Стейли и Свеком [93]. В процессе растворения в кислоте добавляли сульфат аммония, обогащенный весь азот окисляли для получения газа N2, который и определяли. Диапазон концентраций, определяемых этим методом, 2-10 — 6% средняя точность более +5%. [c.348]

    В настоящее время имеются химические и физико-химические методы определения азота, водорода и кислорода. Наибольшее распространение получили мокрый метод определения азота и метод вакуумплавления, позволяющий одновременно определять содержание этих элементов. Однако указанные методы продолжительны и трудоемки кроме того, метод вакуумплавления связан с применением очень сложной аппаратуры. Это делает целесообразной попытку решения проблемы определения газов в металлах и сплавах методами спектрального анализа. [c.288]

    В сложных системах многие из приготовленных сплавов относятся к гомогенной или двухфазной области, и их составы, таким образом, не б1удут критическими, т. е. не будут пригодными для определения границ фаз. Такие сплавы нет необходимости анализировать, но их всегда следует приготовлять в достаточном количестве и исследовать, чтобы убедиться в отсутствии промежуточных фаз. Затем внимание должно быть-сосредоточено на оставшихся сплавах, пригодных для определения границ фаз. Определенное количество этих сплавов должно быть проанализировано (необходимо убедиться, что в процессе отжига не нарушился их состав). Это особенно важно при работе со сплавами из переходных элементов, так как при высоких температурах большинство из них легко загрязняется азотом, кислородом, кремнием или углеродом, следы которых могут оказать заметное влияние на структуру сплйва. Если установлено, что отжиг не привел к загрязнению, можно в большинстве оставшихся бинарных сплавов проверять содержание только одного металла, а содержание другого получать по разности однако даже в самых благоприят-пых случаях по крайней мере один сплав из десяти должен быть проанализирован полностью.  [c.247]

    У диамагнетиков (водород, инертные газы и др.) ц < 1. Для парамагнетиков (кислород, оксид азота, соли редкоземельных металлов, соли железа, кобальта и никеля и др.) ц > 1. Ферромагнетики (Ре, N1, Со и их сплавы, сплавы хрома и марганца, Сс1) имеют магнитную проницаемость ц 1. Магнитная проницаемость ферромагнетиков нелинейно зависит от напряженности внешнего поля. Кривая намагничивания В (я) ферромагнетиков имеет вид характерной петли гистерезиса, по ширийе которой различают материалы магнитомягкие (электротехнические стали) и магнитожесткие (постоянные магниты). При определенных значениях напряженности поля индукция достигает насыщения. [c.38]

    Высокая стойкость циркония в деаэрированной горячей воде и паре представляет особую ценность при использовании в ядерной энергетике. Металл или его сплавы, как правило, заметно не разрушаются в течение длительного времени при температурах ниже 425 °С. Характерно, что скорость коррозии невелика в некоторый начальный период. Однако после определенной продолжительности контакта (от минут до нескольких лет — в зависимости от температуры) скорость коррозии резко возрастает. Как отмечают, это явление наблюдается на чистом и содержащем примеси цирконии после того, как потери металла достигают 3,5— 5,0 г/м . Аналогичное повторное ускорение окисления может происходить при еще больших потерях металла [551. Если цирконий содержит примеси азота (>0,005 %) или углерода (>0,04 % то эти процессы протекают при более низких температурах [56 Негативное влияние азота ослабляют, легируя металл 1,5—2,5 % олова и уменьшая содержание железа, никеля и хрома. Такие сплавы называют циркалоями (см. выше). [c.380]

    Взаимодействие с элементарными веществами. Со всеми галогенами сурьма и висмут энергично взаимодействуют с образованием тригалидов, а при избытке фтора или хлора сурьма образует соответствующие пентагалиды. На воздухе при обычных температурах сурьма и висмут вполне устойчивы. При температуре порядка 600° С они сгорают с образованием соответствующих оксидов типа МегОз. При сплавлении с серой, селеном и теллуром образуются соответствующие соединения, в которых сурьма и висмут трехвалентны. С азотом сурьма и висмут не взаимодействуют. С большинством металлов сурьма и висмут дают сплавы, причем определенные соединения образуются преимущественно с активными металлами (а сурьма и с такими металлами, как никель, серебро, олово). [c.209]


Смотреть страницы где упоминается термин Определение азота в металлах и сплавах: [c.202]    [c.202]    [c.142]    [c.367]    [c.84]   
Смотреть главы в:

Калориметрические (фотометрические) методы определения неметаллов -> Определение азота в металлах и сплавах




ПОИСК





Смотрите так же термины и статьи:

Азот, определение

Азот, определение азота

Металлы сплавы

Металлы, сплавы, стали методы определения азота

Определение азота металлах, сплавах, сталя

Определение малых количеств азота в некоторых металлах и сплавах

Сплавы и металлы металлов



© 2025 chem21.info Реклама на сайте