Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Характеристика металлического состояния

    Электропроводность служит важнейшей физической характеристикой металлического состояния. Металлы принадлежат к проводникам 1-го рода, в которых электропроводность осуществляется электронами. У проводников 2-го рода, например расплавов солей или растворов электролитов, ионный механизм проводимости. [c.360]

    Некоторые характеристики металлического состояния элементов главной подгруппы II группы периодической системы [c.28]


    МЕТАЛЛЫ А. ХАРАКТЕРИСТИКА МЕТАЛЛИЧЕСКОГО СОСТОЯНИЯ [c.575]

    А. Характеристика металлического состояния [c.577]

    Окислительные катализаторы, в том числе и переходные металлы и их окислы, как правило, относятся к первому классу классификации Рогинского степень окисления этих твердых тел является функцией окружающих условий во время катализа, и только о благородных металлах (Р1, Аи) можно с уверенностью сказать, что они при всех условиях пребывают в металлическом состоянии. Обнаружено, что смешанные окислы более активны и обладают большей избирательностью, чем простые окислы, и нередко исследователи смешивают окислы переходных металлов с окислами элементов групп 1УБ и УБ. В этой области известно очень много работ, касающихся промышленных контактов, и огромное количество патентов, но в то же время число фундаментальных исследований и характеристик активных фаз невелико. [c.145]

    Сущность работы. Возникающая между металлической пластинкой над поверхностью монослоя и водным раствором электролита электродвижущая сила называется поверхностным потенциалом. Величина последнего служит характеристикой фазового состояния монослоя. Поэтому по результатам измерения поверхностного потенциала можно судить о состоянии монослоя и даже о структуре молекул, образующих монослой. [c.70]

    Таким образом, валентные возможности ЩЭ не слишком разнообразны — это металлическое состояние (степень окисления 0) и одновалентное состояние (степень окисления +1), причем из-за относительно низкой величины ПИ1 ионное состояние М+ именно для ЩЭ наиболее характерно. Поэтому соединения ЩЭ обычно рассматриваются как модельные, когда нужно изучить свойства соединений с преимущественно ионной связью. Для теоретической, да и практической химии ионные соединения, которым присущи, например, высокие температуры плавления и кипения, большая термическая устойчивость, чрезвычайно важны. Кроме того, ионы ЩЭ имеют наименьшее среди других катионов поляризующее действие, закономерно уменьшающееся в ряду Ь1+—Сз+. Это позволяет, подбирая катион ЩЭ с необходимыми характеристиками, получать соединения относительно малоустойчивые (гидриды, перекиси и др.), которые не могут быть получены, когда роль катиона выполняет более сильный поляризатор, чем ЩЭ+. [c.7]

    Очень высокая химическая активность щелочных металлов обусловлена низким ПИ], низкой температурой плавления, рыхлой, легко разрушаемой кристаллической структурой, малой плотностью. Все эти, а также многие другие характеристики ЩЭ в металлическом состоянии взаимно связаны, и общей причиной уникальных свойств ЩМ, конечно, является их особая электронная структура — наличие только одного электрона на электронной оболочке с главным квантовым числом п и поэтому очень непрочной, легко разрушаемой. [c.12]


    Валентное состояние элементов главной подгруппы II группы определяется относительной легкостью отщепления их нейтральными атомами двух электронов с ns-электронной оболочки (см. табл. 1.3). В связи с этим кроме металлического состояния для элементов подгруппы Ве — Ra характерно образование двухзарядных катионов, имеющих относительно малые размеры и большую, особенно у легких элементов подгруппы, плотность положительного заряда. Уникальные характеристики имеет ион Ве2+, отношение заряда к радиусу у него в пять раз больше, чем у Mg +. С этим связано очень высокое поляризующее действие иона Ве +, его склонность к образованию ковалентных связей и, как полагают, его высокая токсичность [1, с. 182]. Сверху вниз но подгруппе плотность положительного заряда и поляризующее действие двухзарядных катионов падает. В связи с этим растут ионный характер и основные свойства большинства соединений этих элементов, которые по праву называют типичными элементами-металлами. [c.27]

    Образование нестехиометрических соединений вообще оказывает большое влияние на технологически важные характеристики переходных металлов. Например, растворение кислорода в кристаллической решетке титана резко понижает его пластичность. Это было одной из причин, почему титан, выделенный в металлическом состоянии уже давно, долгое время не удавалось получить достаточно пластичным, чтобы освоить изготовление изделий из него и тем самым открыть дорогу широкому использованию титана в промышленности. [c.210]

    При применяемых в химическом машиностроении соотношениях толщин стеклоэмалевых покрытий и металлической основы жесткость последней значительно превышает жесткость покрытия, и основная часть нагрузки воспринимается металлической основой. Поэтому в качестве основной характеристики напряженного состояния композиции металл— эмаль принимают напряжения в металлической основе на границе с эмалевым покрытием. [c.5]

    Согласно зонной теории [23, 24], электроны в металлах сохраняют в значительной степени те же характеристики, которые они имеют в изолированных атомах, хотя считается, что валентные электроны могут двигаться совершенно свободно через скопление положительно заряженных ядер и связанных с ними (плотных) электронных оболочек. Говорить о существовании 5-, р- и -электронов в твердом теле вполне законно, но тогда как в изолированных атомах каждое энергетическое состояние является дискретным и однозначным, в кристаллах металлов энергия каждого состояния имеет полосу (зону) разрешенных значений. Более того, число электронов, приходящихся на атом, расположенный в зоне металлического кристалла, может отличаться от числа электронов в соответствующих оболочках изолированных атомов. Например, электронная конфигурация 3(1- и 45-орбиталей изолированного атома железа имеет вид Зй 48 , тогда как в металлическом состоянии структура полосы в среднем выражается как Мы заме- [c.269]

    ХОД разрушения) в поликристаллических металлах. Кроме того, была выявлена количественная связь между структурными и прочностными характеристиками металлических тел. Физический смысл этой связи пока не раскрыт, но определяющая роль состояния межблочных границ для прочности металлов в экспериментальном и теоретическом плане обсуждается все более широко [663— [c.361]

    Некоторые атомные и энтропийные характеристики р. з. э. в металлическом и кристаллическом (ионном) состояниях ( .иг — валентность р. з. э. в металлическом состоянии и заряд иона) [c.239]

    Представляют большой интерес работы Н. И. Степанова (совместно с И. И. Корниловым и С. А. Булахом), посвященные изучению скорости превращения металлических твердых растворов в зависимости от состава. Эти исследования, позволившие ввести время как переменную величину для характеристики равновесных состояний вещества, имели большое теоретическое и практическое значение. [c.114]

    Исходя из предположения о существовании в металле свободных электронов, можно построить последовательную теорию металлического состояния. Отличие одного металла от другого по этой теории обусловлено числом свободных электронов и различием кристаллических решеток. Понимая чисто историческую ценность этих примитивных представлений об электронах в металле, перечислим все же некоторые характеристики такого гипотетического металла. Это перечисление, как нам кажется, необходимо, так как позволит сделать ряд важных оценок и высказать соображения, весьма полезные для дальнейшего. [c.7]

    Здесь 8о(р)-—энергия электрона с импульсом р в равновесном состоянии, описываемом функцией Ферми Ф(р, р )—корреляционная функция (основная характеристика взаимодействия между электронами в теории ферми-жидкости). В микроскопической теории корреляционная функция Ф(р, р ) связывается с амплитудой рассеяния электрона на электроне [6]. Экспериментальное определение этой величины — важная задача физики металлического состояния. Как будет ясно из дальнейшего, квазистатические кинетические свойства непригодны для этого. [c.199]


    В условиях граничной смазки основные характеристики трения и износа определяются состоянием тонкой, адсорбированной на поверхностях трения масляной пленки. Устойчивость тонких граничных слоев при трении зависит от свойства масла, называемого маслянистостью, природа которого еще не достаточно выяснена. Эти тончайшие слои смазки очень прочно связаны с металлическими поверхностями адсорбционными силами. [c.131]

    Для характеристики состояния металлической фазы в катализаторах типа металл на носителе на практике часто используют понятие дисперсности активного компонента. При этом за характеристику дисперсности часто принимают отношение числа хемосорбированных атомов адсорбата к общему числу атомов металла, нанесенного на подложку. Чем выше это отношение, тем более дисперсен исследуемый компонент. Однако такой подход не дает однозначной информации, так как величина отношения может существенно зависеть от механизма хемосорбции, на который в свою очередь влияют условия приготовления и иссле- [c.374]

    Как уже отмечалось, при погружении металла в раствор на границе раздела фаз образуется двойной электрический слой. Разность потенциалов, возникающая между металлом и окружающей его жидкой средой, называется электродным потенциалом. Этот потенциал является характеристикой окислительно-восстановительной способности металла в виде твердой фазы. Заметим, что у изолированного металлического атома (состояние одноатомного пара, возникающее при высоких температурах и высоких степенях разрежения) окислительно-восстановительные свойства характеризуются другой величиной, называемой ионизационным потенциалом. Ионизационный потенциал — это энергия, необходимая для отрыва электрона от изолированного атома. [c.79]

    Галлий, индий и таллий — мягкие, легкоплавкие, серебристо-белые металлы. Их важнейшие характеристики представлены в табл. Г17. Следует отметить, что галлий принадлежит к числу самых легкоплавких металлов, уступая по легкоплавкости только ртути и цезию. Температура кипения галлия (см. табл. М7) гораздо выше, чем у других легкоплавких металлов, вследствие чего Оа нмеет самый большой температурный интервал существования в жидком состоянии. В отличие от других металлов кристаллическая решетка галлия образована двухатомными молекулами ( са-са = 2,44 А). Молекулы Оаг сохраняются и в жидком металле, тогда как в парах металлический Оа почти всегда одноатомен. [c.169]

    У переходных металлов в образовании металлической связи, участвуют -электроны. Поэтому количество -электронов на один атом в кристалле резко меняется по сравнению с изолированным атомом. Именно в этом заключается основная трудность установления зависимости каталитической активности переходных металлов от электронного строения. В зависимости от распределения -электронов в кристалле меняются его электронные характеристики. Одно из возможных распределений -электронов дано Л. Полингом. Получаемые методом Полинга электронные характеристики кристалла — число -дырок на атом, вес -состояний металла — наиболее широко используются в катализе. [c.147]

    Итак, имеются две основные характеристики, определяющие электронное состояние кристаллов металла — число дырок в -зоне и процент -характера металлической связи. Это характеристики коллективных свойств всей массы кристалла, отражающие, в основном, его объемные, но не поверхностные свойства. [c.151]

    В книге большое место отведено взаимодействию металлов друг с другом, а также металлов с неметаллами, в результате чего образуются вещества с металлическим типом связи. Взаимодействие металлов между собой представляет большой интерес хотя бы потому, что подавляющее большинство элементов Периодической системы (более 80 из 105) является металлами. К этому надо добавить колоссальное практическое значение металлов, металлических соединений и твердых растворов на их основе. Четко разграничены важнейшие характеристики элементов — валентные состояния и степени окисления. О валентных состояниях элемента нельзя говорить, если неизвестно химическое строение вещества, в состав которого входит данный элемент. В отличие от других курсов общей [c.3]

    Между атомами могут возникать различные взаимодействия в зависимости от их физико-химических характеристик, а главным образом от значений электроотрицательности (ЭО), определяющей ориентировку электронов относительно атомов, уже вошедших в состав молекулы. Основными видами связи можно считать связи, устанавливающиеся между атомами, вступающими в соединение между собой а) ковалентная неполярная связь б) ковалентная полярная и в) ионная связь. К основным видам связи следует отнести и металлическую связь, однако она характерна не для замкнутых молекул, а для кристаллов металлического типа. Вообще говоря, ионная связь также характерна для кристаллического состояния веществ. [c.70]

    Катализаторы АКМ и АНМС в процессе гидроочистки (а в некоторых случаях и при подготовке катализаторе к работе) активизируются водородом, в результате М0О3 восстанавливается до М0О2, а затем частично до металлического состояния. При подаче сырья активные компоненты катализаторов взаимодействуют с сернистыми соединениями и переходят в сульфиды металлов. В этой форме катализаторы проявляют оптимальную активность. Характеристика катализаторов АКМ и АНМС  [c.28]

    В таблице XIII-1 дана общая химическая характеристика металлического и неметаллического состояний элементов. Дается принципиальная, так сказать, полюсная картина в таблице имеются в виду типичные металлы и неметаллы. При этом необходимо отметить, что резкой границы между указанными видами элементов провести нельзя. Об этом, в частности, говорит явление амфотерности. [c.300]

    Способность РЗЭ-металлов реагировать с водой, выделяя из нее водород, подтверждается данными табл. 1.7 величина ОВП для пары М7М составляет 2,3—2,5 В для большинства РЗЭ. Близкие значения для разных РЗЭ (за исключением 5с, для которого эта величина намного ниже) противоречат зкспериментально установленному различию в устойчивости РЗЭ в металлическом состоянии на влажном воздухе. По-видимому, активность металлов цериевой подгруппы п инертность металлов иттриевой подгруппы (несмотря на близкие значения их электронных потенциалов) связаны с различиями в кинетических характеристиках процесса взаимодействия с водой. Возможно, что легкие лантаниды более реакционноспособны из-за большей координационной ненасыщенности вследствие их большего, чем у иттриевых РЗЭ, радиуса атомов. [c.70]

    Подводя некоторые итоги обсуждения принципиальных вопросов о критериях напряженно-деформированного состояния в связи с наличием у конца трещины пластической зоны, можно прийти к следующему выводу. Характеристика деформированного состояния должна быть достаточно локальной. Однако пытаться использовать в качестве таковой максимальную деформацию металла у конца трещины, вероятно, неперспективно ввиду неопределенности этого понятия в связи с кристаллическим строением металлических материалов и трудностями представления ее у конца трещины при численных решениях упругопластических задач. Охват всей зоны пластических деформаций, как это в большинстве случаев пытаются реализовать во многих методах, явишется другой крайностью. По-видимому, небходимо ориен-т1фоваться на технически разумный размер вблизи конца трещины [196], который, с одной стороны, был бы не слишком мал, а с другой стороны, позволял бы охватить встречающиеся в практике случаи с [c.57]

    Большую ценность представляла бы возможность однозначной количественной характеристики электронного состояния переходных металлов. В работах ученых западных стран широко используется для этой цели введенный Полингом так называемый процент -характера металлической связи, определяемый долей -электронов, принимающих участие в этой связи. Он выводится в результате подбора удельных весов отдельных электронных состояний, удовлетворяющих экспериментально найденным параметрам решетки и величинам, характеризующим магнитные свойства. Следует, однако, отметить, что предположения, лежащие в основе вычисления процента -характера металлической связи, в значительной степени произвольны. При современном состоянии теории правильнее использовать для характеристики электронной структуры металлических катализаторов величины, доступные прямому экснери-ментальному определению, как, например, число неспаренных электронов, плотность электронных уровней, работа выхода и т. п. [c.131]

    Марганец, технеций и рений — -переходные металлы VII группы — имеют внешние оболочки V. У марганца в связи с устойчивостью наполовину заполненной "-оболочки, состоящей из пяти электронов с параллельными спинами (конфигурация ), и высокими значениями потенциалов ионизации отделение всех семи валентных электронов при образовании кристаллической структуры оказывается уже невозможным. По-видимому, свободными электронами в металлическом состоянии могут стать не более двух электронов с внешнего -уровня. Это соответствует тому, что в наиболее прочных соединениях марганец двухвалентен (МпО). На значительно более низкую концентрацию свободных электронов в металлическом марганце (1—2 эл атом) указывает также резкое падение температуры плавления при переходе от ванадия (5- -) и хрома (6-)-) к марганцу (l" ). При низких температурах марганец образует сложные не типичные для металлов хрупкие структуры. До 727° устойчив а-Мп, имеющий сложную объемноцентрированную кубическую структуру с 58 атомами в элементарной ячейке, в которой 24 атома марганца, по-видимому, находятся в двухвалентном состоянии (Мп " ), а остальные — в одновалентном (Мп ). Средняя электронная концентрация близка поэтому к 1,5. В интервале 727—1095° стабилен р-Мп, имеющий сложную плотную кубическую упаковку с 20 атомами в элементарной ячейке. Структура состоит из ионов и Мп и характеризуется электронной концентрацией 1,5 и координационными числами для обоих сортов ионов, близкими к 12. Такой тип структуры имеют многие электронные фазы с электронной концентрацией например AgHg. При еще более высоких температурах (1095—1134°) появляется плотная кубическая модификация "f-Mn, имеющая после закалки небольшую тетрагональность (с/а=0,95). Между 1134° и температурой плавления (1244°) существует объемноцентрированная кубическая модификация 6-Мп. Марганец, помимо устойчивых соединений, где он двухвалентен, образует, хотя и менее устойчивые, одновалентные соединения. Коулз, Юм-Розери и Мейер считают одновалентным марганец в uaMnIn. Доказательством того, что марганец может находиться в собственной решетке в одновалентном состоянии, служат более низкие температуры его плавления и кипения, меньшие теплоты плавления и испарения и очень высокое давление паров по сравнению с его соседом — железом, атомы которого в металлическом состоянии двухкратно ионизированы (Fe " ). Эти константы марганца ближе к соответствующим термодинамическим характеристикам меди, атомы которой в металлическом состоянии однократно ионизированы (Си " "). [c.225]

    Никель имеет электронную конфигурацию dV и проявляет наиболее устойчивую валентность 2-Ь. В металлическом состоянии никель, судя по его термодинамическим характеристикам, близок к железу и кобальту, а следовательно, также двухкратно ионизирован (электронная концентрация 2 эл1атом). Два его внешних электрона переходят в электронный газ, а два d-электрона, по-видимому, возбуждаются на -уровень, что приводит к сферической симметрии внешней оболочки и к плотной кубической структуре, сохраняющейся вплоть до плавления. Переход в жидкое состояние не сопровождается дополнительной ионизацией или существенным изменением электронного строения, поэтому жидкий [c.255]

    Основное влияние присадок и смазочных масел на предельное состояние машин и механизмов связано как с состоянием и качественными характеристиками трущихся поверхностей, так и с физико-химическими свойствами поверхностных слоев трущихся деталей при контактировании в условиях действия активной смазки (сорбцией, образованием пленок на металлических поверхностях, химическим модифицированием этих поверхностей). В соответствии с этим присадки, предназначенные для улучшения условий работы трущихся пар при тяжелых режимах, можно разделить на две группы 1) присадки,-адсорбирующиеся или хемосорбирую-щиеся на металлических поверхностях, и 2) присадки, образующие с металлом химические соединения (неорганические производнв1е хлора, серы, фосфора и других элементов), которые играют роль [c.129]

    Результаты многочисленных исследований [10, 11, 19, 22, 38, 54, 90—100] позволили установить, что нротивоизносные свойства обуславливаются наличием поверхностно-активных веществ, вязкостью, склонностью к образованию абразивных веществ при химических изменениях (вследствие термических изменений, коррозии и др.). Эти и другие характеристики в совокупности определяют влияние топлива на состояние поверхности контактирую-щихся металлических деталей, изменение тонкой кристаллической структуры и величину пластических деформаций поверхностных слоев металла, образование тонких прочных пленок на металле и т. д. [c.116]

    Битумные мастики готовят в битумоварочных котлах. Очищенный от бумаги и включений битум расплавляют в котле при температуре 140-150 °С. Когда температура битума достигает 170-180 "С, в него при непрерывном перемешивании добавляют наполнитель. Для приготовления мастик применяют нефтяные битумы строительные марок БН 50/50, БН 70/30, БН 90/10 изоляционные марок БНИ-1У, БНИ-У, БНИЗ-1У специальные марок Б, В, Г. Эти битумы отличаются друг от друга температурой размягчения, глубиной проникновения иглы и растяжимостью. Для противокоррозионной защиты металлических подземных сооружений в нефтяной и газовой промышленности используют битумы нефтяные, строительные и изоляционные. Мастики по сравнению с битумами имеют лучшие характеристики - повышенную вязкость в расплавленном состоянии, большую механическую прочность и более высокую температуру размягчения. [c.79]

    На базе концепции деформационного герметизатора разработаны герметизирующие материалы на основе гидрофобизированного графита и олигомерного связующего. Применение углеводородных и фторсодержащих олигомеров в качестве матрицы позволило существенно увеличить прочностные характеристики композита и стойкость к воздействию термоокислительных сред. Формирование на поверхности изделия олигомерного слоя повыщаст гидрофобность композита и способствует формированию устойчивых слоев переноса на рабочей поверхности сопряженного металлического контртела. Разработаны составы герметизирующих материалов с упрочняющими фрагментами углеграфитовых и етеклянных волокон с активированной поверхностью. Рещена задача расчета напряженно-деформированного состояния полосы из углеродного материала в зависимости от типа, содержания и пространственной ориентации армирующих волокон. Получены аналитические зависимости для определения напряжений в заданном сечении армированного композита. Разработаны составы модифицированных материалов на основе гидрофобизированного фафита с заданным сочетанием прочностных (Оаж, о ) и деформационных (ц, 8) характеристик. Для обеспечения надежной герметизации запорной арматуры предприятий нефтехимического комплекса разработаны уплотнительные комплекты для всей номенклатуры применяемого оборудования. Уплотнительные комплекты обеспечивают стабильную эксплуатацию запорной арматуры при температуре эксплуатации рабочей среды до 773 К, при давлениях до 50 МПа в течение не менее 10000 часов без специального обслуживания. [c.173]

    Общность ряда существенных физических свойств металлов, их резкое отличие от свойств типичных неметаллов в значительной мере обусловлены своеобразием внутреннего строения образуемых металлами кристаллических структур. В свою очередь поскольку силы, связывающие атомы металлов в кристаллическую решетку, определяются состоянием валентьых электронов свободных атомов, причины своеобразия физических свойств металлов следует искать в особенностях строения электронных оболочек и в природе металлической связи. Так как химические свойства свободных металлов и их соединений неразрывно связаны с физическими свойствами и также определяются строением электронных оболочек атомов и кристаллической структурой их соединений, следует кратко остановиться на этих важнейших характеристиках, определяющих совокупность физико-химических свойств металлов. [c.107]

    Целесообразно рассматривать таблицу Менделеева как своеобразную матрицу, элементами которой являются собственно химические элементы. Роль строки выполняет здесь период, а роль столбца — группа. Совокупность этих характеристик должна обеспечивать инвариантность положения элемента в таблице. В свете современных представлений о строении атома принадлежность элемента к конкретному периоду определяется числом электронных слоев атома в нормальном, невозбужденном состоянии. Номер периода отвечает номеру внешнего слоя, который не завершен и заполняется электронами. А принадлежность элемента к той или иной группе определяется общим числом валентных электронов, т. е. электронов, находящихся на внешней и недостроенных внутренних оболочках . Например, хром [Сг1 [Arl "ЗdЧs и сера [Sl fNe] Зs 3/) являются элементами одной и той же VI группы, поскольку оба атома имеют по б валентных электронов. Отметим, что деление на периоды и группы введено Д. И. Менделеевым, который определил принадлежность элемента к конкретной группе, ориентируясь на химические свойства, в частности на форму и характер высших оксидов и гидроксидов. Действительно, такие непохожие друг на друга металлический хром и неметаллическая сера в высшей степени окисления, соответствующей номеру группы, образуют оксиды [c.8]

    Характеристика элементов IVA-группы. К IVA-rpynne элементов, помимо типических, относятся элементы подгруппы германия Ge, Sn и Pb. Их валентная электронная конфигурация (ns np в невозбужденном состоянии) обусловливает возможность проявления свойств и катионо- и анионообразователей. Кроме того, эти элементы непосредственно примыкают к границе Цинтля справа и число валентных электронов достаточно для образования структур с ковалентной связью у соответствующих простых веществ с координационными числами согласно правилу Юм-Розери 8—N. Действительно, для гомоатомных соединений (кроме свинца и -олова) характерна кристаллическая решетка типа алмаза с координационным числом 4. Однако преимущественно ковалентная связь и кристаллах соединений в действительности реализуется далеко не всегда. Причиной этого является вторая особенность IVA-группы, заключающаяся в том, что здесь наиболее рельефно прослеживается изменение свойств от типично неметаллических (С) до металлических (РЬ). Поэтому тяжелые представители этой группы (РЬ, Sn), т. е. элементы с большой атомной массой, характеризуются плотно-упакованными структурами в свободном состоянии. [c.214]

    Характеристика элементов VA-группы. Элементы VA-группы в периодической системе расположены справа от границы Цинтля. В соответствии с этим положением в химическом отношении они являются типичными анионообразователями. Однако с увеличением атомного номера неметаллические свойства элементов заметно убывают. Так, азот и фосфор относятся к типичным неметаллам, мышьяк и сурьму обычно называют полуметаллами или иногда металлоидами (металлоподобными), а висмут уже в значительной мере проявляет металлические свойства. Еслн учесть, что в компактном состояни[1 и мышьяк, и сурьма, и висмут обладают металлической проводимостью (отрицательный температурный К0э(1х )ициент электрической проводимости), то становится понятным, почему эти три элемента целесообразно рассматривать в рамках химии металлов. [c.282]

    Совокупность этих характеристик должна обеспечивать инвариантность положения элемента в таблице. В свете современных представлений о строении атома принадлежность элемента к конкретному периоду определяется числом электронных слоев атома в нормальном, невозбужденном состоянии. Номер периода отвечает номеру внешнего слоя, который не завершен и заполняется электронами. А принадлежность элемента к той или иной группе определяется общим числом валентных электронов, т.е. электронов, находящихся на внешней и недостроенных внутренних оболочках. Например, хром [Сг] " — [Аг] 3(Р45 и сера [8] — [Ке]103 23р- являются элементами одной и той же VI группы, поскольку оба атома имеют по 6 валентных электронов. Отметим, что деление на периоды и группы введено Д.И.Менделеевым, который определял принадлежность элемента к конкретной группе, ориентируясь на химические свойства, в частности на форму и характер высших оксидов и гидроксидов. Действительно, такие непохожие друг на друга металлический хром и неметаллическая сера в высшей степени окисления, соответствующей номеру группы, образуют оксиды одинакового состава ЭОз (СгОз и ЗОз), которые к тому же обладают сходными (кислотными) свойствами. Им отвечают гидроксиды, имеющие ярко выраженный кислотный характер, — хромовая НгСгО и серная Н2804 кислоты. Таким образом, в группы Периодической системы объединяются элементы с одинаковым общим числом электронов на достраивающихся оболочках независимо от их типа. Подобное объединение позволяет выделить наиболее общий вид аналогии, который называется группо- [c.227]


Смотреть страницы где упоминается термин Характеристика металлического состояния: [c.185]    [c.216]    [c.95]    [c.311]   
Смотреть главы в:

Общая химия -> Характеристика металлического состояния




ПОИСК





Смотрите так же термины и статьи:

Металлическое состояние

Характеристики состояния



© 2025 chem21.info Реклама на сайте