Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплоты плавления и испарения Теплоты образования

    По формуле (1, 157) определяют теплоту сгорания органических соединений в жидком состоянии. Если же требуется вычислить теплоту сгорания органических соединений, находящихся в других агрегатных состояниях, необходимо вносить соответствующие поправки, учитывающие теплоту плавления, теплоту испарения или теплоту растворения. С учетом поправки на агрегатное состояние теплота образования соединения будет равна [c.72]


    Здесь приведены температуры и энтальпии полиморфных переходов, плавления, испарения и сублимации. Для веществ во всех агрегатных состояниях твердом (кристалл, стекло), жидком (включая переохлажденную жидкость) и газообразном (реальный и идеальный газ) — даны теплоемкость, энтропия, энтальпия и приведенная энергия Гиббса. Для веществ в состоянии идеального газа в некоторых случаях даны также энтальпия, энергия Гиббса и логарифм константы равновесия реакции образования. В справочник включены только экспериментальные калориметрические данные о теплоемкости твердых, жидких и газообразных веществ и теплотах их фазовых превращений и основанные на таких данных значения термодинамических свойств веществ в конденсированном состоянии. Для веществ в состоянии идеального газа принимались в первую очередь результаты расчетов, выполненных методами статистической термодинамики, а также наиболее надежные результаты, полученные сравнительным методом или методом инкрементов. Если таблицы термодинамических свойств в отобранной работе содержали также данные об энтальпии, энергии Гиббса и константе равновесия реакции образования, то такие данные включались в справочник без критического их рассмотрения. [c.4]

    Мы приводим здесь общие термодинамические соотношения, связывающие тепловые величины, излагаем методы вычисления тепловых и термодинамических величин по данным, характеризующим строение молекул, и приводим справочный материал по теплоёмкостям твёрдых и жидких углеводородов при низких температурах, теплотам превращения в твёрдой фазе, теплотам плавления, теплотам испарения, энтропиям твёрдых, жидких и парообразных углеводородов при 25° С, теплотам горения, гидрирования, изомеризации и образования из элементов углеводородов и, наконец, по теплоёмкостям углеводородов. [c.109]

    Диоксид, обычно называемый двуокисью угле рода, СО2 образуется при полном сгорании свободного углерода в атмосфере кислорода. Он представляет собой бесцветный газ, в связи с чем и носит тривиальное название углекислый газ . Теплота образования двуокиси углерода из графита составляет 393,7 кдж г-моль. Плотность двуокиси углерода при н.у. 1,977 г/л (по воздуху 1,53). Двуокись углерода легко сжижается ее критическая температура 31,3° С, критическое давление 72,9 атм.. При сильном охлаждении она превращается в белую снегообразную массу (сухой лед), которая при нормальном давлении возгоняется (не плавясь) при —78,5 С. При давлении 5 атм твердая двуокись углерода плавится при —56,7 С. Теплота плавления двуокиси углерода 51 дж г, теплота испарения (при —56 С) 569 5ж/г. Жидкая двуокись углерода не проводит электрического тока. Кристаллическая решетка — молекулярного типа. [c.196]


    Первые работы Дж. Гильдебранда связаны с обоснованием закономерностей идеальных растворов. Им показано, что если при образовании раствора теплота растворения кристаллов соответствует скрытой теплоте плавления и растворы образуются без изменения суммы объемов, растворы следуют закону Рауля [61]. Рассматривая механизм внутримолекулярного взаимодействия в растворе, Дж. Гильдебранд ввел понятие о внутреннем давлении. Жидкости с равными внутренними давлениями образуют идеальный раствор. Жидкости с близкими внутренними давлениями и близкой полярностью взаимно растворимы в широком диапазоне концентраций. Для оценки энергии связи сил межмолекулярного взаимодействия им использованы величины скрытой теплоты испарения. Растворы с дисперсионными силами взаимодействия, у которых теплоты, смешения имеют низкие значения, а изменение энтропии происходит по закону идеальных газов, были выделены в отдельный класс, полу- [c.213]

    Кристаллизация из паровой фазы, как в процессе сублимации, обычно приводит к образованию игольчатых кристаллов. В этом случае также требуется форма, которая способствует быстрому рассеиванию тепла скрытая теплота кристаллизации обычно достаточно высока (теплота плавления плюс теплота испарения), и газовая фаза является плохим проводником тепла. [c.176]

    К сожалению, для очень важной категории реакций — реакций образования из элементов (из простых веществ или свободных атомов) — применение описанных закономерностей при высоких температурах часто бывает существенно ограниченно. Расчет параметров реакций образования из простых веществ и определение их температурных зависимостей в широкой области температур большей частью сильно осложняются вследствие фазовых переходов, которые претерпевают простые вещества (полиморфные превращения, плавление, испарение), и частичной диссоциации их на атомы при высоких температурах. Поэтому целесообразнее рассматривать атомарные теплоты образования (или теплоты атомизации), атомарные энтропии образования (или энтропии атомизации) и другие параметры реакций образования вещества из свободных атомов. В настоящее время расчет этих величин не представляет затруднений, так как почти для всех элементов имеются дан-ные о значениях термодинамических функций их в состоянии одноатомного газа при разных температурах до 3000 К, и для некоторых элементов до 6000, 8000 и 20 ООО К- [c.183]

    Д 1я определения теплот образования твердого и парообразного бензола вводим поправки (в ккал г-мол) на теплоту плавления и теплоту испарения исп.  [c.460]

    Образование комплекса — экзотермический процесс. По данным [3], теплота комплексообразования, отнесенная к числу атомов углерода в молекуле нормального парафина, составляет около 6,7 кДж (1,6 ккал), что вдвое больше теплоты плавления этих углеводородов и значительно меньше теплоты их адсорбции на твердой поверхности. Отсюда следует, что тепловой эффект комплексообразования есть результат экзотермического процесса адсорбции и эндотермического процесса перехода тетрагональной структуры карбамида в гексагональную в момент комплексообразования. Теплота образования комплекса складывается из теплот трех процессов преодоления сил межмолекулярного сцепления молекул парафинового углеводорода, численно равных теплоте испарения ориентации молекул карбамида в отношении молекул парафиновых углеводородов (экзотермический процесс) превращения кристаллической структуры карбамида из тетрагональной в гексагональную (эндотермический процесс). [c.201]

    Все энергетические величины (внутренняя энергия, энтальпия. тепловые эффекты, теплоты образования, теплоты плавления, испарения и др.) могут выражаться в любых энергетических единицах. Наиболее часто их принято выражать в калориях ( 35) и относить обычно к одному молю вещества (мольные величины), или к одному грамм-атому элемента (атомные величины), или к количеству вещества, указанному в реакции. [c.183]

    Для винных кислот приведены новые, по сравнению с руководством Меншуткина, данные о константах диссоциации и полосах поглощения в инфракрасном спектре для нафталина не приведены данные по теплотам образования, но указаны теплоты плавления и испарения. [c.289]

    Термохимия изучает теплоты испарения, плавления и полиморфных превращений теплоемкости индивидуальных веществ тепловые эффекты химических реакций, а также теплоты образования и разбавления растворов. Закон Гесса позволяет рассчитать для химических процессов тепловые эффекты, которые не могут быть измерены экспериментально, например теплоты образования кристаллогидратов солей. Расчетный способ определения тепловых эффектов имеет большое значение для исследования объектов фармации, часто представляющих собой сложные вещества и системы. [c.12]


    Процесс лиофильной сушки можно сопоставить с молекулярной дистилляцией [90]. Чтобы вода удалялась с достаточной скоростью, к образцу нужно подводить тепло. В соответствии с требованиями термодинамики, энергия, необходимая для сублимации 1 г льда при температуре и образования пара с температурой Т, эквивалентна сумме теплоты плавления льда при температуре О °С, теплоты испарения воды при температуре Т и теплоты, необходимой для нагревания льда от до точки плавления и нагревания образующейся воды от точки плавления до температуры Т. Скрытая теплота сублимации слегка уменьшается с понижением температуры. Она составляет 2833 Дж/г при О °С и 2758 Дж/г при —40 °С [138]. [c.166]

    Теплота сгорания, ккал/моль Теплота образования, пкал/моль жидкого соединения. ... газообразного соединения. Теплота плавления, кял/г. . Теплота испарения (при точке ки [c.280]

    Теплота, кдж/моль (ккал/моль) образования [25° С 1,03 кгс/см , или 101,3 кн/мЦ плавления. .. испарения [c.405]

    Свойства элементов в свободном виде (простого вещества) ковкость, твердость, коэффициенты расширения и преломления, парахор, плотность, стандартный окислительно-восстановительный потенциал, температуры кипения и плавления, теплота образования соединений определенного типа, теплота плавления, испарения и сублимации, теплота сольватации ионов, теплопроводность, электропроводность, энергия связи. [c.105]

    Величину можно определить как энергию, затрачиваемую на образование одного грамм-моля невзаимодействующих между собой атомов в неупорядоченных областях (т. е. в областях, где атомы ведут себя как в сжатом идеальном газе), а —ЫЕ — как затрату энергии взаимодействия при образовании одного грамм-моля жидкости. Таким образом, скрытая теплота плавления должна определяться выражением = N E +E ) = Л+2В. Поскольку предполагаемое в данной модели промежуточное состояние аналогично парообразному, можно предположить существование связи между —Л/ и т. е. скрытой теплотой испарения при температуре жидкости, равной Имеются основания записать, что [c.387]

    Больцман дал очень ясную интерпретацию понятия энтропии, связав ее с упорядоченностью и неупорядоченностью на молекулярном уровне. В приложении 3 наряду со стандартными теплотами образования веществ приводятся также их стандартные энтропии, 5298. Не следует думать, однако, что эти величины получены из больцмановского выражения 5 = /с 1п И . Они определяются в результате калориметрических измерений теплоемкостей твердых, жидких или газообразных веществ, а также теплот плавления и испарения при комнатной температуре и их экстраполяции к абсолютному нулю. (Способы вычисления значений 5 из таких чисто термохимических данных излагаются в более серьезных курсах химии.) Эти табулированные значения Хгдв называют абсолютными энтропиями, основанными на третьем законе термодинамики. Дело в том, что рассуждения, на которых основано их вычисление по данным тепловых измерений, были бы неполными без предположения, называемого третьим законом термодинамики и гласящего энтропия идеального крщ тйлла при абсолютном нуле температур равна нулю. Содержание третьего закона представляется очевидным, если исходить из больцмановской статистической интерпретации энтропии. [c.61]

    Элемент нлн соеднненйе Температура плавления С Температура кипения "С Теплота испарения ккал/моль Теплота образования ккал моль (ДН298) Свободная энергия образования ккал/моль (l Fws) [c.146]

    Значения теплот комплексообразования, опубликованные различными авторами, приведены в табл. 3. Наблюдаемая величина теплового эффекта образования комплекса (порядка 1,6 ккал на 1 атом углерода) значительно больше теплоты кристаллических превращений углеводородов, в 2 раза больше теплоты плавления, на /з больше теплоты испарения и в то же время значительно меньше теплоты адсорбции н-парафинов на угле. Это позволило Циммершиду и Диннерштейну [20, 52] считать, что теплота образования комплекса есть разность теплот двух процессов, имеющих место при комплексообразованпи, — изотермического процесса адсорбции и эндотермического процесса смешения молекул карбамида в момент образования продуктов присоединения. [c.31]

    Теплота сгорания, ккал/молъ Теплота образования, ккал/молъ жидкого соединения. ... газообразного соединения. Теплота плавления, кал/г. . Теплота испарения (при точке ки пения), кал/молъ. ... Критическая температура, °С Критическое давление, ат Энтропия (Ззэ ), единиц энтропии на 1 моль ( 1). ... [c.280]

    Теплота образования РиОг, вычисленная различными авторами из теплоты сгорания металлического плутония, равна 252,4 1,1 ккал1моль [184, 237]. Найденные значения температуры плавления колеблются около 2240° [237]. Рентгенограммы после плавления были двухфазными вследствие инкогруэнтного (с потерей кислорода) испарения РиОг вблизи точки плавления. Наблюдаемая температура плавления соответствует двухфазной системе РиОг— кубическая РигОз. Поэтому температуру плавления стехиометрической РиОг необходимо определять при равновесном давлении кислорода [237]. Такие данные в литературе не опубликованы. [c.106]

    Молекулярную теплоемкость Ре(С0)5 определяли Дьюар, Траутц и др. Их данные сведены в табл. 9. Теплоты образования, сгорания, плавления и испарения, полученные разными авторами, приведены в табл. 10. [c.32]

    Теплота сгорания триоксана составляет 498—507 кДж/г, теплота образования —(174+182), а теплота реакции тримеризации СН2О 163—188 кДж/моль триоксана [1, 21]. Теплота испарения триоксана равна 41 кДж/моль. Зная эту величину и точку кипения триоксана, можно, пользуясь уравнением Клаузиуса — Клапейрона, приближенно определить положение прямой, выражающей температурную зависимость давления паров триоксана выше точки плавления. В зависимости от природы химической модификации формальдегида одно и то же давление насыщенных паров может наблюдаться при различных температурах (см. рис. 3). [c.21]

    Для того чтобы процесс был спонтанным, т. е. чтобы соответствующая константа равновесия была велика (отвечая почти завершению реакции) или составляла около единицы (так чтобы получить удовлетворительный выход продуктов), AG должна иметь либо отрицательное, либо небольшое положительное значение. Для многих реакций при комнатной температуре TAS мало по сравнению с АН, и возможность или невозможность спонтанной реакции определяется величиной изменения теплосодержания. Именно поэтому, например, теплоты образования окислов металлов являются довольно падежной мерой их стабильности. Но большое увеличение энтропии при реакции (положительное Д5) может превышать большое увеличение теплосодержания (положительное АН — эндотермическая реакция) и приводить к отрицательному AG и, следовательно, вызывать спонтанный процесс. Более того, роль второго члена возрастает при повышении температуры. Так, при достаточно высокой температуре все химические соединения разлагаются на составляющие их элементы, несмотря на то что такие процессы обычно эндотермичны. Основная причина этого заключается в том, что такой процесс означает переход от более упорядоченного к менее упорядоченному состоянию AS положительно, и при достаточно высокой температуре TAS становится численно больше, чем АН. Дальнейшими примерами спонтанных процессов, которые являются эндотермическими, но связаны с увеличением неупорядоченности, оказываются также разложение твердого вещества на газообразные продукты, плавление твердого вещества и испарение жидкости. 3 качестве последнего примера можно указать на спонтанное эндотермическое растворение хлористого аммония в воде при растворении сильно упорядоченногс [c.186]

    Свойства симмет]зичного диметилгидразина температура замерзания —8,92° С температу])а кипения 81,5° С теплота плавления 3,296 ккал моль теплота испарения 9,40 ккал1молъ при 25° С, теплота образования 12,2 ккал/моль] теплоемкость 40,88 кал моль-град при 25" С, давление пара 70,1 мм рт. ст. при 25° С, плотность при 20° С равна 0,827 [2]. [c.124]

    II ,чх с(н дииени11 следует учитывать, в каком агрегатном состоянии находятся окис,ты, гак как на плавление и испарение окислов затрачивается изве-стиое количество тепла. В некоторых случаях оно может даже превышать теплоту образования окисла. (Состояние окисла также зависит от темпе- )агуры, при которой протекает процесс сгорания. [c.100]

    Теплоты образования соединений элементов главной подгруппы III группы, если их отнести к эквивалентным количествам, лежат значительно ниже теплот образования соединений элементов главных подгрупп I и II групп. Отчасти это обусловлено значительно возросшей работой отрыва электронов (см. табл. 63). Однако ее повышение у соединений бора и алюминия приблизительно компенсируется увеянчением энергии взаимодействия ионов в кристаллической решетке. Для уменьшения теплоты образования, приходящейся на 1 г-аке, в рядах Li — Be — В и Na —Mg—Al существенное значение имеет значительное повышение в этом же направлении теплоты сублимации. Последняя, однако, для большинства этих элементов непосредственно еще не измерена. То, что от Li и В и от Na к А1 она существенно возрастает, следует на основании правила Трутона из значительного повышения температур кипения. Правило Трутона гласит, что для высококипящих веществ молярная теплота испарения К изменяется приблизительно так же, как и абсолютная температура кипения Tg. Отношение XITs (константа Трутона) составляет обычно около 21,5. Можно поэтому получать приблизительные значения теплот испарения веществ в калориях путем умножения абсолютной температуры кипения на 21,5. Для алюминия рассчитанная таким образом теплота испарения равна 2543 х 21,5 55 ООО кал г-атом. Для алюминия непосредственно измерена и теплота плавления она составляет 92 ал/г=2500 кал г-атом. Сложением теплот плавления и испарения можно получйть приблизительное значение теплоты сублимации.  [c.359]

    Однако вычисленные из обеих серий данных значения теплот возгонки, испарения и плавления, а также энтропии обнаруживают некоторые расхождения. Изучение равновесия между расплавленным ир4 и литым облученным ураном , привело-к экспериментальному значению свободной энергии образования РиРз, равному —93 ккал г-атом Р другим методом найдена величина — 94 ккал1г-атом Р. [c.172]

    Указанные в таблице значения теплопроизводительности являются теоретическими, определенными по теплотам образования без учета теплоты плавления, кипения и испарения, которые необходимо принимать во внимание, если определять такие показатели двигателя, как удельный импульс. Количество тепла, необходимого на расплавление металла и доведение его до жидкофазного состояния будет тем выше, чем выше температура плавления. От температуры кипения и теплоемкости будет зависеть количество тепла, идущее на испарение металла. Чем выше эти показатели, тем меньшие значения будет иметь удельный импульс тяги и тем хуже данное горючее. На величину удельного импульса тяги влияет скорость истечения газов из сопла, которая зависит от величины газообразования. Газообразование, в свою очередь, зависит от продуктов реакции — важно, чтобы в их составе было больше низкомолекулярных веществ и почти не было легкоконденсирующихся окислов металла, которые могут осаждаться в виде твердого остатка на стенках сопла и этим значительно снижать скорость истечения и тягу. [c.225]

    Дихлорид циркония — Zr b, молекулярная масса 162,13 — твердое вещество. Растворяется в горячих концентрированных кислотах с выделением водорода. Расчетные значения температуры плавления 1000 К, температуры кипения 1750 К [2]. Теплота образования— 607,1 кДж/моль, теплота испарения 147 кДж/моль [03, с. 100]. Дихлорид циркония диспропорционирует по реакции 2Zr U(T) Zr (т) + Zr I, (г) (12.2) [c.282]


Смотреть страницы где упоминается термин Теплоты плавления и испарения Теплоты образования: [c.362]    [c.123]    [c.82]    [c.107]    [c.19]    [c.167]    [c.583]    [c.353]    [c.410]    [c.162]    [c.530]    [c.298]    [c.100]    [c.240]   
Смотреть главы в:

Физическая химия Том 1 Издание 5 -> Теплоты плавления и испарения Теплоты образования




ПОИСК





Смотрите так же термины и статьи:

Теплота испарения

Теплота образования

Теплота плавления

Теплота плавлення



© 2025 chem21.info Реклама на сайте