Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стеклование полимеров механическое

    Под теплостойкостью понимают способность полимера сохранять свою механическую прочность при действии той или иной нагрузки при повышенных температурах. Обычно величина теплостойкости определяется температурой плавления или стеклования полимеров. [c.116]

    Задание. Проанализировать характер кривой зависимости модуля кручения от температуры при заданном моменте инерции системы определить температурные области переходов полимеров из одного физического состояния в другое проанализировать полученную зависимость тангенса угла механических потерь от температуры при заданном моменте инерции системы объяснить смещение температур стеклования полимеров при изменении момента инерции системы. [c.163]


    Температура, при которой полимер при охлаждении переходит из высокоэластического или вязкотекучего состояния в стеклообразное, называется температурой стеклования. Полимеры в стеклообразном состоянии отличаются рядом особенностей релаксационного поведения и комплекса механических свойств от полимеров в высокоэластическом состоянии. Это становится очевидным при сравнении свойств натурального каучука (типичный эластомер) и поли-метилметакрилата, часто в обиходе называемого органическим стеклом. [c.142]

    Среди релаксационных процессов важнейшим для полимеров является а-релаксация (стеклование). При этом в зависимости от того, действуют на полимер внешние силы или нет,, наблюдается механическое или структурное стеклование, зависящие соответственно от частоты и скорости охлаждения. Ниже температуры структурного стеклования Гст механическое стеклование не наблюдается. Структурная и механическая релаксация являются наиболее универсальными методами исследования релаксационных переходов в полимерах и важно,, что имеется определенная взаимосвязь между механическими и структурными релаксационными переходами. [c.236]

    При понижении температуры ниже Тс в полимере наблюдается дальнейшее уменьшение теплового движения тех сегментов макромолекул, которые до этого обладали некоторой подвижностью. Чтобы вызвать теперь даже небольшую деформацию за-стеклованного полимера, нужно приложить к нему большую механическую нагрузку. При этом действующее на полимер напряжение (нагрузка) может оказаться выше его разрушающего напряжения, и полимер разрушается как хрупкое тело при очень малой деформации. Температуру, при которой происходит хрупкое разрушение полимера, называют температурой хрупкости Тхр (см. рис. II. 5). Стеклообразному состоянию соответствует участок I на термомеханической кривой. [c.25]

    Речь идет о температуре стеклования, коэффициенте объемного расширения и других аналогичных свойствах аморфных полимеров. Механические свойства даже в пределах аморфного состояния могут зависеть от надмолекулярной структуры более существенно. [c.7]

    Значения температуры стеклования, найденные из акустических, диэлектрических и других физических измерений, в которых используются периодически изменяющиеся поля, накладываемые на полимер, могут зависеть от частоты (О изменения этих полей и возрастают с ростом (О. Эта зависимость связана с явлением механического стеклования 4]. Механическое стеклование обусловлено релаксационным характером процесса перехода из высокоэластического состояния в стеклообразное. В соответствии с этим величина любого измеряемого при периодических воздействиях параметра, характеризующего релаксационный процесс, определяется произведением г или числом Деборы )=т// (где т — время релаксации, а (— время наблюдения). С точки зрения релаксационных представлений различие между аморфным твердым телом и жидкостью можно выразить количественно с помощью числа Деборы. У жидкостей, имеющих очень малые времена релаксации, число Деборы 0<С1, у аморфных твердых тел /)>1. [c.95]


    По характеризует энтропийный фактор процесса диффузии. Эта величина связана с частотой элементарных актов диффузии и оптимальным числом степеней свободы диффузионной системы [42, с. 251 44, с. 500]. При деформации полимерного образца напряженность и конфигурация кинетических структурных элементов меняются. Эти изменения энтропийного характера ускоряются с увеличением температуры. Поэтому следует ожидать, что деформирование полимера будет усиливать температурную зависимость Оо- По-видимому, усиление температурной зависимости должно иметь место и для величин и Р . Особенно интенсивно совместное влияние температуры и механических напряжений на диффузионные процессы должно проявляться в кристаллических полимерах. Увеличение напряженности, как известно, изменяет температуры рекристаллизации и стеклования полимеров. [c.80]

    Экснериментальные данные, приведенные в настоящей работе, соответствуют теории деформации линейных полимеров, предложенной Каргиным и Слонимским [4]. Однако в то время как эта теория предусматривала два вида стеклования полимеров за счет увеличения мен<молекулярного или внутримолекулярного взаимодействия, сопровождающегося увеличением жесткости цепей, в нашей работе показан третий случай понижения гибкости цепи за счет временного действия внешнего механического напряжения при постоянной температуре. [c.277]

    Предполагаемое возрастание доли межфибриллярных молекул в образце по мере увеличения степени вытяжки находится в противоречии с измерениями прочности ориентированных пленок ПЭ в направлении, перпендикулярном вытяжке (ст. ) (см. рис. 111.25). Уменьшение с К позволяет предполагать, что число межфибриллярных молекул с вытяжкой уменьшается, а не возрастает. Поэтому механическое стеклование полимера под действием ориентирующего усилия не всегда является причиной прекращения ориентационной вытяжки. [c.229]

    Существует несколько методов определения температуры стеклования полимера определение зависимости механических характери-108 [c.108]

    В отличие от механического стеклование полимера, наступающее вследствие уменьшения подвижности сегментов или других элементов структуры при снижении температуры (уменьшение энергии теплового движения этих элементов структуры), называется структурным. [c.110]

    Крупные сферолиты могут образоваться не только в процессе переработки полимеров, но и в процессе эксплуатационного использования изделий, содержащих мелкие кристаллические образования. Воздействие механических нагрузок при температурах выше температуры стеклования полимера содействует образованию крупных сферолитов или других крупных обособленных кристаллических структур. При [c.385]

    Как правило, полимеры с Т , лежащей выше комнатной температуры, такие, как кристаллические полистирол, поликарбонаты и т. д., —это хрупкие материалы. Их можно рассматривать как за-стеклованные полимеры, и поэтому проведенное выше рассмотрение механических свойств стеклообразных полимеров относится и к упомянутым кристаллическим полимерам. [c.396]

    В отличие от обычной пластификации, механическая пластификация не изменяет температуры стеклования полимеров, однако, значительно снижает температуру хрупкости. [c.145]

    Различают ориентацию цепей в целом и ориентацию отдельных участков цепей, которая осуществляется при высокоэластической деформации и является обратимой. Для ориентации цепей макромолекул в целом необходим перевод полимера в вязкотекучее состояние. Эта ориентация необратима. Сопротивление движению всей цепи значительно больше, чем сопротивление перемещению отдельных участков. Поэтому скорости ориентаций участков и цепей различны. Вначале ориентируются отдельные участки, а затем — цепи в целом. При ориентации цепей и их участков повышается межмолекулярное взаимодействие и увеличивается жесткость системы. Это замедляет процесс как ориентации, так и дезориентации, и в пределе может произойти стеклование аморфных полимеров (механическое стеклование). [c.30]

    В четвертой главе подробно освещен термомеханический метод определения температуры стеклования и текучести полимеров, проанализированы особенности интерпретации термомеханических кривых для аморфных и кристаллических полимеров, приведен расчетный метод определения по химическому строению полимера величины механического сегмента. Рассмотрены две основные концепщш механизма процессов застекловьшания полимеров - релаксационная и межмолекулярная. Рассматривается более универсальный, чем широко распространенный групповой подход расчета свойств полимера по их химическому строению, атомистический подход, с использованием которого получены аналитические выражения для расчета по химическому строению температуры стеклования линейных и сетчатых полимеров. Выполнен анализ влияния типов разветвлений линейных полимеров, а для сетчатых полимеров - числа звеньев между узлами сшивки, типа и строения этих узлов, наличия и вида дефектов сетки на температуру стеклования полимеров. [c.15]


    Как и в случае механических свойств, теоретический расчет проницаемости с помощью различных моделей требует дополнительной экспериментальной проверки для определения области применимости предлагаемых соотношений. Другим интересным и в то же время усложняющим применимость выражений для количественного определения проницаемости обстоятельством является возможное взаимодействие полимера с наполнителем (см. также разд. 12.3). Механизм проницаемости в полимерах зависит от подвижности сегментов, при движении которых возникают дырки, доступные молекулам проникающего вещества. Таким образом, любое ограничение или увеличение сегментальной подвижности должно влиять на проницаемость [195] в такой же степени, как подвижность сказывается на релаксационных свойствах и отсюда на температуре стеклования полимера. [c.348]

    Таким образом, вблизи температуры стеклования полимеры обладают максимальными значениями модуля механических потерь и б, которые являются мерой рассеянной энергии. Упрощая, можно сказать, что потери энергии при этих температурах максимальны. С помощью полимеров, Тд которых находится вблизи температуры эксплуатации, может быть снижен уровень шумов и вибраций [59, 60, 83, 735, 741, 978]. Однако для гомополимеров рабочая температурная область (при постоянной частоте) обычно является довольно узкой, соответствуя интервалу в 20—30 °С вблизи их температуры стеклования. [c.397]

    Температуры плавления и стеклования полимера влияют на механические свойства полимера при той или иной телшературе [c.36]

    Процесс стеклования полимера, т. е. переход его из высокоэластического в стеклообразное состояние, сопровождается постепенным изменением его физических свойств (объема, плотности, диэлектрических и механических свойств и др.). Изучая изменение этих свойств в зависимости от температуры, можно определить температуру стеклования полимера. Наибольшее распространение получили методы исследования следующих свойств  [c.176]

    ТЕПЛОСТОЙКОСТЬ ПОЛИМЕРОВ — способность полимеров сохранять при повышенных темп-рах твердость, необходимую для эксплуатации изготовленных из них изделий. У стеклообразных полимеров теплостойкость определяется темп-рой стекловання (см. Стеклование полимеров, Механические свойства поли.меров) и зависит от величины и скорости приложения механич. воздействий. Увеличенпе длительности воздействия и величины напряжения вызывает снижение теплостойкости. При переменных напряжениях теплостойкость повышается с увеличением частоты воздействий. У кристаллич. полимеров теплостойкость определяется темн-рой, нри к-рой еще сохраняется его кристаллич. состояние (см. Структуры над.чолекулярные полимеров. Кристаллическое состояние полимеров), и зависит от глубины и условий кристаллизации. Теплостойкость любых твердых полимеров снижается нри пластификации и несколько увеличивается при введении наполнителей. [c.38]

    Сгруктура и физические свойства блочных полимеров конфигураиля полимерной цепи-процесс кристаллизации - ориентащ1я и вытяжка -реология и механические свойства полимеров — вязкотекучее состояние — кинетическая теория высокоэластичности — высокоэластичность полимеров — стеклообразное состояние и стеклование полимеров — механические свойства кристаллических полимеров. [c.379]

    Из упругого состояния полимер можно вновь перевести сначала в высокоэластическое, а затем и в вязкотекучее состояние либо увеличением периода действия силы 0 (или уменьшением частоты), либо уменьшением времени релаксации т, что достигается повышением температуры. Следовательно, природа перехода полимера из высокоэластического деформационного состояния в упругое, как и природа структурного стеклования, молекулярно-кинетическая и определяется теми же процессами молекулярных перегруппировок. Однако переход в упруготвердое состояние не связан с замораживанием структуры и происходит в структурно-жидком состоянии системы, т. е. выше Гс. Таким образом, под стеклованием в силовых полях или механическим стеклованием следует понимать переход полимеров из высокоэластического в упруготвердое состояние, не связанный с их структурным стеклованием. При охлаждении расплава полимера вначале происходит механическое стеклование, а затем и структурное. Учет различия между процессами механического и структурного стеклования позволяет устранить неясность в механизмах стеклования полимеров под действием внешних сил и при их отсутствии. Температуры структурного Гс и механического стеклования Гм независимы между собой, так как первая зависит от скорости охлаждения, а вторая —от времени действия силы 0 или частоты упругих колебаний V. [c.43]

    Сравнение условий сужения линии ЯМР с проявлением структурного стеклования при охлаждении полимера со стандартной скоростью 3 К/мин показывает, что 7 с нельзя отолсдествлять с т сун(, которая может быть сопоставлена с температурой стеклования полимеров в периодических силовых полях. При этом времени корреляции Тс может соответствовать время релаксации полимеров во внешнем поле. В ряде случаев обнаружено совпадение Тсут с температурой механического стеклования, измеренной ультразвуковым [c.223]

    Существует несколько методов определения температуры стеклования, основанных на том, что процесс стеклования полимеров всегда сопровождается постепенным изменением физических свойств (объема, плотности, днэлектрических и механических свойств и др.). Наибольшее распространение получили методы исследования удельного объема, теплоемкости, модуля упругости и деформации. [c.109]

    При использовании дисперсных наполнителей и рубленого волокна осн. способ произ-ва Н.п.-мех. смешение наполнителя с расплавом илн р-ром полимера, форполи-мера, олигомера или мономера. Для этой цели используют смесители разл. конструкции и вальцы. Непрерывные волокнистые заготовки пропитывают полимерным связующим. Подробнее см. в ст. Полимерных материалов переработка. Для улучшения пропитки волокнистых наполнителей связующим, повышения степени диспергирования частиц наполнителя в матрице и увеличения прочности адгезионного контакта на границе раздела фаз наполнитель-матрица используют разл. методы модификации пов-сти наполнителей, а также метод полимеризагрли на наполнителях. Газонаполненные материалы получают вспениванием с помощью спец. агентов (порообразователей) или мех. вспениванием жидких композиций, напр, латексов. Пенистая структура полимерного материала фиксируется охлаждением композиции ниже т-ры стеклования полимера, отверждением или вулканизацией (см. подробнее в ст. Пенопласты, Пенопласты интегральные. Пористая резина). Жидкие наполнители механически эмульгируют в связующем, послед, превращение к-рого в матрицу Н.п. происходит без разрушения первонач. структуры эмульсии. [c.168]

    Для полимеров, отвержденных выше 7 с, значения То, полученные экстраполяцией кривых азн = /(7 зм) до пересечения нх с осью абсцисс, примерно одинаковы и близки к Гс. Поэтому для То, которая определяется как температура, при которой авн = О, практически совпадает с температурой стеклования полимера. Однако для образцов, отвержденных при температурах ниже Гс, Го также ниже Гс и превышает температуру отверждения примерно на 10—25°С. Разница между температурами ор-верждения и Го в этом случае объясняется усадкой полимера прц отверждении. При нагревании образцов, отвержденных при тем пературах ниже Гс, до температур, превышающих Гс, внутренние напряжения при 20°С увеличиваются и достигают уровня напряжений в образцах, отвержденных выше Г,, Это можно объяснить иротекаюихим доотверждением полимера и релаксационными процессами. В результате этого полимер приходит в механическое равновесие с подложкой прц температурах, превышающих Гс. [c.76]

    При промежуточных температурах или частотах, обычно называемых интервалом стеклования, полимер не является ни стеклообразным, ни каучукоподобпым. Он обнаруживает промежуточные значения модулей, является вязкоупругим телом и может рассеивать значительные количества энергии нри растяжении. Стеклование проявляется многими путями, например, в изменении объемного коэффициента термического расширения, который может применяться для определения температуры стеклования Т . Явление стеклования в значительной мере является центральным при рассмотрении механического поведения полимеров по двум причинам. Во-первых, существует концепция, связывающая принцип температурно-временной эквивалентности вязкоупругого поведения с температурой стеклования Т . Во-вторых, стеклование может быть изучено на молекулярном уровне такими методами как ядерный магнитный резонанс и диэлектрическая релаксация. Таким путем можно получить представление о молекулярной природе вязкоупругости. [c.24]

    Область Б может соответствовать температурам релаксационных переходов и, в частности, температуре стеклования полимера или кристаллизации диффундирующего вещества. При стекловании подвижность кинетических элементов полимерной структуры резко уменьшается, скорость диффузионных процессов скачкообразно (и значительно) замедляется. В области Т <СТ относительный свободный объем системы очень мал и почти не меняется. Поэтому следует предположить об очень незначительном влиянии механических напряжений на кинетику процессов переноса. При растягивающих напряжениях в полимерах, находящихся в стеклообразном состоянии, возможна фазовая поверхностная диффузия по образующимся в полимере субмикрополостям и трещинам. Растворители в этом случае ускоряют разрушение напряженного полимерного образца. [c.82]

    Иную картину проявления механических свойств полимера мы будем иметь, вероятно, при межпачечной пластификации. В идеальном случае такой пластификации температура стеклования полимера пе должна вообще снижаться в присутствии пластификатора. Тогда, следовательно, механическая прочность, задаваемая пачками высокоориентированпых цепей полимера, окажется высокой. В то же время эластичность пластифицированного полимера определяется гуковской упругостью пачек, обладающих весьма высокой асимметрией их формы, т. е. будет определяться эластичностью формы таких вторичных структурных образований. Указанная пластификация, но-видимому, наиболее выгодна для получения морозостойких полимерных материалов, обладающих повышенной прочностью к ударным воздействиям, т. е. для таких условий эксплуатационного использования полимерных материалов, когда от материала требуется проявление высоких упругих свойств, задаваемых эластичностью формы структурных элементов материала. [c.323]

    Имеющиеся экспериментальные данные позволяют определить некоторые из этих величин. Как мы видели выше, прямым свидетельством разнодлинности участков макромолекул являются исследования по упругому нагружению ориентированных полимеров. (Само собой разумеется, реальные, ннзкие значения разрывных прочностей и модулей упругости служат доказательством этого утверждения.) ИК-спектроскопические исследования по определению истинных усилий на сегментах макромолекул и ЯМР-данные по механическому стеклованию полимеров позволяют в принципе получить кривые распределения длин отрезков цепей. Поскольку, однако, сведения по этому вопросу отсутствуют, рассмотрим его качественно. [c.152]

    Другие авторы [39] видят причину прекращения ориентационной вытяжки в снижении кинетической гибкости макромолекул под действием ориентирующей нагрузки. Как известно, усилие, необходимое для растяжения образца, по мере увеличения X существенно возрастает. Казалось бы, увеличение растягивающей силы не должно разрушить образец. Однако приложение к нему все возрастающего растягивающего усилия, как было показано при использовании ЯМР-спектроскопии [39], подавляет сегментальное движение молекул в аморфных областях, а в области предразрывных нагрузок оно тормозится настолько, что возникает так называемое механическое стеклование полимер становится твердым телом, лишенным вязкой эластичности. Интересно отметить, что аморфные области, как было установлено при исследовании ориентационной вытяжки ПКА, оказываются застеклованными при любых Тв, в том числе близких к Тпл кристаллов. [c.228]

    Течение низкомолекулярных жидкостей осуществляется, как известно, последовательными перемещениями молекул в целом. Для молекул полимеров такое перемещение невозможно из-за их больших размеров. В результате гибкости полимерных молекул возникает подвижность сегментов, которая определяет собой диффузионный механизм течения, заключающийся в последовательном перемещении отдельных сегментов молекулярных цепей. По мере течения полимера молекулы постепенно из согнутых конформаций переходят в вытянутое состояние, в результате чего увеличивается межмолекулярное взаимодействие между ними. Полимер становится более жестким при температурах вязко-текучего состояния и, в конечном итоге, переходит в стеклообразное состояние с прекращением процессов течения. Это явление носит название самозастекловывания или механического стеклования полимеров. Оно не имеет места у низкомолекулярных веществ. В результате механического стеклования полимеров из них можно получать нити и волокна в изотермических условиях прядения, что неосуществимо для расплавов низкомолекулярных соединений, в которых образование нитей происходит только лишь за счет охлаждения вытягиваемого волокна, т. е. за счет перепада температур. [c.377]

    Увеличение степени полимеризации (отверждения), комцентра-ции полярных групп в полимере, скорости механического нагружения, уменьшение концентрации пластификатора и другие факторы, повышающие температуру структурного и механического стеклования полимера, смещают график температурной зависимости сопротивления сдвигу и равномерному отрыву адгезионных металлополимерных соединений в область более высоких температур испытаний. При этом с увеличением степени полимериза- [c.27]

    Гебауэр и др. [321] показали, что прочность пористой керамики значительно возрастает в результате ее импрегнирования полиметилметакрилатом или полистиролом. И в этом случае наибольшее упрочнение отмечено для более пористых образцов. В аналогичной работе Гебауэр и др. [320] показали, что решающее влияние на упрочнение оказывает состояние полимера, а не только его количество в системе. В этой работе обнаружено, что прочность образцов, импрегнированных полихлорстиролом и поли-грег-бу-тилстиролом, уменьшается при температуре, близкой к температуре стеклования полимеров. Хассельман и др. [369—371] рассмотрели явление упрочнения в результате импрегнирования полимерами в рамках теории механического усиления. [c.308]


Смотреть страницы где упоминается термин Стеклование полимеров механическое: [c.273]    [c.59]    [c.182]    [c.99]    [c.348]    [c.182]    [c.82]    [c.35]    [c.377]    [c.32]    [c.22]   
Физика полимеров (1990) -- [ c.178 , c.224 ]

Физико-химия полимеров 1963 (1963) -- [ c.184 ]




ПОИСК





Смотрите так же термины и статьи:

Определения ф Структурное стеклование ф Механическое стеклование ф Сравнение процессов структурного и механического стеклования Оценка температуры стеклования статистических сополимеров и гомогенных смесей полимеров

Стеклование полимеров



© 2024 chem21.info Реклама на сайте