Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимическая активация водорода

    Основные уравнении теории замедленного разряда получены из соотношения Бренстеда — Поляни — Семенова (соотношения БПС), согласно которому изменение энергии активации в ряду подобных химических реакций составляет некоторую долю а от изменения теплового эффекта. Все закономерности стадии разряда — ионизации, вытекающие из соотношения БПС и основных положений теории двойного электрического слоя, подтверждаются экспериментальными данными. Естественно, возникает необходимость дать физическое обоснование соотношению БПС в специфических условиях протекания электрохимических реакций. Первое такое обоснование, которое можно рассматривать в качестве теории элементарного акта разряда, было предложено Ю. Гориути и М. Поляни. Основное положение теории Гориути — Поляни заключается в том, что энергия активации стадии разряда — ионизации обусловлена растяжением химических связей в молекулах или ионах реагирующих веществ. Гориути и Поляни развили свою теорию на примере реакции разряда ионов водорода Н3О+ + -Ье - -Нзд +НаО. Элементарный акт этой реакции состоит в том, что ОДИН ИЗ протонов иона гидроксония переходит на поверхность электрода и, соединяясь с электроном, дает адсорбированный атом водорода. [c.276]


    Перенапряжение перехода возникает тогда, когда наиболее медленной стадией электродного процесса является собственно электрохимическая реакция (разряд, ионизация). Основы теории перенапряжения перехода в 1930—1940 гг. были предложены М. Фольмером, Т. Эрдей-Грузом, А. Н. Фрумкиным и другими в применении к процессу выделения водорода в более поздних работах была дана общая теория этого вида перенапряжения. Теория Фольмера и Эрдей-Гру-за разработана для концентрированных растворов электролитов при отсутствии специфической адсорбции поверхностно-активных веществ на электродах. Она основана на общих положениях химической кинетики, устанавливающих зависимость между скоростью реакции и энергией активации. Однако для электрохимических процессов следует учитывать зависимость энергии активации от потенциала электрода. Рассмотрим теорию перенапряжения перехода в применении к катодной реакции Ох + ге" Red. Скорость этой реакции равна разности скоростей прямой реакции восстановления и обратной — окисления. Скорость каждой из них описывает уравнение [c.505]

    Известные предположения о наиболее вероятном механизме выделения водорода на разных металлах можно высказать на основании общих положений электрохимической кинетики в применении к данной электродной реакции. Так, было предположено, что при увеличении теплоты адсорбции водородных атомов на катодном металле вероятность замедленного разряда падает, а замедленной рекомбинации растет. Это связано с различным влиянием изменения теплоты адсорбции водородных атомов на скорость разряда и на скорость рекомбинации. Как следует из потенциальных кривых (рис. 19.5), энергия активации разряда уменьшается с ростом теплоты адсорбции. Энергия активации процесса рекомбинации, напротив, увеличивается с упрочнением связи между металлом и поверхностными атомами водорода, количественной характеристикой которой является теплота адсорбции. В то же время увеличение [c.411]

    Лимитирующей стадией электрохимического выделения водорода на металлах с высоким перенапряжением является разряд его ионов. Удивительная особенность этой реакции — постоянство коэффициента переноса (т. е. коэффициента пропорциональности между энергией активации и энтальпией) в широкой (10—12 порядков) области констант скорости разряда. Во всем интервале токов разряда изменение энергии активации равно точно половине изменения энтальпии, превышающем 120 кДж/моль. [c.203]


    Наиболее сложная проблема биоэлектрокатализа — реализация эффективного переноса электронов между активным центром фермента и электродом. Известно несколько путей, позволяющих осуществить эффективное заселение активных центров ферментов электронами (или электронными вакансиями). Первый путь предполагает использование низкомолекулярных диффузионно-подвижных переносчиков электрона (медиаторов), способных акцептировать электроны с электрода и отдавать их активному центру фермента. Этот механизм используется в большом числе ферментативных электродных систем, в частности, в реакциях с участием гидрогеназ — биологических катализаторов активации молекулярного водорода. (В системе гидрогеназа — метилвиологен — угольный электрод удается электрохимически окислять водород без перенапряжения в условиях, близких к равновесным.) Второй путь предполагает непосредственное электрохимическое окисление — восстановление активных центров ферментов, прямой перенос электронов (вакансий) с активного центра фермента на электрод (или обратно). Механизм прямого переноса электронов по пути электрод — активный центр фермента уже реализован в реакции электрохимического восстановления кислорода до воды с участием медьсодержащей оксидазы, в реакции электровосстановления водорода с помощью гидрогеназы. [c.69]

    Вопрос об определении энергии активации в электрохимическом процессе впервые возник при изучении реакции разряда ионов Н3О+ На0++й"->-Н,дс+Н20. Фрумкин предложил рассматривать эту реакцию как один из вариантов кислотно-основного катализа в рамках теории Бренстеда. Являющийся донором протона ион Н3О+ выступает в роли кислоты, а акцептор протона металл — в роли основания. Таким образом, на реакцию разряда ионов водорода оказалось возможным распространить эмпирическое правило Бренстеда, согласно которому изменение энергии активации составляет некоторую долю а(0 а 1) от изменения теплового эффекта реакции или же, с равным основанием, [c.232]

    По-видимому, таким образом действительно могут быть сняты противоречия между нашими взглядами и взглядами Д. В. Сокольского выводы последнего остаются в силе, но с известными поправками. Таким образом, согласно Д. В. Сокольскому, электрохимический метод в совокупности с кинетическим дает возможность установить лимитирующие стадии реакции гидрогенизации, т. е. выяснить, лимитирует ли реакцию активация водорода или активация гидрируемого соединения. Подобное установление механизма реакции другими методами в других реакциях удается осуществить с большим трудом. [c.147]

    Как ранее было указано, электрохимическая реакция присоединения электрона к иону водорода требует некоторой энергии активации, т. е. для того, чтобы процесс разряда ионов водорода шел на электроде с определенной скоростью, необходимо сообщить ему некоторый избыточный (против равновесного) потенциал, который определяется величиной перенапряжения водорода. Потенциал разряда водородных ионов с определенной скоростью к равен сумме равновесного потенциала водородного электрода и величины перенапряжения водорода, обозначаемой г]. Под величиной перенапряжения водорода понимают сдвиг потенциала катода при данной плотности тока 1п в отрицательную сторону по сравнению с потенциалом водородного электрода в том же растворе, в тех же условиях, но при отсутствии тока в системе. Поэтому расход электрической энергии на получение водорода электролизом больше, чем это определяется термодинамическими подсчетами. [c.42]

    Таким образом, опыт показывает, что как замедленный разряд, так и замедленная рекомбинация (и десорбция) водорода могут оказаться причиной перенапряжения. При этом рекомбинация (и десорбция) могут идти двумя путями — каталитическим и электрохимическим. Процесс разряда НзО+ Н — Ме, очевидно, сводится к дегидратации Н+-иона и адсорбции атома водорода. Поэтому при разряде затрачивается энергия активации и выигрывается энергия адсорбции водорода. [c.325]

    Однако в отличие от обычных химических реакций в электрохимических процессах энергия активации может существенно изменяться в зависимости от потенциала электрода, как это происходит, например, при поляризации. Рассмотрим изменение потенциальной энергии, происходящее при разряде Н3О+, т. е. на стадии I. Здесь конечным состоянием является адсорбированный атом водорода. Этот атом имеет значительно меньший размер, чем гидратированный протон (ион гидроксония Н3О+). Поэтому равновесное расстояние, на котором атом находится от электрода, мало по сравнению с соответствующим расстоянием для Н3О+. При разряде протон получает от катода электрон и отрывается от Н3О+, а атом водорода адсорбируется на электроде. Такой переход невозможен без преодоления энергетического барьера, разделяющего адсорбированный атом водорода и Н3О+. Вершина барьера соответствует энергии переходного состояния. [c.270]


    Перенапряжение водорода и кислорода следует рассматривать как меру необратимости электрохимических реакций, проходящих на электродах. В теоретической электрохимии исходя из энергии активации для процесса выделения водорода на катоде выводится формула расчета перенапряжения водорода (формула Тафеля)  [c.12]

    Кривая /—поляризационная характеристика перед контролируемой активацией кривая // — после первой активации при потенциале —0,15 в (относительно насыщенного каломельного электрода) кривая /// — после второй активации при том же потенциале кривая /I/—влияние выделения водорода при катодной поляризации на электрохимические свойства электрода (после снятия кривой II). [c.164]

    С электрохимической активацией водорода Джемс и Страу-манис [89а] связывают образование гидридов титана, циркония и гафния при действии растворов плавиковой кислоты на соответствующие металлы. Они считают также возможным образование гидридов этих металлов за счет работы микрогальва-нических элементов в процессе коррозии в атмосферных условиях. [c.20]

    В настоящем обзоре показано, что сочетание двух моделей, учитывающее, что перенос электрона сопровождается как перестройкой полярной среды, так и движением протона, позволяет количественно объяснить особенности реакций электрохимического выделения водорода. Константа скорости эндотермической реакции разряда ионов водорода описывается аррениусовской зависимостью, в которой энергия активации преимущественно связана с перестройкой среды. Для быстрой экзотермической реакции электрохимической десорбции (образования молекулы водорода из адсорбированного атома водорода, оксониевого иона и электрона металла) скорость реакции определяется туннельным переходом электрона из металла в реакционный комплекс и не зависит от температуры. Обе реакции характеризуются изотопным эффектом, падающим с уменьшением энтальпии реакции. [c.203]

    Так как на металлах второй электрохимической группы акт разряда ионов водорода требует значительной энергии активации, для них появляется возможность участия самих молекул ингибитора в процессе электрохимического выделения водорода. Соединения, обладающие кислотно-основными свойствами и способные к реакции поверхностной протони- [c.88]

    Впоследствии близкие взгляды были высказаны и другими исследователями, например Конвеем и Бокрисом, Впджем, Трассати и др. Этими и некоторыми другими авторами была отмечена необходимость учета конкурентной адсорбции воды и водорода. Свободная энергия адсорбции воды точно неизвестна по ориентировочным подсчетам Бокриса она для металлов первой группы близка к 100 кДж-моль . Выяснилось также, что для ряда металлов, адсорбирующих водород, перенапряжение не уменьшается, а растет с увеличением энергии связи М—Н (Рютчи, Делахей, Парсонс). Эти металлы образуют подгруппу второй группы, по классификации Антропова, в которой преобладающим оказывается эффект увеличения энергии активации рекомбинации или электрохимической десорбции с ростом эшфгии связи М—Н. Минимальное [c.412]

    Иофа и Микулин [74], отметив факт пересечения экстраполированных тафелевских прямых для разных температур в одной точке, объяснили его, с некоторыми оговорками, обращением энергии активации в нуль в этой точке. Аналогичное объяснение тому же факту было дано позже Постом и Хиски [75]. Одюбер [76], исходя из схемы потенциальных кривых, отметил, что при высоком перенапряжении имеется возможность обращения в нуль энергии активации. Фрумкин, Багоцкий н Иофа [77] высказали в 1951 г. предположение о безактивационном протекании электрохимической десорбции водорода на ртутном катоде и оценили ее возможную скорость. Впоследствии оценки верхнего предела скорости электродной реакции были даны Рэндлсом [78] и Рубином и Коллинзом [79] (см. также [80, 81]). [c.30]

    Что касается соотношения между /с и /с , то, принимая во внимание, что при ai, близком к половине, полученные выражения для соответствующих энергий активации оказываются близкими, представляется затруднительным сделать определенные заключения. Ряд расчетов скоростей первой и второй стадий при электрохимической десорбции водорода был проведен в последнее время Геришером по методу потенциальных кривых [Z. phys. hem, N. F., 8, 137 (1956)]. По Геришеру, энергия активации реакции III меньше энергии активации реакции I при 9дд(.<55 кал и больше ее [c.135]

    Известно несколько путей, позволяющих осуществить эффективное заселение активных центров ферментов электронами (или электронными вакансиями). Первый путь предполагает использование низкомолекуляриых диффузионно подвижных переносчиков электронов (медиаторов), способных акцептировать электроны с электрода и отдавать их активному центру фермента. Этот механизм используется в большом числе ферментативных электродных систем, в частности, в реакциях с участием гидрогеназ — биологических катализаторов активации молекулярного водорода. (В системе гидрогеназа — метилвио-логен — угольный электрод удается электрохимически окислять водород без перенапряжения в условиях, близких к равновесным.) Второй путь заключается в непосредственном электрохимическом окислении — восстановлении активных центров ферментов, прямом переносе электронов (вакансий) с активного центра фермента на электрод (или обратно). Механизм прямого переноса электронов по пути электрод — активный центр фермента уже реализован в реакции электрохимического восстановления кислорода до воды с участием медьсодержащей окси-дазы, в реакции электровосстановления водорода с помощью гидрогеназы. Третий путь состоит в использовании ферментов, включенных в матрицу органического полупроводника. Для этого применяют полимеры с системой сопряженных связей, обладающие длинной цепью сопряжения, или полимеры с комплексами переноса заряда. С помощью ферментов, иммобилизованных в органические полупроводники, удалось осуществить ряд интересных электрохимических реакций, в частности электрохимическое окисление глюкозы с участием глюкозооксидазы. [c.69]

    Теория электрохимического перенапряжения была разработана применительно к процессу катодного выделения водорода, а затем распространена на другие электродные процессы. Основой этой теории служит классическое учение о кинетике гетерогенных химических реакций. Количественные соотношения между величиной перенапряжения г и плотностью тока / были получены при использовании принципа Бренстеда о параллелизме между энергией активации 7а и тепловым эффектом <3р (или изобарным потенциалом АО) в ряду аналогичных реакций. Квантовомеханическая трактовка электродных процессов начала формироваться лишь сравнительно недавно, хотя отдельные попытки в этом направлении предпринимались уже начиная с середины 30-х годов (Герни, О. А. Есин и др.). Основные исследования в этом направлении были выполнены Бокрисом, Догонадзе, Христовым и др. [c.346]

    А. Н. Фрумкииа и его школы доказано, что для большинства металлов общая скорость процесса восстановления водорода определяется скоростью электрохимической реакции разряда иоиои водорода, т. е. четвертой стадией процесса, замедленность протекания которой определяется соответствующим значением энергии активации этой реакции. [c.41]

    Однако в отличие от обычных химических реакций в электрохимических процессах энергия активации может существенно изменяться в зависимости от потенциала электрода. Это может быть пояснено схемой (рис. ХУПМО), на которой представлено изменение потенциальной энергии при элементарном акте разряда иона водорода (НзО ) в зависимости от расстояния х от поверхности электрода. [c.402]

    Электрокоррозия является причиной разрушения нерастворимых анодов в некоторых электрохимических производствах под влиянием дополнительной анодной поляризации. Электрокоррозия может возникнуть, если потенциал превысит допустимые значения вследствие краевого эффекта или активации анодного процесса под влиянием ионов хлора. Анодное растворение платиновых анодов наблюдается при электролизе серной кислоты в производстве перекиси водорода. При оптимальной плотности тока - 0,6 A/ м растворение платины достигает до Юг на 1 т 1007о-ной перекиси водорода. [c.32]

    Выделяют митохондрии из печени крысы. В кювету рН-метра наливают 4,5 мл среды измерения активности (п. 2) и погружают отмытый рН-электрод. Через 2—3 мин в кювету вносят 20—50 мкл суспензии митохондрий (2—4 мг) белка. Убеждаются в том, что нативные митохондрии не катализируют реакцию гидролиза АТФ в отсутствие разобщителя. Через 1 мин после внесения митохондрий в кювету добавляют динитрофенол до конечной концентрации, равной 0,1 мМ. Внесение разобщителя приводит к снятию трансмембранного электрохимического потенциала ионов водорода и активации реакции гидролиза АТФ. Измерение повторяют, в кювету после добавления митохондрий вместо динитрофенола вносят детергент тритон Х-100 до конечной концентрации 0,1%- Наблюдают, как и в случае динитрофенола, стимуляцию реакции. Выбирают концентрацию тритона (в интервале от 0,02 до 2%) дегя проявления максимальной ферментативной активности. [c.460]

    В электроанализе используют амфотерные растворители, сгюсобные к электрохимическому окислению и восстановлению, поэтому для каждого раствори теля существует интервал штенциалов, пригодный для аналитических целей. В водных растворах он ограничен потенциалами выделения водорода и кислорода 0,0 В и 1,23 В при pH 0. На практике этот диапазон потенциалов всегда шире вследствие кинетических затруднений, и измерения можно проводить прн потенциалах отрицательнее 1,23В и положительнее ОВ, в зависимости от этргий активации для различных электрсцщых материалов. [c.433]

    Катионная и анионная поляризация применяются как для растворов собира телей — ксантогенатов, жирных кислот, так и для регуляторов — сернистого нат рия, жидкого стекла, фосфорной кислоты и других, что обеспечивает перевод ре агентов в более активную форму, снижает расход и повышает технологически -показатели флотации [128, 150]. При электрохимической обработке пульп эф фект активации реагентов и поверхности флотируемых минералов может допол няться выделением из воды микропузырьков водорода и кислорода [140]. Обла дая определенным зарядом и взаимодействуя с тонкими частицами, пузырьк электролитической флотации могут значительно активизировать флотируемост тонких классов, а также коллоидных частиц и ионов. [c.132]

    Содержание водорода в ДСК-электродах определялось путем снятия их электрохимических характеристик. Происходило это следующ,им образом электроды, изготовленные описанным выше методом (разд. 4.1), помещались в электролит (6 н. КОН) и анодно поляризовались без подачи водорода извне. При этом содержашийся в электроде атомарный водород и часть нерастворившегося в процессе активации алюминия переходили в электролит. Вспомогательным электродом служила никелевая пластина, а потенциал ДСК-электрода измерялся по насыщенному каломельному электроду сравнения. Опыты могли проводиться в атмосфере различных газов (воздух, азот, водород) и при любых температурах между 20 и 100° С. В ходе измерений электроды должны были анодно поляризоваться все меньшими токами, пока наконец вблизи значения 0,4 з (по отношению к насыщенному каломельному электроду) потенциал уже при самой малой нагрузке не падал до нуля. Ниже этой критической точки имело место окисление катализатора. Таким образом, через электрод можно было пропустить следующее количество электричества  [c.201]

    Перемещивание электролита, повышение температуры и про чие факторы, облегчающие подачу вещества к электроду, по вышают пр и снижают концентрационную поляризацию. р] Собственно электрохимической поляризацией называется смещение потенциала электрода, обусловленное только замедленностью протекания самого электрохимического процесса. Замедленность связана с тем, что электрохимическая реакция, как и всякая другая химическая реакция, требует определенной энергии активации. Наиболее высокие значения электрохимической поляризации наблюдаются при выделении газов. Возникновение перенапряжения при выделении водорода обычно связывают с замедленностью какой-либо одной или неск ольких стадий этого процесса 1) разряд иона водорода H- -f Ме-Ь - МеН (Ме — металл, МеН — атом водорода, хемосорбирован-ный на металле) 2) рекомбинация адсорбированных атамов 2МеН- Нг-Ь2 Ме 3)- электрохимическая десорбция H+-fMeH-f + e - H2-f Ме. [c.264]


Смотреть страницы где упоминается термин Электрохимическая активация водорода: [c.19]    [c.147]    [c.147]    [c.436]    [c.374]    [c.354]    [c.276]    [c.276]    [c.276]    [c.339]    [c.158]    [c.158]   
Смотреть главы в:

Гидриды переходных металлов -> Электрохимическая активация водорода




ПОИСК







© 2025 chem21.info Реклама на сайте