Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение покрытий для защиты трубопроводов от коррозии

    Катодная и анодная защита. Катодное покрытие трубопроводов и других подземных сооружений применяется, как правило, совместно с каким-либо неметаллическим покрытием с целью предотвращения коррозии там, где в покрытии имеются или образуются во время эксплуатации дефекты и повреждения. В зависимости от характера покрываемого предмета может быть использована катодная защита с применением тока от внешнего источника или протекторная защита. При катодной защите можно избежать загрязнения раствора путем применения нерастворимых анодов. Материалами для изготовления катодов служат пластифицированная медь или бронза [281—283]. [c.228]


    На первом месте следует назвать их применение в составе дорожных покрытий и при строительстве аэродромов. Другой важной областью их применения являются поверхностные покрытия подземных трубопроводов для защиты их от коррозии. Эффективность этого метода защиты определяется не только высокими гидроизоляционными свойствами битумных покрытий, но также и их хорошим электроизолирующим действием, сильно уменьшающим вредное влияние блуждающих токов. В особенности ответственной является защита от коррозии магистральных нефтепроводов и газопроводов, где используются трубы большого диаметра. [c.208]

    ВНИИСТ совместно с Институтом общей и неорганической химии им. Н. С. Курнакова синтезированы легкоплавкие грунтовочные и покровные эмали для индукционного эмалирования труб по вертикальной схеме. Применение легкоплавких эмалей для защиты трубопроводов от почвенной и атмосферной коррозий позволяет снизить расход электроэнергии на индукционное оплавление покрытия (снижение температуры [c.97]

    В практике трубопроводного строительства критерием для оценки качества подготовки металла перед нанесением битумных покрытий является серо-стальной цвет трубы. Это довольно расплывчатое определение является скорее субъективной, чем объективной характеристикой качества очистки. Применение для защиты трубопроводов от коррозии липких лент малой толщины требует ясности в вопросах о необходимой степени очистки и подготовки поверхности трубы перед нанесением лент. [c.175]

    Наиболее эффективный метод защиты от коррозии трубопроводов, резервуаров, обсадных колонн скважин, шлейфов и т. д. от подземной коррозии — это комплексная защита, которая включает одновременное применение изоляционных материалов и катодной поляризации. Применение только изоляционных покрытий не дает положительного эффекта из-за невозможности обеспечения полной сплошности покрытия, так как либо имеется заводской неустраненный брак, либо покрытия повреждаются при строительстве и монтаже, либо разрушаются в процессе эксплуатации в связи с воздействием температуры, механических напряжений и, наконец, времени. В местах нарушения изоляции агрессивная среда входит в контакт с металлом и обусловливает течение коррозионного процесса. Необходимо отметить, что из-за облегчения доступа деполяризатора (в основном кислорода) к металлу в дефектах изолированной конструкции скорость коррозии нередко выше скорости коррозии металла неизолированных конструкций. [c.74]


    Применять методы электрохимической защиты от коррозии начали в первую очередь в химической промышленности около 15 лет назад вначале нерешительно, как это было и с применением катодной защиты подземных трубопроводов около 30 лет назад. Препятствие к более щирокому применению заключалось главным образом в том, что внутренняя защита должна в большей мере выполняться по индивидуальным проектам, чем простая наружная защита подземных сооружений. В связи с возросшей важностью обеспечения повышенной надежности производственных установок, с ужесточением требований к коррозионной стойкости и укрупнением деталей и узлов установок начал проявляться интерес к электрохимической внутренней защите. Хотя на вопрос об экономичности защиты нельзя дать общего ответа (см. раздел 22.4), все же очевидно, что расходы на электрохимическую защиту будут меньше расходов на высококачественную и надежную футеровку (на покрытия) или на коррозионностойкие материалы. При этом анализе нельзя не отметить, что наде кная эксплуатация очень крупных выпарных аппаратов для щелочных растворов вообще стала возможной только благодаря применению внутренней анодной защиты, поскольку достаточно эффективный отжиг для снятия внутренних напряжений крупных резервуаров практически неосуществим, а конструктивные и эксплуатационные напряжения вообще не могут быть устранены. [c.400]

    Пока еще недостаточно полно может быть оценен технико-экономический эффект от применения внутренней изоляции трубопроводов в связи с недостаточным практическим опытом противокоррозионной защиты внутренних поверхностей трубопроводов. В настоящее время можно говорить лишь о приближенном технико-экономическом эффекте борьбы с коррозией путем применения покрытий различных видов для внутренних поверхностей трубопроводов. [c.100]

    Давыдов С.H., Рафиков С.К., Ахияров Р.Ж, Применение гидрооксида кальция для защиты от коррозии подземных трубопроводов в местах повреждения изоляционного покрытия Матер. Новоселовских чтений. -Уфа Изд-во УГНТУ, 1999. - Вып.1. - С.  [c.113]

    В настоящее время трубопроводы без защитных противокоррозионных мероприятий не эксплуатируются. В процессе строительства на трубопровод наносится изолирующее покрытие, которое позволяет увеличить срок безаварийной работы. Но без применения катодной защиты полностью устранить коррозию не удается, так как в процессе укладки трубопровода в землю покрытие местами разрущается. При относительно небольших затратах (стоимость устройства катодной защиты не превышает одного процента от стоимости трубопровода) удается продлить срок службы до 50—100 лет. [c.4]

    Наиболее перспективным на данном этапе развития техники является метод наклеивания пластиката на трубу. В СССР накоплен достаточный опыт применения поливинилхлоридного пластиката для защиты трубопроводов. Еще в 1954 г. на наиболее подверженных коррозии участках нефтепровода Гурьев — Орск общей протяженностью в 1 км была нанесена поливинилхлоридная изоляция. Лента пластиката наматывалась по слою перхлорвинилового клея или по битумной грунтовке. Аналогичное покрытие поливинилхлоридным пластикатом толщиной 0,2 мм, но по поли-изобутиленовому клею применено для защиты участка газопровода Карадаг — Сумгаит (Азербайджанская ССР). [c.134]

    Основное назначение противокоррозионных покрытий — защита подземных металлических трубопроводов от преждевременного разрушения коррозией. Эта роль с успехом может быть выполнена лишь при наличии покрытий с определенными, заранее заданными свойствами. Иначе говоря, покрытия должны обладать комплексом свойств, отвечающих условиям эксплуатации защищаемых трубопроводов механической прочностью, высокими электроизоляционными показателями, влагонепроницаемостью, теплостойкостью, бактериальной устойчивостью, химической инертностью по отношению к защищаемому металлу, слабой подверженностью старению, высокой адгезией к поверхности трубы (т. е. хорошей прилипае-мостью к металлу). Важное значение имеют и такие свойства, как применение простых и производительных технологических методов нанесения изоляции на трубы, а также возможность осуществления ремонта покрытий простыми средствами, непосредственно на трассе и т. д. Очевидно, что количественная оценка всех этих и других свойств покрытий будет зависеть от конструкции изолирующих оболочек, используемых материалов, диаметра и назначения трубопроводов. Поскольку в практике применяется большое количество разных типов покрытий для подземных металлических трубопроводов, важное значение приобретает вопрос количественной оценки их физико-химических свойств. Следует отметить, что эта задача является весьма сложной и до настоящего времени полностью не решена, несмотря на ее большую актуальность. [c.26]

    По имеющимся наблюдениям, применение защитных покрытий на трубопроводах, по которым транспортируются технологические агрессивные среды, охлаждающий рассол или сточные воды, позволяет не только защитить их от коррозии, но и упростить проблему очистки от микроорганизмов и других осадков [26]. [c.29]


    Тракт добавочной воды, включающий водоподготовительную установку, баки хранения воды и соединительные трубопроводы, соприкасается обычно с коррозионно-активной средой. За исключением подогревателей сырой воды, в других аппаратах водоподготовительных установок отсутствует теплообмен. В этих условиях для защиты от коррозии углеродистой стали, из которой изготовляется оборудование водоочисток, допустимо применение различного вида покрытий. [c.81]

    Хлорированный каучук стоек против действия слабой азотной кислоты, щелочей (до 50% концентрации), сернистого газа, хлора, хлороводорода и растворов солей. Он находит применение для покрытия с целью защиты от коррозии хранилищ химических реагентов, трубопроводов, вентиляционных установок на химзаводах и др. отраслях промышленности. [c.370]

    В ГОСТах и нормалях на фланцы предусмотрен вид обработки не только уплотнительных, но и всех других поверхностей на фланцах. Этими указаниями надлежит руководствоваться при изготовлении фланцев и применении их на монтаже трубопроводов. При транспортировании и хранении фланцев надо обеспечивать предохранение уплотнительных поверхностей от механических повреждений, а также защиту от коррозии путем соответствующей упаковки и покрытия антикоррозионной смазкой. [c.71]

    Однако применяемые до настоящего времени изоляционные покрытия не обладают полной сплошностью, поэтому в отдельных местах поверхность трубопровода соприкасается с грунтом и в той или иной степени подвергается коррозии. В этом случае применение установок катодной защиты на магистральных трубопроводах обеспечит полную их защиту от коррозии. [c.4]

    Катодную защиту внешним током широко применяют как дополнительное (к изолирующему покрытию), а иногда и как самостоятельное средство защиты от коррозии подземных металлических сооружений —трубопроводов, газопроводов, резервуаров и др. За последнее время расширилось применение катодной защиты внешним током для предупреждения коррозии заводской аппаратуры — конденсаторов, холодильников, теплообменников и др. [c.348]

    Результаты исследований показали еще одно преимущество применения труб с покрытиями в системе заводнения пласта. Наряду с защитой от коррозии, что до настоящего времени считалось главным, применение таких труб значительно снижает гидравлическое сопротивление трубопроводов и существенно повышает за счет увеличения эффективного забойного давления приемистость нагнетательных скважин. [c.25]

    Пассивные меры защиты. Одним из средств уменьшения коррозии арматуры железобетонных конструкций является нанесение изолирующих покрытий на поверхность арматуры или бетона. Однако, несмотря на сравнительную простоту, способ получил ограниченное применение для подземных железобетонных трубопроводов. Объясняется это в основном жесткостью требований, предъявляемых к изоляционным покрытиям, наносимым на бетон или арматуру подземных железобетонных трубопроводов. Поэтому многие покрытия, широко применяемые (например, битумные) для защиты от коррозии подземных металлических сооружений, не нашли применения для антикоррозионной защиты подземных железобетонных трубопроводов. Другие покрытия (например, эпоксидные) не получили широкого распространения из-чя дефицитности или высокой стоимости. [c.76]

    Применение ингибиторов коррозии, электрохимической защиты трубопроводов, различных антикоррозийных покрытий резко снижает аварийность, в результате чего предотвращаются разливы нефти, пластовых вод, что благоприятно отражается на состоянии окружающей среды. [c.288]

    Различают прямые и косвенные коррозионные потери. Под прямыми потерями понимают стоимость замены (с учетом трудозатрат) прокорродировавших конструкций и машин или их частей, таких как трубы, конденсаторы, глушители, трубопроводы, металлические покрытия. Другими примерами прямых потерь, могут служить затраты на перекраску конструкций для предотвращения ржавления или эксплуатационные затраты, связанные с катодной защитой трубопроводов. А необходимость ежегодной замены нескольких миллионов бытовых раковин, выходящих из строя в результате коррозии, или миллионов прокорродировавших автомобильных глушителей Прямые потери включают добавочные расходы, связанные с использованием коррозионно-стойких металлов и сплавов вместо углеродистой стали, даже когда она обладает требуемыми механическими свойствами, но не имеет достаточной коррозионной устойчивости. Сюда относятся также стоимость нанесения защитных металлических покрытий, стоимость ингибиторов коррозии, затраты на кондиционированце воздуха складских помещений для хранения металлического обо рудования. -Подсчитано, что применение соли для борьбы с обле- [c.17]

    Битумные и дегтевые вяжущие обладают целым комплексом полезных свойств они термопластичны, водонепроницаемы, погодоустойчивы и являются хорошими изоляторами. К тому же деготь, например, — хороший антисептик. Поэтому они широко применяются в строительстве. Например, при строительстве дорог используется до 75% всего производства органических вяжущих. Это объясняется тем, что дорожное покрытие из бетона на этих вяжущих отличается высокой износоустойчивостью, прочностью при различных климатических и погодных условиях и легкостью очистки дорожного полотна. Органические вяжущие на основе битума и дегтя находят широкое применение также при сооружении полов промышленных зданий, в качестве кровельных, гидро-, тепло- и пароизоляционных покрытий и материалов, приклеивающих мастик, покрасочных составов. Например, органические вяжущие, обладающие высокой адгезией к различным материалам и гидрофобными свойствами, применяют в качестве гидроизоляционных обмазок для защиты фундаментов зданий, трубопроводов, траншей, водохранилищ, бассейнов и т. д. Битум используется в качестве связующего материала при производстве плит из минеральной ваты, котерые применяются для теплоизоляции зданий, холодильных установок и трубопроводов. Органические вяжущие могут использоваться для защиты от коррозии металлов, бетона в виде, например, черных лаков, при сооружении защиты от радиоактивного излучения применяются они и для стабилизации грунтов. Не обходятся без органических вяжущих и другие области народного хозяйства, например лакокрасочная, нефтехимическая (производство пластмасс), электротехническая, металлургическая и др. [c.60]

    В книге освещаются способы защиты оборудования нефтехимических заводов неметаллическими футеровками. Рассматрнваются основные физико-механические свойства бетонов на основе гидравлических вяжущих веществ и жидкого стекла, применяемых в качестве футеровок для защиты аппаратов от коррозии, эрозии и воздействия высоких температур. Описывается технология изготовления цементных покрытий для защиты от коррозии аппаратов, резервуаров и дымовых труб нефтехимических заводов. Освещен опыт применения монолитных футеровок из торкрет-бетона в аппаратах установок риформинга и каталитического крекинга. Рассматриваются методы исследования и подбора составов бетонов, а также расчета напряжений, режимов сушки и теплоизоляционных свойств монолитных футеровок. Описывается технология защиты трубопроводов от коррозии покрытиями, нанесенными центробежным способом. Приводится технология футеровки аппаратов заводов искусственного жидкого топлива штучными изоляционными материалами. Рассматриваются футеровки для защиты от коррозии аппаратов, а также фундаментов под оборудование, подвергающихся воздействию кислых растворов, нефтепродуктов и переменных сред. [c.2]

    Одним из решений вопроса защиты от коррозии трубопровода в местах опирания на него анкеров при перемещении могло бы явиться применение труб с алюминиевым покрытием, наносимым в заводских условиях и являющимся достаточно химически устойчивым в различных средах. Кроме того, это покрытие может выдерживать большие механические нагрузки в условиях сжатия и сдвига. В этом случае необходимо алюми-нировать также силовой пояс, а между ним и поверхностью трубы, в месте опирания пояса, прокладывать резиновую пластину, так как, согласно исследованиям ВНИИСТа, система алюминиевое покрытие - резина является достаточно устойчивой в условиях истирания. [c.116]

    Некоторые специалисты выразили скептическое отношение к результатам этих исследований. Еще в 1935 г. в одной из работ Американского института нефти в Лос-Анжелесе утверждалось, что токи от цинковых анодов (протекторов) на сравнительно большом расстоянии уже не могут защитить трубопровод и что защита от химического воздействия (например кислот) вообще невозможна. Поскольку в США вплоть до начала текущего столетия трубопроводы нередко прокладывали без изоляционных покрытий, катодная защита для них была сравнительно дорогостоящей и для ее осуществления требовались значительные токи. Поэтому естественно, что хотя в США в начале 1930-х гг. и защищали трубопроводы длиной около 300 км цинковыми протекторами защита катодными установками (катодная защита током от постороннего источника) обеспечивалась только на трубопроводах протяженностью до 120 км. Сюда относятся трубопроводы в Хьюстоне (штат Техас) и в Мемфисе (штат Теннесси), для которых Кун применил катодную защиту в 1931—1934 гг. Весной 1954 г. И. Денисон получил от Ассоциации инженеров коррозионистов премию Уитни. При этом открытие Куна стало известным вторично, потому что Денисон заявил На первой конференции по борьбе с коррозией в 1929 г. Кун описал, каким образом он с применением выпрямителя снизил потенциал трубопровода до — 0,85 В по отношению к насыщенному медносульфатному электроду. Мне нет нужды упоминать, что эта величина является решающим критерием выбора потенциала для катодной защиты и используется теперь во всем мире . [c.37]

    Типичными примерами толстослойных покрытий являются полимерные покрытия и покрытия на основе битумных мастик. Толщина таких покрытий превышает 1 мм. Битумные материалы наносят в расплавленном виде. Покрытие труб полиэтиленом (ПЭ) осуществляется экструзией или с применением клея, обеспечивающего сцепление полиэтилена со сталью, или путем наплавления порошкового полиэтилена [,2, 3]. В последнее время находит применение еще одна система толстослойного покрытия полиуретан — каменноугольный пек это покрытие обычно наносят распылением в виде двухкомпонентной смеси [4]. Основной областью применения толстослойных покрытий являются подземные и морские трубопроводы и подземные резервуары-хранилища. Все покрытия имеют общее назначение — разъединить защищаемую поверхность и коррозионную среду. Полностью разъединить компоненты, участвующие в реакции в среде, в принципе невозможно, поскольку все органические материалы покрытий, хотя и в различной степени, поглощают воду и пропускают водяной пар и кислород. Кроме того, нельзя исключить и возможность механического повреждения покрытий. Основные требования к покрытиям, которые должны обеспечивать длительную защиту от коррозии, сводятся к следующему [5, 6]  [c.146]

    Для получения качественного покрытия на металле требуется в первую очередь обеспечение максимальной адгезии между металлом и покрытием. Прочное сцепление (высокая адгезия) препятствует образованию новой фазы (продуктов коррозии) на границе металл — покрытие при малой силе сцепления благодаря проницаемости защитного слоя для воды, кислорода, ионов хлора, сульфата и других агрессивных агентов на границе металл— покрытие образуются продукты коррозии, имеющие больший объем, чем объем исходного металла. Поэтому в защитном покрытии возникают внутренние напряжения и происходит нару-щение его сплошности. Сравнительно быстро продукты коррозии образуются при применении покрытий, наносимых из растворов (краски, лаки). В последнем случае образование защитной пленки происходит при одновременном испарении органического растворителя, что неизбежно приводит к появлению в пленке пор, через которые к металлу проникают агрессивные компоненты среды и начинается процесс ржавления. С повышением толщины слоя изолирующего покрытия, если последнее нанесено из расплава, вероятность образования пор уменьшается. Кроме того, с увеличением толщины слоя покрытия возрастает сопротивление для прохождения воды, кислорода к металлу. Поэтому для защиты трубопроводов примеляют относительно толстые изолирующие слои битумной мастики, порядка 3—9 мм. [c.94]

    В противоположность толстослойным покрытиям для трубопроводов тонкослойные покрытия для судов и морских сооружений могут обеспечивать защиту в сочетании с мероприятиями катодной защиты лишь с некоторым риском. В результате электроосмотических процессов следует принимать в расчет возмол<ность образования пузырей, зависящую от концентрации щелочных ионов, потенциала, температуры и свойств системы покрытия эти пузыри заполняются высокощелочными жидкостями (см. раздел 6.2.2). Для предотвращения образования пузырей может быть целесообразным ограничение катодной защиты в сторону отрицательных потенциалов например, рекомендуется принимать —0,8 В. Однако опытных данных по этому вопросу пока мало. В отличие от морских сооружений, для судов и закрытые пузыри тоже нежелательны, поскольку они повышают сопротивление движению. Между тем одной из задач катодной защиты судов является поддержание низкого сопротивления движению путем предотвращения образования скоплений ржавчины. Сопротивление движению обычно складывается на 70% из сопротивления трению и на 30 % из сопротивления формы и волнового. Вторая составляющая для конкретного судна постоянна, а сопротивление трению под влиянием коррозии может повыситься примерно до 20 %. Кроме того, это сопротивление решающим образом уменьшается при наличии возможно более гладкой поверхности корпуса судна, не поврежденной местной коррозией. Еще одним фактором, увеличивающим сопротивление движению, является обрастание, бороться с которым можно соответствующими мероприятиями — применением противообрастающих покрытий. Потеря скорости, обусловленная шероховатостью, может привести к перерасходу до [c.356]

    Следует упомянуть о применении коррозионной защиты с использованием ленты, особенно для трубопроводов, например подземных. Прежде чем наматывать ленту, поверхность необходимо очистить от масла, прежних покрытий, ржавчины и посторонних вещеав. Затем накладывают грунт, чтобы обеспечить хорошую адгезию ленты к металлу. Лента представляет собой пленку толщиной около 0,5 мм из поливинилхлоридного или полиэтиленового пластика. Часто ее сочетают с покровной лентой, назначением которой является механическая защита (рис. 82). Наложение всех этих компонентов можно производить вручную, но можно выполнять в больших объемах с помощью спещ альных обмоточных машин. На стыках защиту обеспечивают с помощью манжеты из усаживающегося пластика, который при нагревании сокращается и дает плотное соединение. Обертку лентой часто комбинируют с катодной защитой, которая предотвращает коррозию в порах и разрывах, могущих возникнуть во время наложения или установки. [c.90]

    Основными методами защиты резервуаров, трубопроводов, цистерн и другого оборудования от коррозии являются применение коррознонностойких материалов, нанесение защитных покрытий, введение в масло ингибиторов коррозии, электрохимическая защита. [c.98]

    Очень важной областью их применения являются поверхностные покрытия подземных трубопроводов для защиты их от коррозии. Эффективность этого метода защигы определяется не только высокими гидроизоляционными свойствами битумных покрытий, но гакже и их хорошим мек- фоизолнруюшим действием, сильно улзеньшающим вредное воздействие блуждающих токов В особенности ответственной является защита от коррозии магистральных нефтепроводов и газопроводов. [c.88]

    Применение изолирующих фланцев, диэлектрических прокладок и запирающих элементов в Башкирии не внедряется. Кроме того, завышение потенциала на изолированных трубопроводах, что часто имеет место, значительно снижает диэлектрические свойства изоляционных покрытий. Например, при потенциале труба-земля — 1,35 В по медносульфатному электроду сравнения изоляция разрушается через 3,5 г. Поэтому не случайно ГОСТ 9.015-74 Единая система защиты от коррозии и старения требует ограничения максимального потенциала. Для снижения потенциала институт Башкиргражданпроект предложил точку дренажа выбирать у трансформаторной подстанции. [c.65]

    В книге освещены вопросы защиты подземных металлических трубопроводов от коррозии изоляционнылш покрытиями рассмотрены свойства органических противокоррозионных покрытий, методы их нанесения на трубопроводы и методы испытания дано описание битумных, пековых, полимерных и других покрытий, а также приведены опытные данные по определению их основных характеристик. Кроме того, дан анализ условия применения покрытий для внутренней изоляции стальных трубопроводов и дан расчет технико-экономической эффективности покрытий для подземных металлических трубопроводов. [c.2]

    Покрытия для защиты от подземной коррозии распространены особенно широко. Для этой цели в настоящее время наиболее успешно применяют различные битумные материалы, главным образом нефтяные битумы и каменноугольные пеки. Эти материалы достаточно дешевы для массового применения их используют для защиты от коррозии всех видов атмосферной, водной, подземной и др. Простота их использования, сравнительная доступность, хорошие защитные свойства обеспечили их преймущество перед другими материалами, используемыми для защиты подземных трубопроводо в. Существует очень много видов, сортов и марок этих материалов. Они заметно отличаются один от другого по своим защитным свойствам. Поэтому необходимо очень тщательно выбрать исходный материал для такого покрытия, а также толщину и тип покрытия, приведя все это в соответствие с коррозионными условия-м и, существующими для данного трубопровода. [c.94]

    Битумные материалы выдержали самые широкие лабораторные, полевые и производственные испытания 1в самых различных условиях. В настоящее время битумные покрытия применяют чаще всего, и ими защищены сотни тысяч километров трубопроводов, проложенных в самых различных условиях. Попытки применения других материалов для защиты трубопроводов от коррозии, хотя и работавших прекрасно в других условиях, оказались неудачными в условиях подземной корроз1Ин. Некоторые защитные покрытия, показавшие хорошие, а иногда и отличные свойства в подземных условиях, нельзя применять из-за их высокой стоимости. [c.114]

    В данной работе излагаются соображения по некоторым вопросам этой большой и сложной проблемы. На основоти классификации современных методов противокоррозионной укладки подземных металлических трубопроводов выявляются сравнительные характеристики и технико-экономические особенности различных защитных мероприятий. Анализ опыта применения различных противокоррозионных методов укладки трубопроводов позволил определить значение того или иного метода защиты в современной практике. Последовательность изложения материала обусловлена реальными технологическими условиями нанесения покрытий на трубопроводы. Это потребовало исследовать условия, повышающие адгезию изоляции ме-талличесиих трубопроводов, чтобы можно было выявить причины, от которых в тех или иных границах зависит адгезия. Поскольку электрические характеристики изолированных трубстро-водов играют важную роль при их защите от коррозии, то значительное место в исследованиях заняли вопросы оценки локальных сопротивлений труба — земля с учетом сопротивления изоляции, контактных сопротивлений, в завиоимости от тех механических нагрузок, которые испытывает изоляция в реальных условиях. Далее выявляется влияние различных электрохимических нагрузок на изолирующие оболочки. [c.4]

    Катодная защита трубопроводов . Катодная защита была разобрана на стр. 45 в связи с коррозией, вызываемой блуждающими токами. Защита таким шособом длинного, не имеющего покрытия трубопровода связана с значительны.м расходом электроэнергии. Однако как дополнительный к покрытию метод катодная защита может применяться. Стоимость катодной защиты в это.м случае сильно снижается. Количество электроэнергии, затрачиваемой на единицу длины защищаемого трубопровода, зависит от сопротивления покрытия и размера площади мест, где покрытие тонко или отсутствует. Несколько сообщений об успешном применении дополнительной катодной защиты поступило недавно из раз-личных областей А.мерики. [c.264]

    Для фаолитирования необходимо подготовить металлическую поверхность, очистить ее с тем, чтобы увеличить сцепление между фаолитом и металлом. Желательно, кроме того, создать рифленую поверхность на металле, подлежащем покрытию. Затем подготавливают фаолит — производят раскрой сырых листов или подготовку фаолитовой массы. После этого фаолит приклеивают к металлу при помощи фаолитовой замазки. В практике известны футеровки фаолитом центробежных насосов, мешалок и др. Фаолитирование кранов осуществляется путем запрессовки разогретой фаолитовой массы в металлический корпус крана. Метод фаолитирования может быть применен и для защиты от коррозии трубопроводов. Такой опыт, в частности, имеется на некоторых заводах. Известны так же насосы из фаолита и графолита (фиг. 282). [c.419]

    Для защиты водоводов от коррозии применяют ингибиторы,. неметаллические трубы (стеклопластиковые) и защитные покрыгия. Эти способы защиты от коррозии перспективны, но первые два направления представляют самостоятельную область исследования. Применение же защитных покрытий связано с большим опытом эксплуатации трубопроводов с внутренними защитными покрытиями из эпоксидных лаков и их композиций по методам УфНИИ и КуйбышевНИИНП. Срок службы таких трубопроводов увеличивается до 2—3 лет, но пока остается проблема аащиты зоны сварных стыков. [c.22]

    Защита от коррозии способом обкладки. Если предполагают, что почва по своему характеру является особенно агрессивной, траншея, в которую закладывается труба, может быть заполнена пористым кирпичом или другим материалом для изоляции трубы от агрессивной почвы. Помимо того, такая обкладка позволяет использовать дождевые воды для вымывания солей, которые-могут присутствовать. Обычно подходящим для этой цели считают гравий, однако недавние опыты показали, что обкладка гравием небольшого участка трубы, проложенной через агрессивную глинистую почву, не тормозит коррозию трубопровода. Слой портланд-цемента толщиной 7,5 см дает лучшие результаты, а применение алюмоцемента не является эффективным [17]. Некоторого успеха можно достичь, применяя известь как обкладку для трубопровода, проложенного через глинистую почву, в которой возможно протекание микробиологической коррозии. Полезно в качестве обкладки применять песок, который может также предупредить разрушение покрытий на каменистых участках, однако песок должен быть свободным от солей и глины. Разные образцы песка дают различный эффект. Голландский комитет по коррозии утверждает, что защитные свойства песка повышаются при добавлении к нему извести [18]. [c.253]

    Принципам защиты от коррозии и обрастания посвящены специальные работы. Наиболее широко применяются различные покрытия. Для систем типа трубопроводов и камер наибольшей эф- фективностью обладают периодически подаваемые биоциды, например раствор хлора, оказывающиеся серьезными загрязнителями. Возможно применение различных физических методов, например использование радиоактивных препаратов, вводимых в покрытия, или резкого изменения температуры в среде, прилегающей к обрастанию поверхности. Последнее может быть принципиально применено для очистки от обрастаний внутренних поверхностей трубопроводов и теплообменников. Для этого достаточно в трубопроводы теплой воды периодически подавать холодную воду, поднимаемую из глубин (в случае ОТЭС). Аналогичный способ опробирован на обрастающих водозаборниках прибрежных ТЭС. [c.245]

    В систему технологических трубопроводов входят внешние трубопроводы — межцеховые и соединяющие насосные и компрессорные станции с магистральными трубопроводами. Процесс индустриализации сооружения подобных линейных участков технологических трубопроводов заключается в изготовлении на сборочно-сварочной базе секций из трех труб длиной 36 м. На этой же базе можно выполнить также работы по нанесению изоляционного покрытия для защиты от коррозии. Это позволяет сократить объем ручной сварки при монтаже подземного технологического трубопровода непосредственно у бровки, траншей, а основной объем сварки выполнять на базах с применением автоматической электродуговой сварки под флюсом. Так, при длине трехтрубной секции 36 м из tov6 дли- [c.272]

    Многолетней практикой эксплуатации магистральных трубопроводов доказана экономическая необходимость и целесообразность защиты стальных трубонроводов от коррозии, а также эффективность применения средств электрохимической защиты на изолированном трубопроводе. РЬучается важная технико-экономичсская проблема создания более надежных средств защиты трубонроводов от коррозии, в частности, проблема определения экономической эффективности разработки и применения новых изоляционных материалов, а также определения сроков ремонта покрытий. В большинстве случаев стоимость новых, более долговечных изоляционных покрытий более высока по сравнению с применяемыми, поэтому предполагается, что увеличение затрат на изоляцию должно компенсироваться уменьшением эксплуатационных расходов и увеличением срока их слунчбы. [c.205]

    Полиэтилен находит широкое применение в строительной технике. Например, при строительстве оросительных каналов в качестве облицовочного материала вместо бетона используется полиэтиленовая пленка. Эта же пленка, пропуская свыше 90% ультрафиолетовых лучей, используется при сооружении теплиц. Из полиэтилена изготавливаются трубопроводы для воды и агрессивных жидкостей (кислот, щелочей и т. д.), оболочки кабелей, шланги, а также различные декоративные плитки и покрытия в целях защиты от атмосферных воздействий и коррозии. Например, полиэтиленовой пленкой можно покрывать листы алюминия. Образующийся алюмопласт, обладая эластичностью, устойчивостью против коррозии и химически агрессивных жидкостей, применяется с различными целями, в том числе и для декоративной отделки строительных конструкций. [c.415]

    Большое значение имеет подготовка поверхности и выб0 р типа грунтовки. Предпочтение отдается пескоструйной или дробеструйной очистке с последующим обезжириванием щелочью. Широко применяются грунтовки на основе пластифицированного каменноугольного пека, устойчивые к резким перепадам температур. При эксплуатации трубопровода в агрессивных средах грунтовку армируют стекловолокнистыми материалами, пропитанными термопластичными смолами. Используют также различные ингибированные грунтовки, на пример битумные эмульсии с добавкой смеси нитрита и нитрата Са (2% сухой соли от массы битума). Под лакокрасочные покрытия 1рименяют цинксодержащие грунтовки, по сути осуществляющие электрохимическую защиту труб от коррозии. В отдельных случаях находят применение фосфатирующие грунтовки, наносимые на неочищенные поверхности, что позволяет совместить в одной операции травление, обезжиривание, удаление ржавчины и окалины. [c.86]

    Хотя ЦИНК корродирует в морской воде обычно с меньшей средней скоростью, чем железо, он не применяется в качестве конструкционного металла в условиях погружения как из-за плохих физических свойств, так и из-за склонности к местной коррозии [46]. Основное применение цинка — протекторы для защиты погружаемых конструкций и защитные гальванические покрытия на стали. Трубопроводы нз оцинкованной стали используются на кораблях в пожарных системах перекачки морско й воды. Высокая коррозионная стойкость таких труб связана, несомненно, с ограниченной концентрацией кислорода в заполняющей их стоячей воде. [c.167]


Смотреть страницы где упоминается термин Применение покрытий для защиты трубопроводов от коррозии: [c.48]    [c.29]    [c.188]   
Смотреть главы в:

Защита магистральных трубопроводов от подземной коррозии -> Применение покрытий для защиты трубопроводов от коррозии




ПОИСК





Смотрите так же термины и статьи:

Защита от коррозии

Защита покрытия от коррозии

Трубопроводы при применении



© 2025 chem21.info Реклама на сайте