Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорости реакций и механизм

    Одна из основных задач химии — установить зависимость между строением, энергетическими характеристиками химических связей и реакционной способностью веществ, изучить влияние различных факторов на скорость и механизм химических реакций. О принципиальной осуществимости процесса судят по величине изменения энергии Гиббса системы. Однако эта величина ничего не говорит о реальной возможности протекания реакции в данных конкретных условиях, не дает никакого представления о скорости и механизме процесса. Например, реакция взаимодействия оксида азота (II) с кислородом [c.191]


    Каким образом катализатор может влиять на химическую реакцию Если принять, что катализатор в заметной степени при реакции не расходуется, то термодинамически можно показать, что его роль в реакции не заключается в изменении точки равновесия, а сводится к ускорению достижения равновесия. Однако в большинстве химических систем имеются метастабильные состояния, обладающие свободной энергией, промежуточной между свободной энергией реагирующих веществ и состоянием равновесия. Мы можем приписать специфичность катализатора его свойству увеличивать скорость достижения одного из таких промежуточных состояний, а не общему ускорению в направлении достижения состояния с наименьшей энергией. Так как катализатор влияет на скорость реакции и не влияет на состояние равновесия, невозможно дать общее кинетическое описание поведения катализаторов. Болес полно проанализировать поведение катализатора можно, только зная конкретный механизм, по которому протекает данная реакция. Однако целесообразно провести классификацию катализаторов по строению и связанному с ним действию катализаторов на тип реакций, протекающих по данному механизму. Для твердых тел обычно принимают следующую классификацию  [c.531]

    Изучение скоростей реакций позволяет выяснить истинный механизм протекания сложных химических превращений. Это в свою очередь создает перспективы для нахождения путей управления химическим процессом, т. е. его скоростью и направлением. Выяснение кинетики реакций позволяет осуществить математическое моделирование реакций, происходящ 1х в химических аппаратах, и с помощью электронно-вычислительной техники задачи оптимизации и автоматизации химико-технологических процессов. [c.192]

    Химическая сенсибилизация этого типа встречается очень часто. Для того чтобы автокатализ активными центрами приводил к постоянно увеличивающейся скорости реакции, механизм должен быть таким, чтобы развитие цепи само вызывало увеличение концентрации активных центров. Подобные цепные реакции, как уже упоминалось, называются разветвленными цепными реакциями, и они, по-видимому, обычны для систем, в которых происходит окисление. Реакция О2 -f Н2 при температуре выше 400° включает следующие элементарные стадии  [c.382]

    Хотя для описания кинетики цепных разветвленных взрывных реакций есть различные механизмы, совершенно отличные от чисто тепловых взрывов, формально зависимости пределов воспламенения от температуры совпадают. Механизм распространения разветвленного взрыва в виде медленной волны горения должен быть связан скорее о диффузией радикалов, ведущих цепь, а не с диффузией тепла. Зельдович [54] показал, что в первом приближении можно считать, что градиенты концентрации и температуры пропорциональны друг другу. В этих условиях формальные уравнения для распространения волны будут одинаковы для обоих механизмов взрыва и совершенно независимо от цепного механизма градиенты концентрации и температур в пламени будут пропорциональны друг другу во всех точках. С физической точки зрения это вполне вероятный результат, потому что наиболее резкие перепады температур должны проявляться там, где скорость реакции наибольшая, что в свою очередь вызывает образование максимальных концентраций продуктов. [c.399]


    В отношении стадий, определяющих скорость реакции, механизм нуклеофильного замещения весьма близок к механизму р-элиминирования. Так, скорости мономолекулярных 5м1- и Е]-реакций контролируются одной и той же стадией, а у бимолекулярных 5к2- и Ё2-реакций аналогичны стадии переноса электрона от реагента к уходящей группе они различаются лишь тем, что в реакциях элиминирования электроны проходят по большей цепи атомов углерода. В этой связи неудивительно, что для описания влияния растворителей на мономолекулярные (5.20) и бимолекулярные (5.21) реакции р-элиминирования с различной судьбой зарядов при активации Хьюз и Ингольд предложили правила, аналогичные правилам, используемым для оценки эффектов растворителей в 5м1-реакциях [16, 44] (см. табл. 5.6). [c.212]

    Таким образом, для определения констант скоростей реакций, механизм которых установлен и которые можно изучать в условиях псевдопервого порядка по концентрации А, достаточно знания относительных концентраций атомов. Остается широкий класс реакций более сложных порядков, например рекомбинационные процессы с участием двух атомов, для которых требуется определить абсолютные концентрации атомов. Знание абсолютных концентраций атомов необходимо для анализа реакций, механизм которых неизвестен, для получения информации о стехиометрии реакции. [c.304]

    Влияние различных добавок (кроме смолы, полностью подавляющей процесс) на скорость реакции сводится к понижению или повышению каталитической активности Н " -ионов в реакционной смеси за счет изменения энергии их сольватации в растворе, что так же, как в случае добавок воды, подтверждается практической неизменностью выхода перекиси кумила, несмотря на изменение брутто-скорости реакции. Механизм синтеза, включающий реакцию 4 и реакцию [c.245]

    Реакции, протекающие только на поверхности. Скорость реакции в этом случае пропорциональна величине поверхности или количеству катализатора. Такие реакции можно разбить на две категории. В первой все реакции протекают между частицами, адсорбированными на поверхности. Их часто называют реакциями, протекающими по механизму Ленгмюра — Хиншельвуда. Ко второй категории относятся те реакции, которые протекают на поверхности межДу адсорбированными частицами и частицами из гомогенной фазы. Их иногда называют реакциями, протекающими по механизму Рай-дила. Различия между этими типами реакций не всегда ясны. [c.533]

    В настоящее время изотопный эффект твердо установлен и его наличие используют в качестве критерия разрыва связи с водородом в переходном состоянии реакции. Поэтому в приведенном примере, в котором отрыв а-атома водорода представляет собой стадию, определяющую скорость реакции, механизм взаимодействия будет следующим  [c.19]

    Большинство цепных реакций подвержено химическому ингибированию, причем заметное ингибирование следами примесей является прекрасным доказательством цепного характера реакции. Так, 0,01 мол.% кислорода может уменьшить квантовый выход реакции водорода с хлором в 1000 раз [8(4, 85]. Так как свободные радикалы легко гибнут на стенках сосуда, то их участие в реакции можно обнаружить, изучая влияние на скорость реакции изменения отношения поверхности реактора к его объему (например, при набивке стеклом) или добавок инертных газов (таких, как гелий). Изменение материала стенок реактора (вместо стеклянных—металлические) или покрытие их различными вещ ествами также может заметно менять скорость реакции [86]. Хотя эти эффекты и не всегда являются доказательством цепного механизма реакции (так как они свидетельствуют лишь о наличии гетерогенной реакции на стенках сосуда), но все же они указывают на большую вероятность цепной реакции.  [c.103]

    Известны многочисленные регуляторные механизмы метаболизма (гл. 11) некоторые нз них функционируют на уровне собственно ферментов. Вещества, которые либо увеличивают, либо уменьшают скорости катализируемых реакций, действуя непосредственно на фермент, называют эффекторами. Они изменяют структуру фермента таким образом, что изменяется скорость реакции. Механизмы регулирования активности ферментов рассмотрены ниже (разд. 8.7). [c.245]

    Хотя мы и не касаемся непосредственно механизма реакций, нри обсуждении вопроса, является ли стехиометрическое уравнение данной реакции полным, существенную помощь могут оказать простейшие представления о ее механизме. Пусть, например, реакция Л —> 5 идет в присутствии катализатора, например, энзима Е. Будем считать, что процесс в действительности проходит в две стадии сначала А и Е образуют комплекс С, а затем С диссоциирует на В VI Е. Тогда реакция А В заменяется на две реакции А Е С и С —> 5 -Ь . Если скорость реакции зависит только от текущих (мгновенных) концентраций веществ А и В, уравнение реакции А В является полным. Скорость реакции может также зависеть от фиксированной начальной или общей концентрации энзима, и тогда эта концентрация будет параметрической переменной. Но если скорость реакции зависит от мгновенной концентрации комплекса С или энзима Е, уравнение реакции Л —> i не будет полным. Можно предположить, что концентрация комплекса С всегда постоянна, Г и, таким образом, исключить ее из кинетического закона, выразив скорость реакции А В только через концентрации этих двух ве-. л ществ или одного из них. К сожалению, гипотезы подобного рода почти никогда не оправдываются в точности. Например, если в на-чальный момент в системе нет комплекса С, должно пройти некоторое время прежде чем будет достигнута его стационарная концентрация, которая хотя и не является строго постоянной, но сравнительно медленно меняется во времени. Б некоторых случаях период индукции бывает очень коротким, так что гипотеза о постоянстве концентрации комплекса С выполняется в течение почти всего периода реакции и выведенный с ее помощью кинетический закон находится в достаточно хорошем соответствии с экспериментальными данными. При необходимости уравнения таких реакций могут быть выделены в особый класс почти полных , но такое выделение вызывает возражения в теоретическом отношении, хотя и может оказаться практически полезным. [c.17]


    Мы уже видели в упражнениях к предыдущему разделу, каким образом различные предположения о механизме реакции приводят к кинетическим выражениям этого типа. В главе VI будет показано, что к таким кинетическим зависимостям приводит также учет влияния на скорость, химической реакции процесса адсорбции реагентов на активной поверхности и других физических ироцессов. Функция j , Т) при этом не обязательно имеет вид (IV.46). В общем случае об этой функции можно только сказать, что она всегда положительна и обычно меньше единицы. Нередки случаи, когда зависимость скорости реакции от концентраций и температуры определяется, главным образом, изменением функции / ( , Т). При этом форма кинетических зависимостей может сильно исказиться, однако равновесная кривая всегда остается неизменной. [c.81]

    Если известно, что процесс химической абсорбции протекает в режиме быстрой реакции, то для определения коэффициента абсорбции/г°, а следовательно, получения через уравнение (8.1) информации о кинетике химической реакции, пригоден любой абсорбер с известной поверхностью раздела фаз. Абсорбер — очень ценный прибор для эксперимента, так как еко можно использовать для определения констант скоростей реакций в случае довольно быстрых жидкофазных реакций и для некоторых других типов иссл едований кинетики. Конечно, если кинетика рассматриваемой реакции исследована независимо, то данные, полученные на лабораторных абсорберах, можно использовать для подтверждения осуществимости режима быстрой реакции и корректности предположенного механизма химической реакции. [c.96]

    Таким образом, для полного описания химической реакции необходимо знать также закономерности ее протекания во времени, т. е. ее скорость и детальный механизм. Скорость и механизм химических превращений изучает особый раздел химии — химическая кинетика. [c.192]

    Уравнение (11-11, б) представляет собой феноменологическое определение скорости реакции (без учета механизма реакции). Для расчетных целей обычно достаточно уравнения, которое описывает ход реакции во времени. В табл. 11-1 приведены уравнения скорости реакции для нескольких важных случаев. В общем случае  [c.197]

    Без каких-либо дополнительных сведений о системе или механизме реакции, мы можем написать для суммарной скорости реакции R стехиометрическое соотношение [c.67]

    Если изменяется одна из внешних переменных систем, то до тех пор, пока эти изменения не отражаются на механизме реакции для установления влияния этих переменных на константу скорости реакции, можно пользоваться уравнением (XV.5.1) или (XV.5.2). [c.438]

    Уравнение скорости реакции 2Ы0(г)+Ог(г) ->2Ы0г(г) имеет вид 7 = [N0] [Оа]. Для этой реакции предложен следующий механизм  [c.103]

    В соответствии с механизмом протекания реакций гпдроочистки моторных топлив скорость реакции зависит от химической природы сырья физических свойств сырья типа катализатора и его состояния парциального давления водорода объемной скорости температуры конструкции реактора. [c.44]

    В случае механизма, при котором скорость реакции лимитируется скоростью распада сорбированных частиц А, частицы В действовали бы как ингибитор или в случае достаточно сильной связи частиц В с поверхностью катализатора — как яд. При распаде сорбированных частиц А по первому порядку [c.543]

    В противоположность этому каталитическая реакция на СиО, как было показано, имеет нулевой порядок по О2 и первый порядок по СО [20] при температурах около 300°. Это может быть объяснено либо слабой сорбцией СО и сильной сорбцией О2 (неконкурентная сорбция), либо тем, что лими-тирующ ей стадией является сорбция СО па поверхности, что представляется вполне вероятным. При температурах около 0° на СиО скорость реакции становится первого порядка по О2 и нулевого порядка по СО. Механизм этого процесса был выяснен с помощью исследований поверхности СиО [21]. Исследования показали, что поверхность СиО покрыта слоем сильно сорбированного СО, по-видимому, в форме иона СО . Даже при 0° этот слой может реагировать с СО, давая СО2. Если предположить, что СОд -З и СО-З находятся в равновесии с Ог-З и стадией, определяющей скорость процесса, является реакция между СО-З и СОг-З, можно объяснить вид зависимости скорости реакции [c.545]

    Механизм 1. Импульсом для создания математических моделей реальных гетерогенных каталитических систем, в которых возможно возникновение сложных и хаотических колебаний, послужила работа [146], в которой исследован механизм возникновения хаотических колебаний, состоящий из двух медленных и одной быстрой переменной. Большинство математических моделей, описывающих автоколебания скорости реакции на элементе поверхности катализатора, двумерны, поэтому они не пригодны для описания хаотического изменения скорости реакции. Механизм возникнования хаоса из периодического движения для кинетической модели взаимодействия водорода с кислородом на элементе поверхности металлического катализатора предложен и проанализирован в работе [147]. Модель учитывает основные стадии процесса адсорбцию реагирующих веществ, взаимодействие адсорбированных водорода и кислорода, растворение реагирующих веществ в приповерхностном слое катализатора. Показано, что сложные и хаотические колебания возникают в системе с кинетической моделью из трех дифференциальных уравнений, два из которых описывают быстрые процессы — изменение концентраций водорода и кислорода на поверхности катализатора, и третье уравнение описывает медленную стадию — изменение концентрации растворенного кислорода в приповерхностном слое катализатора. Система уравнений имеет вид [c.322]

    Запишем скорости реакций механизма (1.1) в соответствии с законом де11ствпя масс (для реакций на поверхности употребляют и термин закон действия поверхностей )  [c.73]

    В форме растворимых в углеводородах солей, зпач1ггельно увеличивают скорость реакции. Механизм этого влияния полностью еще не выяснен. [c.351]

    По этому механизму, возможно, протекает большинство реакций кремнийорганических соединений, сопровождающихся сохранением конфигурации. На стадии, определяющей скорость реакции, механизм 5лг1-51 предусматривает квазициклические переходные состояния, которые обычно являются четырехцентровыми, но.йогут быть также трехцентровыми. [c.176]

    Интерпретация результатов. Любой предлагаемый для 0рения графита механизм должен объяснить зависимость скорости от времени, температуры и давления, а также абсолютное значение скорости реакции. Механизм этой поверхностной реакции здесь обсуждаться не будет, так как это выходит за пределы данного исследования. Однако можно сделать несколько замечаний, касающихся общей природы поверхностных реакций этого типа. [c.238]

    Однако уже давно было замечено, что скорость электроосаждения, а также электрорастворения металлов группы железа зависит от pH раствора и присутствия в нем примесей. Р. X. Бурштейн, Б. Н. Кабанов и А. Н. Фрумкин (1947) высказали предположение о непосредственном участии ионов 0Н в кинетике этих процессов. По их мнению, ионы 0Н играют роль своеобразных катализаторов. Механизм реакций катодного осаждения и анодного растворения железа, кобальта и никеля с образованием промежуточных частиц типа РеОН, РеОН+ или Ре-Ре0Н+ рассматривался затем Хейслером, Бокрисом, Фишером и Лоренцом и многими другими авторами. Было предложено несколько схем, объясняющих такие экспериментальные данные, как характер зависимости скорости реакции от pH, небольшой наклон тгфелевской прямой в чистых растворах серной кислоты, его повыщение при переходе к растворам соляной кислоты и при введении добавок поверхностно-активных веществ и т. д. В качестве иллюстрации можно привести схему Бокриса [c.473]

    Итак, сильное различие законов скорости для конденсации ацетона и ацетальдегида возникает не из-за различий в механизме реакций, а из-за различий относительных скоростей реакции енолят-иона с реагентами. В принципе при достаточно малых концентрациях ацетальдегида закон скорости для ацетальдегида долнчен приближаться к закону скорости для ацетона. [c.493]

    Шарма и Данквертс [15] изучили систему СОг — моноизопро-паноламин в ламинарной струе. Наблюдались типичные свойства быстрой реакции. Следовательно, может быть вычислена константа скорости реакции псевдопервого порядка. Полагая механизм реакции, строго аналогичный рассмотренному в разделе (13.1) , Шарма и Данквертс рассчитали величины которые оказа- [c.153]

    Из всех трех тримолекулярных реакций, представленных в табл. XII.9, только реакция N0 с Ог была изучена при и1ироком варьировании условий. Все три реакции, однако, имеют примерно одинаковые по величине иредэксио-ненциальные множители, отвечающие стерическому фактору около 10 . Гершинович и Эйринг Ц20] показали, что теория переходного состояния может привести к такой величине частотного фактора при разумном выборе молекулярных параметров для переходного KOMUjreK a. С другой стороны, любой из двух механизмов, включающих промежуточные комплексы (N0) или NO-Оз, приводит к удовлетворительному объяснению величины скорости реакции NO+Oa, в то время как для реакций N0 с I2 и Вга можно лишь предполагать образование комплексов N0 l2 и NO-Bra- В этих случаях для наблюдаемой константы скорости [см. уравнение (XII.15.5)] справедливо соотношение /Снабл == Ккг, где К есть константа равновесия образования промежуточного бимолекулярного комплекса, а к — бимолекулярная константа скорости последующей реакции этого комплекса. [c.274]

    Имеющиеся экспериментальные данные [46] по определению порядка реакции довольно противоречивы и неточны. Во всех. работах найдено уменьшение констант скоростей первого порядка с уменьшением давления этана. Константы, рассчитанные исходя из начального давления, меняются. Заксе [47], например, нашел, что константы скоростей нервого порядка увеличиваются примерно на 50% при увеличении начального давления этана от 30 до 100 мм рт. ст. в области температур от 850 до 910° К. Попытка Динт-сеса и Фроста [48] проанализировать скорость в пределах одного опыта привела к следующей математической зависимости kt = Ig (1—х) -f Вх, где В — константа. Таким образом, имеющиеся экспериментальные данные по определению порядка реакции не дают существенного вклада в выяснение механизма. Для доказательства механизма с большей надежностью могут быть использованы данные по распределению продуктов и значения абсолютных скоростей реакций. Тот факт, что СН4 не является основным продуктом в начальных стадиях реакции (составляя 2—10% от количества Hg), указывает, что скорости образования СН4 в начале реакции [см. уравнение (XIII.10.5)1 должны составлять меньше 10% от скорости цепной реакции, дающей Нг- Отношение скоростей образования Hj и СН4, а именно (Hg/ Hi), может быть рассчитано исходя из упрощенной схемы [см. уравнение (XIII.10.5)] и приводит к уравнению [c.311]

    При экспериментальном изучении опи должны выглядеть как реакции первого порядка по органическому галоиду и нулевого порядка но Н2О скорость реакции должна зависеть от ионизующей силы растворителя. Истинный механизм реакции, по-видимому, гораздо сложнее, так как для трго, чтобы ионизация частицы прошла в один элементарный акт, взаимодействие нон — растворитель должно было бы быть очень большим. [c.472]

    В концентрированной НМОд в качестве растворителя [93] при (HNOз) > > (АгН) скорость зависит только от первой степени концентрации АгН. В менее кислых растворителях, таких, как нитрометан и уксусная кислота, при постоянном избытке НМОд над АгН скорость реакции для очень реакционноспособных ароматических соединений [93] становится нулевого порядка по АгН. Это выполняется в случае бензола, толуола, ксилолов, п-хлорани-зола и алкилбензолов, все эти соединения нитруются с одинаковой скоростью. Предложенный механизм предполагает, что медленной стадией является разрыв связи в азотной кислоте [c.503]

    Роль поверхности в инициировании активных центров, которые ведут цепь главным образом в гомогенной фазе, уже обсуждалась этим далеко но исчерпывается поведение катализатора в каталитических реакциях. Реакцип, которые происходят полностью на поверхности катализатора, встречаются, по-видимому, гораздо чаще. Этот класс реакций отличается от рассмотренных выше тем, что скорость таких реакций прямо пропорциональна количеству катализатора. Когда такая зависимость не подтверждается эксиериментально, то это может означать, что реакция идет по смешанному механизму или же скорость реакции лимитируется диффузией. Объяснение экспериментальных данных с помощью конкретного механизма в таком случае становится исключительно трудным. Если скорость реакции зависит от первой степени концентрации катализатора, то экспериментальные данные по скоростям реакции подвергаются обработке, хотя и в этом случае остается неопределенность, связанная с отсутствием точных данных по изотермам сорбции всех частиц, принимающих участие в процессе. [c.540]

    Затем следует быстрая диссоциация НВ -З по реакции с 8 или по обратной реакции с МНаЗ. Этот механизм, по-видимому, маловероятен, хотя и соответствует виду зависимости для скорости реакции. [c.544]

    Хотя имеется большое число исследований по кинетике как реакций обмена, так и реакций присоединения, механизм и порядок реакций недостаточно выяснены. В обычных условиях эксперимента на платине и никеле зависимость скорости реакции гидрогенизации оказывается первого порядка по Н2 и меняется от нулевого порядка по С2Н4ПРИ низких температурах до некоторого дробного порядка или единицы при более высоких температурах (от О до 200°). Такое поведение может быть объяснено тем, что активированный комплекс, образующийся на поверхности, содержит молекулу С2Н4 и два атома Н  [c.548]


Смотреть страницы где упоминается термин Скорости реакций и механизм: [c.57]    [c.34]    [c.155]    [c.435]    [c.110]    [c.28]    [c.19]    [c.300]    [c.328]    [c.376]    [c.376]    [c.423]   
Смотреть главы в:

Механизмы неорганических реакций -> Скорости реакций и механизм




ПОИСК





Смотрите так же термины и статьи:

Скорость реакции механизм реакции



© 2025 chem21.info Реклама на сайте