Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярная нафталина

    Спектр // отн сел [И9] к хемосорбированным молекулам нафталин и обусловлен образованием комплекса с переносом заряда (КПЗ) в системе адсорбат — адсорбент, в котором имеется донор-но-акцепторное взаимодействие. Спектр II, расположенный со стороны больших длин волн от спектра синглет-синглетного излучения молекулярного нафталина, представлен широкой бесструктурной полосой, появление которой обусловлено электростатическим взаимодействием молекул нафталина с внутренней поверхностью адсорбционных полостей. [c.113]


    Решение. Молекулярный вес нафталина 128,0. Следовательно, молекулярная теплота сгорания его равна  [c.110]

    При работе с веществами, имеющими большой молекулярный вес, но малую летучесть при соответствующей температуре воздуха в цехе (нафталин, нитробензол, ртуть), не происходит значительного утяжеления воздуха парами этих веществ и нет накопления загрязненного воздуха в нижни х зонах помещения. В таких случаях нужно устраивать вытяжку не из нижией зоны, а в соответствии с направлением конвективных потоков, т. е. обычно из верхней зоны. — — — [c.309]

    В лабораторной практике молекулярный вес нефтепродуктов обычно определяют криоскопическим методом, который основан на снижении температуры застывания растворителя от прибавления к нему нефтепродукта. В качестве растворителя применяют бензол, нафталин и др. В редких случаях для определения молекулярного [c.40]

    ОПРЕДЕЛЕНИЕ МОЛЕКУЛЯРНОГО ВЕСА НЕФТЯНЫХ ФРАКЦИЙ КРИОСКОПИЧЕСКИМ МЕТОДОМ В НАФТАЛИНЕ [c.267]

    Поведение углеводородов различных классов изучалось при температуре 700 °С. Парафины расщеплялись, давая осколки С1 и С,, олефины гидрировались до парафинов и превращались подобно им, циклоалканы также давали осколки и тетралин давал не только бензол, но и нафталин. Декалин превращался как парафины, аценафтены давали бензол и алкилбензолы. Аналогичные выводы сделаны и в ряде других работ Все классы углеводородов превращались тем быстрее, чем выше был их молекулярный вес. Таким образом, почти все неароматические углеводороды подвергаются в условиях гидродеалкилирования глубокой деструкции. [c.332]

    В смеси двух жидкостей А и В, состоящих из молекул с малополярными ковалентными, связями, энергия взаимодействия частиц А и В не будет существенно отличаться от энергин взаимодействия между частицами А и А или частицами В и В. Поэтому различные жидкости с ковалентной связью в молекулах обычно неограниченно растворяются друг в друге. По этой же причине и молекулярные кристаллы обычно хорошо растворяются в таких жидкостях. Например, растворимость толуола в бензоле не ограничена, а кристаллический нафталин хорошо растворим в неполярных жидкостях. [c.235]

    Связи между молекулами разрушаются при нагревании много легче, чем между атомами в молекулах, по крайней мере в не слишком сложных молекулах. Вещества с молекулярными решетками обладают поэтому сравнительно низкими температурами плавления и значительной летучестью. Простейшие из относящихся сюда веществ, например Ог, N2, СН4 и т. д., обладают температурами плавления и кипения значительно более низкими, чем комнатные температуры, и в обычных условиях находятся в газообразном или жидком состоянии. Из более сложных веществ кристаллами с межмолекулярной связью обладают прежде всего органические соединения, например бензол, нафталин и др. [c.127]


Рис. 49. Молекулярные диаграммы этилена (а), бутадиена (б), нафталина (в), анилина (г) Рис. 49. <a href="/info/92300">Молекулярные диаграммы</a> этилена (а), бутадиена (б), нафталина (в), анилина (г)
    Для повышения выхода кокса из прямогонных остатков предпочтительно использовать гудрон, имеющий более высокую коксуемость. В отдельных случаях приходится отходить от этого общего правила. При выдаче рекомендаций для коксования прямогонных остатков эхабинских (сахалинских) нефтей нами был выбран мазут, а не гудрон, так как бензиновая фракция, полученная при коксовании гудрона (в полную противоположность мазуту), оказалась настолько нестабильной, что не поддавалась обычным методам очистки. Применение специальных методов очистки было мало эффективно. По-видимому, в вакуумном отгоне эхабинской нефти нафтенового основания находятся в повышенном количестве гомологи нафталина и другие полициклические ароматические углеводороды, которые, по данным Н. И. Черножукова и С. Э. Крейна [274], являются эффективными ингибиторами против окисления нафтеновых и парафиновых углеводородов молекулярным кислородом, а при отгоне вакуумного газойля из остатка эти естественные ингибиторы удалялись. [c.25]

    Деалкилированием алкилароматических углеводородов называют реакции отщепления алкильных групп, приводящие к образованию ароматического углеводорода меньшей молекулярной массы, чем исходный. Деалкилирование применяют в основном для получения бензола из толуола и высших алкилбензолов, а также нафталина из его гомологов. [c.109]

Рис. 2. Изменение молекулярного веса (криоскопия в нафталине) —коэффициента светопоглощения Кы, —2 плотности, Рис. 2. <a href="/info/757107">Изменение молекулярного веса</a> (криоскопия в нафталине) —<a href="/info/5418">коэффициента светопоглощения</a> Кы, —2 плотности,
    Из данных табл. 24 видно, что значения молекулярных весов асфальтенов, полученные разными исследователями методом криоскопии с использованием различных растворителей (бензол, нафталин, камфора), близки между собой и лежат в пределах 1600—6000. Различие это обусловлено, вероятно, различной концентрацией применявшихся растворов асфальтенов, различной чистотой растворителей и точностью определения величины депрессии. Значения молекулярных весов асфальтенов, определенные вискозиметрическим методом в бензольных растворах асфальтенов при 25° С и концентрации 1,61—3,08%, ниже на 25— 40% значений, найденных криоскопическим методом в бензоле. Г. Эккерт и Б. Уитмен [5] правильно отмечают, что о возможности применения вискозиметрического метода для определения молекулярных весов асфальтенов ничего нельзя сказать до тех [c.73]

    Сравнение величин молекулярных весов асфальтенов, определенных криоскопическим методом в трех растворителях (бензоле, нитробензоле и нафталине), показывает, что только в нафталиновом растворе асфальтенов были получены достаточно устойчивые значения молекулярных весов (2060—2200) в сравнительно широких пределах концентраци асфальтенов в растворах (от 2 до 16 вес. %). Это свидетельствует о том, что ири 80° С (температура плавления) и выше в растворах нафта.чина не наблюдается ассоциация молекул асфальтенов даже при концентрации их в растворе, равной 16%. В случае криоскопического определе- [c.78]

    Спектры адсорбированного нафталина при различных заполнениях на всех изученных поверхностях характеризуются рядом общих черт. Спектр состоит из четко разделенных трех составных частей, условно обозначенных I, II, III (рис. 1, а). Проведенный электронно-колебательный анализ структуры спектров / и III позволяет считать их соответственно спектрами флуоресценции и фосфоресценции молекул нафталина, взаимодействие которых с поверхностью адсорбента носит вандерваальсов характер. Спектр II, расположенный со стороны больших длин волн от спектра синглет-синглетного излучения молекулярного нафталина, представлен широкой бесструктурной полосой. Можно связать присутствие такой дополнительной полосы в спектре с наличием своеобразного донорно-акцепторного взаимодействия, приводящего к образованию межмолекулярного комплекса, известного как комплекс с переносом заряда (КПЗ) [2]. [c.172]

    Генетическим связям УВ нефти и ОВ посвящена работа В В. Ильинской [8]. О генетической связи между нефтью и ОВ пород для верхнепалеозойских отложений Днепровско-Донецкой впадины свидетельствуют одинаковое молекулярно-массовое распределение -алканов и изо-преноидов и соотношение между ними в области С27—С31, близкие значения п/ф и соотношений между -алканами и изостеранами, тетра- и пен-тациклическими нафтенами, мононафтено-нафталинами и фенантренами. [c.31]


    Индекс двойной связи. Если вычесть из удельной дисперсии 98, разделить разность на число двойных связей в молекуле и построить график зависимости полученной величины от обратной величины молекулярного веса плюс небольшая постоянная, то получаются почти П1)ямые ли1ши, каждая из которых характерна для определенного типа ароматических ядер в молекуле. Для всех соединений с отдельными бензольными кольцами точки ложатся на одну линию, для всех соединений типа нафталина — на другую, а для всех соединений типа антрацена — на третью. [c.265]

    А. Свойства синтетических углеводородов в качестве основных данных. В настоящее время имеется сравнительно немного данных по тяжелым индивидуальным углеводородам. Хорошо известны свойства /i-алканов, некоторых разветвленных алканов и однозамещенных /i-алкильных производных циклопентана, циклогексана, бензола и нафталина. Хотя Американским нефтяным институтом по Проекту 42 (директор Р. В. Шисслер) изучено большое число углеводородов высокого молекулярного веса, но ясно, что до сих пер удалось изучить лишь небольшую часть тех углеводородов, присутствие которых B03M0JKH0. Это и неудивительно, так как синтез таких высокомолекулярных углеводородов, как циклические молекулы с различными заместителями или смешанные нафтено-ароматические соедине- [c.368]

    Незамещенные и симметрично замещенные соединения (например, бензол, циклогексан, пара-ксжлол и нафталин) плавятся при более высокой температуре относительно парафинов с тем же молекулярным весом, в то время как несимметричные изомеры плавятся при более низких температурах, чем алифатические соединения того же самого молекулярного веса. Ненасыщение влияет на температуру плавления тем, что изменяется симметрия так, точки плавления этана (—172° С) и этилена (—169,5° С) отличаются незначительно, а у циклогексана (6,2° С) и у циклогексена (—104° С) — сильно отличаются. [c.192]

    Рсии нп,. Молекулярная масса нафталина 128 углеродных единиц. Масса 1 моля иафталииа 128 I. масса молеку.иы [c.22]

    Во многих ароматических соединениях с делокализованными электронами, как и в комплексах переходных металлов с -орбиталями, энергетические уровни располагаются достаточно близко друг к другу, что позволяет этим соединениям поглощать видимый свет. Поэтому соединения двух этих классов часто обладают яркой окраской. При поглощении фотона света один электрон со связывающей л-орбитали (см. рис. 13-26) переводится на низшую разрыхлящую молекулярную л -орбиталь. Такое поглощение световой энергии называется я -> я -переходом. У бензола и нафталина энергетические уровни располагаются слишком далеко друг от друга, чтобы поглощение происходило в видимой области спектра, и поэтому данные соединения бесцветны. Но если к нафталину присоединены две нитрогруппы, то в конечном продукте, 1,3-динитронафталине, расстояние между энергетическими уровнями становится меньше [c.305]

    Парафлоу представляет собой алкплироваипый нафталин. Строение парафлоу не установлено. Судя по молекулярному весу. [c.380]

    Основной причиной этих противоречий является способность асфальтенов, как и смол, образовывать молекулярные соединения — ассоциаты. Поэтому молекулярная масса смолисто-асфаль-теновых веществ в очень большой степени зависит от принятого метода анализа и условий эксперимента. Большое значение имеют также тип растворителя, его полярность, концентрация асфальтенов в растворе, температура и т. п. Надежные и хорошо воспроизводимые значения молекулярной массы асфальтенов получаются, например, при использовании криоскопнческого метода в растворе нафталина при температуре 80 °С (температуре плавления нафталина) и выше при концентрации асфальтенов в растворе от 1 до 16%. При этом молекулы асфальтенов практически не ассоциируют, и молекулярная масса стабильно равна от 2000 до 2500. Это значение подтверждено многими исследованиями последнего времени [42]. Определение молекулярной массы тех же асфальтенов методом мономолекулярной пленки бензольного раствора асфальтенов на воде приводит к значениям 50 000— 100 000 и более [19, с. 501 и сл.]. Вероятно, истинно мономолеку-лярного слоя асфальтенов при этом не получается и основную роль здесь играют крупные ассоциаты молекул. Таким образом, такие высокие значения характеризуют не молекулярную массу асфальтенов, а степень ассоциации их молекул в принятых условиях. [c.33]

    В перечисленных работах присадку подавали в исходное сырье. единовременно перед его термообработкой. Есть сведения о выделении нефтяных парафинов в присутствии одновременно двух так называемых селективных ускорителей процесса кристаллизации твердых углеводородов [95], которые вводят в исходное сырье ступенчато. В раствор подается в оптимальном количестве первый ускоритель (модификатор), действующий на высокоплавкие твердые углеводороды, причем смесь охлаждается до определенной температуры, а затем —второй ускоритель депарафинизации с целью осаждения низкоплавких углеводородов, причем температура суспензии одновременно снижается до конечной. Фильтрование осуществляется либо после каждой ступени подачи ускорителя, либо один раз, при температуре конечного охлаждения. Первым ускорителем являются продукты конденсации нафталина и хлорированного парафина с температурой плавления до хлорирования 68—85 °С, молекулярной массы 400—700 полиалкилметак- [c.168]

    Н. М. Караваев (92, 93, 94] из смол пиролиза керосина выделил нафталин в количестве 3,1% на смолы (из фракции 200—230°С) а- и р-метилнафталин в количестве 1,87о на смолу (из фракции 226—250°С) инден в количестве 1,4% на смолу (из фракции 175—182 °С) пирен (из фракции 160—290 °С) антрацен и хризен. Молекулярный вес асфальтенов при этом снижается (табл. 8 и 9). Следовательно, и молекулярный объем их уменьшается довольно значительно. Разукрупнение молекулярных структур тяжелых пиролизных остатков, естественно, приводит к уменьшению истинной плотности получаемого кокса в большом диапазоне значений. Образующиеся при этом карбоиды по размерам частиц (0,1—5 мк) и по высокой поверхностной активности сходны с обычной термической сажей. Они, надо полагать, играют немаловажную роль в формировании молекулярных структур органических соединений при пиролизе и выступают в роли катализаторов. Механизм происходящих при этом процессов наиболее удачно объясняется, по нашему мнению, если исходить из современных представлений об ионе карбония. При электронной недостаточности, возникающей в процессе пиролиза (особенно при глубоких формах пиролиза), ион карбония сковывается действием активных центров твердых контактов — сажеобразных высокореакционных карбоидов. [c.30]

    Исследования в области получения депрессоров начаты еще в 20-е годы [15, с. 153]. В 1921 г. впервые Л. Г. Гурвичем была отмечена способность высокомолекулярных смолистых веществ понижать температуру застывания масел, а с 1931 г. начались, широкие исследования в направлении синтеза и применения депрессоров. Для этой цели предложено довольно значительное число различных веществ, которые при всем их разнообразии имеют некоторые сходные черты — наличие полярных групп или ароматических ядер и длинных алифатических цепей, высокую молекулярную массу (800—1000) и хорошую растворимость в минеральных маслах. В качестве депрессоров исследованы алкил-производные нафталина, алкилфенолы и полиалкилметакрилаты. Так, присадки парафлоу и депрессатор АзНИИ являются смесью моно- и диалкилнафталинов с преобладанием диалкилнафталина  [c.146]

    Эффективность алкилнафталинов, синтезированных с использованием узких фракций парафина и церезина, как депрессоров также повышается с увеличением молекулярной массы. При введении в нафталиновое ядро хлора или одновременно хлора и нйт-рогруппы эффективность депрессора снижается в 5 раз. Депрессорные свойства диалкилпроизводных нафталина ухудшаются также и при наличии у ядра гидроксильной группы введение в ядро только нитрогруппы не оказывает влияния на депрессорные свойства диалкилнафталина. [c.152]

    Алкилнафталины обычно получают алкилированиеь нафталина спиртами, непредельными углеводородами и алкилгалогенидами в присутствии различных катализаторов серной, фосфорной и галогеноводородных кислот, хлоридов алюминия, цинка и железа, фторида бора и его молекулярных соединений. [c.153]

    Молекулярные массы асфальтенов определяли криоскопичес-ким методом. В качестве растворителя использовали дважды сублимированный нафталин с температурой плавления 80,2° С. Концентрация растворов асфальтенов не превышала 2%, что исключало возможность ассоциации их молекул [161]. [c.13]

    М — молекулярная масса асфальтенов, определенная криоскопи-ческим методом в нафталине [161] ц — подвижность молекул асфальтенов, определяемая по формуле (17) Со, С — соответствующие концентрации (%), определенные по графику и градуировочной таблице. [c.23]

    MO этого, в смоле в небольших количествах содержатся бензольные углеводороды бензол, толуол, ксилолы около 50—60% от массы смолы составляют высококипяш,ие продукты с большой молекулярной массой. Смола подвергается разгонке, а затем из фракции ректификацией выделяются бензол и его гомологи, кристаллизацией— нафталин и антрацен. Фенол получается при обработке фракций раствором едкого натра с образованием фенолята натрия eHsONa, который при дальнейшем взаимодействии с диоксидом углерода дает фенол. Пиридиновые основания удаляются из фракций промывкой разбавленной серной кислотой. Остаток после перегонки смолы — каменноугольный пек используется для изготовления электродов для электролизеров и электрических печей, в дорожном строительстве как материал для изоляции электросетей и подземных трубопроводов. [c.46]

    Сырьем для получения нафталина служат высоко-ароматизированные фракции, выделенные из дистиллятов каталитического риформинга, крекинга, пиролиза и других продуктов и содержащие в основном бицикли-ческие ароматические углеводороды. В связи с тем что нафталин с парафиновыми и нафтеновыми углеводородами образует азеотропные смеси [12], температуру начала кипения исходного сырья обычно выбирают около 200° С. В сырье не должно содержаться трициклических ароматических углеводородов, в противном случае в продуктах реакции будет накапливаться высококипя-щий остаток. Поэтому конец кипения сырья для производства нафталина не должен быть выше 300° С. Другое требование, предъявляемое к сырью, — максимальное содержание производных нафталина при минимальном среднем молекулярном весе углеводородов во фракции. Однако получение высокоароматизированных фракций из нефтяных продуктов с малым содержанием парафиновых углеводородов не всегда возможно поэтому при проведении процесса гидродеалкилирования применяют специальные методы, позволяющие уменьшить деструкцию парафиновых углеводородов в газообразные продукты. Содержание сернистых соединений в исходном сырье также оказывает влияние на схему производства нафталина и на выбор метода гидродеалкилирования. [c.295]

    Нафталин и полициклические углеводороды — фенантрен, антрацен, хризен, пиреп, как и бензол, подчиняются правилу Хюк-келя — содержат (4п + 2) я-электронов на связывающих молекулярных орбиталях. Молекулы этих углеводородов плоские, для них характерны высокие значения энергий сопряжения и комплекс свойств аренов. Б частности, все эти углеводороды, как и бензол, легко вступают в реакции электрофильного замещения. [c.153]

    Сераорганические соединения обессмоленной высокомолекулярной части нефти сосредоточены в проматических компонентах, а алкано-циклоалкановые углеводороды этой части нефти практически не содержат серы. Содержание сернистых соединений повышается с увеличением молекулярной массы фракции. Основное количество серы сосредоточено в двухъядерных конденсированных ароматических фракциях, представляющих собой, главным образом, гомологи нафталина. Содержание сернистых соединений в этих фракциях доходит до 17—60 Уо (масс.), что в пересчете на серу составляет 1—5,6% (масс.). Содержание сернистых соединений в одноядерных ароматических фракциях значительно меньше — от 1 до 26% или 0,13—2,6% (масс.) серы. Лишь в исключительном.-случае, как в высокосернистой хау агской нефти, фракция, содержащая одноядерные арены, состоит на 44% (масс.) из сернистых соединений (3% серы), а двухъядерные — на 94% (масс.) (6,28% серы). [c.198]

    Всего было получено 16 фракций, выход и общая характеристика которых приведены в табл. 1. Выделенные фракции характеризовались коэффициентом светопоглощения (Кеш) по методике [8], удельным весом по Маричу [9], молекулярным весом (криоскопией в нафталине и бензоле), элементарным составом и светорассеянием в растворителе, состоящем из 10% бензола и 90% н-октана на нефелометре НФМ при концентрации фракции асфальтена 0,04 г/л. Кроме того, у фракций асфальтенов в стандартных растворителях (циклогек-сане или 10%-ной смеси бензола в н-декане) определялись поверхностные и коллоидно-химические свойства. [c.15]

    Для определения молекулярных весов асфальтенов применялись самые разнообразные методы криоскопия и эбулиоскония с использованием растворителей (бензол, циклогексан, нафталин, [c.72]

    Приведенные выше экспериментальные данные свидетельствуют о том, что в случае нафталина достаточно высокой чистоты криоскопнче-ский метод позволяет получать устойчивые и хорошо воспроизводимые значения молекулярных весов асфальтенов в сравнительно широких [c.79]

    Значения криоскоппческпх констант лежат в довольно широ ких пределах 3,9 для уксусной кислоты, 5,1 — для бензола, 6,9 — для нафталина и нитробензола, 40,0 — для камфоры. Изучение свойств асфальтенов позволило установить, что опп характеризуются тем более высокой растворимостью в органических растворителях, чем полнее они диспергируются в мальтенах (высокомолекулярные углеводороды + смолы) нефти, пз которой они были выделены [28, 29]. Была также установлена зависимость растворимости асфальтенов в неполярных или слабополярных ор-] анических растворителях от внутреннего давления последних где — поверхностное натяжение, а V — молекулярный объем растворителя [30]. Так как значения молекулярного объема для многих органических растворителей довольно близки, то величина новерхностного натяжения дает правильное представ ление о внутреннем давлении последних. На рис. 10 показан зависимость растворимости асфальта от новерхностного натяже-ппя и внутреннего давленпя растворителей. Свойства использо- [c.82]


Смотреть страницы где упоминается термин Молекулярная нафталина: [c.116]    [c.98]    [c.290]    [c.8]    [c.43]    [c.169]    [c.57]    [c.86]    [c.79]    [c.87]   
Курс современной органической химии (1999) -- [ c.335 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулярные орбитали нафталина

Нафталин молекулярная диаграмма

Нафталин молекулярные соединения

Определение молекулярного веса криоскопическим методом в нафталине

Определение молекулярного веса нефтяных фракции криоскопическим методом в нафталине

Очистка нафталина для применения его в качестве растворителя при определении молекулярного веса методом криоскопии



© 2025 chem21.info Реклама на сайте