Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хромовы реакции

    Высокомолекулярные углеводороды можно получать иэ первичных спиртов через промежуточное образование кетонов. Процесс можно осуществлять непосредственно в одну ступень, пропуская первичный спирт с водяным паром при 400—500° над некоторыми катализаторами. Наиболее пригоден для этой цели цинк-хромовый катализатор, аналогичный применяемому в синтезе метанола. Эта сложная реакция протекает довольно гладко и для высокомолекулярных спиртов  [c.61]


    Широко применяемые в цехах жидкого хлора аппараты, водной емкости которых совмещены испаритель хладоагента (аммиака) и конденсатор хлора, в процессе эксплуатации подвергаются сильной коррозии (раствором хлористого кальция или поваренной соли).-В последние годы в цехах большой производительности применяют конденсаторы трубчатого типа с использованием в качестве хладоагента фреона. Применять в холодильнике трубчатого типа в качестве хладоагента аммиак опасно, так как хлоро-амми-ачнай смесь при коррозии труб или образовании неплотностей в соединениях может привести к взрыву. Во избежание коррозии в рассол вводят пассивирующие добавки (соли хромовой, фосфорной и других кислот), поддерживают слегка щелочную реакцию рассола (pH = 7,5—8), периодически проверяют отсутствие в рассоле растворенного аммиака, хлора. При возникновении аварийных ситуаций (быстром росте содержания водорода в абгазах или в хлоргазе) предусматривают аварийную подачу сухого азота или воздуха в хлоропровод на вводе в цех сжижения. [c.55]

    Пример 7. Исходная смесь для окисления хлороводорода содержит [% (об.)] НС1 —35,5 воздуха — 64,5. Процесс окисления протекает при Р = 0,1 МПа и i = 370° на оксидном хромовом катализаторе. По окончании реакции в газе содержится 13,2% U. Рассчитать равновесный состав газовой смеси и значение константы равновесия = рЬ,Рн2оИРнс Ро - [c.36]

    По первой реакции СО2 образуется из р-углерода этильной группы, по второй реакции — из углерода карбоксила. Оказалось, что реакция протекает одновременно по двум направлениям, но с разной скоростью 75% выделившейся двуокиси углерода образуется по первой реакции и 25% —по второй. В зависимости от pH раствора доля участия каждой из реакций в образовании СО2 изменяется. Окисление хромовой смесью приводит к образованию 100%) СО2 по второй реакции. [c.371]

    Что такое хромовая смесь и что происходит при ее нагревании Написать уравнение реакции. [c.210]

    Алюмо-хромовые катализаторы активны к дегидрированию н-бутана и изопентана при 500—650°С, однако повышение температуры ведет к усиленному развитию побочных реакций, имеющих более высокую энергию активации. Оптимальной считают 560—590 С при дегидрировании н-бутана и 530—560 °С при дегидрировании более реакционноспособного изопентана. Селективность падае" при повышении степени конверсии исходного парафина (главным образом из-за замедления дегидрирования при приближении к равновесию), поэтому ее ограничивают величиной 40— 45%. В указанных условиях селективность процесса по н-бутиле-ну составляет 75% (плюс 6—7% по бутадиену), а по изоамилену 70% (плюс 4—5% по изопрену). В указанных условиях алюмо-хромовые катализаторы все же довольно быстро закоксовываются, и требуется периодически выжигать с них кокс при 600—1)50 °С воздухом. [c.491]


    Прибор для определения газостойкости масел в электрическом поле тщательно моется горячей хромовой смесью, отмывается водой до нейтральной реакции по метиловому оранжевому, затем споласкивается дистиллированной водой и сушится в воздушном термостате при 105—110° С. [c.429]

    Вскоре после открытия реакции Сб-дегидроциклизации в разных странах стали появляться работы, посвященные механизму этой реакции на оксидных и на металлических катализаторах. О них подробнее пойдет речь в последующих разделах. Особенно широко изучался механизм этой реакции на оксидных катализаторах. В настоящее время доказано, что в присутствии некоторых из них, в первую очередь хромовых катализаторов, реакция идет по так называемому консекутивному механизму [8, 9, 20, 21], т. е. через последовательные [c.190]

    С хромовой кислотой реакция сначала идет в направлении гидратации, образуется спирт, далее окисляющийся в альдегид и затем в кислоту. Озон в безводной среде присоединяется по месту двойной связи при низкой температуре [c.29]

    Фрей и Гуппке показали в своей работе, что в соответствующих уело-ВИЯХ возможно избирательное дегидрирование, причем чрезмерное увеличение температуры и времени контакта способствует реакциям крекинга. Как правило, в результате "таких реакций образуется больше водорода, чем олефинов, хотя для изобутана наблюдается образование значительного количества метана, в связи с чем выход водорода снижается. Катализаторы из геля окиси хрома, примененные в ранних работах Фрея и Гуппке, оказались недолговечными. Этими те авторами [17] был запатентован более стойкий хромовый катализатор с добавкой в качестве стабилизатора окиси алюминия. После этого в литературе появились сообщения о многочисленных модификациях алюмохромовых катализаторов окиси хрома и алюминия до настоящего времени продолжают входить в состав лучших катализаторов, применяющихся для дегидрирования бутана в бутены и бутадиен. [c.195]

    В работе [199] исследовались два варианта систем автоматического регулирования система с ПИД регулятором и система комбинированного типа. Авторы считают, что наиболее ощутимое взаимодействие на температуру полок на входе и выходе оказывает подаваемый по байпасам холодный газ, которым регулируется температура в зоне реакции. Изучаемый в данном случае процесс синтеза протекает под давлением 32 МПа на цинк-хромовом катализаторе. При исследовании системы с ПИД-регулятором выяснилось, что качество регулирования зависит от сочетаний параметров объекта, а следовательно, от сочетаний коэффициентов модели. Тем не менее удалось найти жесткие настройки, позволяющие регулировать температуру во всем исследуемом диапазоне, которые дают устойчивый переходный процесс с удовлетворительным качеством регулирования. [c.327]

    Каталитическую активность для реакции сиитеза метанола проявляют многие металлы. Процесс проводят при 350—400°С, 20— 30 МПа и объемной скорости 25 000—40 000 ч на цинк-хромовом катализаторе (2пО—СггОз) или при 220—300" С, 5—10 МПа и объемной скорости 8000—10 000 ч- на низкотемпературны) медьсодержащих катализаторах (СиО—2пО—АЬОз СиО—2пО—СггОз). Основная реакция процесса [c.165]

    Гидрирование сложных эфиров. Технологическая схема процесса с использованием суспендированного медно-хромового катализатора приведена на рис. 1.8. Свежий водород под давлением до 30 МПа смешивается с циркулирующим водородом и нагревается за счет продуктов реакции в теплообменнике 8, а затем — до 300—350 С в трубчатой печи 11. Нагретый водород поступает в специальную камеру (на рисунке не показана) на смешение с эфиром, предварительно нагретым в подогревателе 3 до 100—120 °С. Образовавшаяся смесь при 300—320 °С поступает в реактор 7, в который специальным шламовым насосом 17 подается 20—25%-ная суспензия катализатора в гидрогенизате или в смеси гидрогенизата и эфира. Концентрация катализатора в реакционной зоне зависит от качества сырья и степени его очистки и увеличивается по мере утяжеления сырья и возрастания количества примесей в нем. [c.32]

    Кинетические данные, полученные при изучении окислительного аммонолиза изомеров ксилола на ванадиевом и ванадий-хромовом катализаторах, позволили предложить следующую схему реакции  [c.286]

    По другому варианту процесса циклогексиламин перерабатывается в капролактам с использованием стадии гидролиза амина в циклогексанон и циклогексанол. Реакцию гидролиза осуществляют в присутствии водяного пара над никель-хромовым катализатором при 160—225 °С, атмосферном давлении, скорости подачи амина 0,3—0,4 ч и соотношении вода/амин, равном 2,2 1. [c.312]

    Значения констант скоростей обеих реакций отнесены к единице веса катализатора. Чтобы отнести последние к единице объема, необходимо знать кажущуюся либо насыпную плотность никель-хромового катализатора. Лы использовали более точное значение насыпной плот- [c.75]


    В случае достаточно высокой температуры крекинга могут также иметь место вторичные реакции. Дегидрирующие катализаторы, в частности, платинированные или палладированные уголь или асбест, никель и хромовые катализаторы способствуют ароматизации нафтеновых колец. Если кольцо по величине недостаточно для образования ароматического кольца, тогда дегидрогенизация идет с большим трудом и обычно сопровон дается крекингом кольца. [c.111]

    Используются различные катализаторы на основе меди (медь на кизельгуре, медь на диатомите, медно-хромовый). Температура гидрирования — 150—160 °С, объемная скорость подачи сырья — 0,2—0,25 ч"1, мольное соотношение водород/сырье = (10ч-25) 1. Регулирование соотношения водород/сырье достигается подачей водорода через обогреваемый сборник, в котором находится 2-этилгексеналь. Изменением температуры от 60 до 80 °С добиваются требуемого испарения сырья, и в реактор поступает гомогенная смесь альдегида и водорода. Степень превращения достигает 98—99% (из них 97% приходится на 2-этилгексанол). Основным побочным продуктом является 2-этилгексенол, в гидрогенизате присутствует также не вступивший в реакции альдегид и 2-этилгексаналь. [c.40]

    Равновесие синтеза метанола было также изучено Уэттбергом и Доджем [9] динамическим методом под давлением 170 ат при температурах от 259 до 329° С в присутствии цинк-хромового и цинк-медного катализаторов. Эта работа выполнена более обстоятельно по сравнению с цитированными выше. Равновесие было изучено как со стороны синтеза, так и со стороны распада. В газовой смеси, получавшейся в результате реакции, исследователи определяли не только водород, окись углерода и метанол, но и другие составные части смеси. [c.349]

    Бихроматы. Хромовый ангидрид (СгОд) используют как агент окисления в растворах уксусной кислоты две молекулы ангидрида дают три атома кислорода по реакции 2 rOg-> СгдОд + 30. [c.138]

    Условия реакции. Ароматические углеводороды можно окислять кислородом или воздухом в газовой фазе в присутствии катализаторов (гетерогенный или гомогенный катализ) и без них в системе газ — жидкость — тйердая фаза на катализаторе и с агентами окисления (HNOз, хромовая кислота, бихроматы, перманганаты) в гомогенной жидкой фазе в системах жидкость—жидкость и жидкость—твердая фаза. В промышленности чаще всего используют окисление в газовой фазе на твердом катализаторе (гетерогенный катализ). [c.170]

    Окисление. Ароматические углеводороды, кроме бензола, весьма чувствительны к окислителям. Разбавленная азотная кислота, хромовая смесь, перманганат калия, железосинеродистый калий окисляют боковые цепи ароматических углеводородов, превращая их в карбоксильные группы. Эта реакция часто применяется для определения расположенпя боковых цепей в ароматическом ядре. Осторожное окисление приводит к целому ряду промежуточных продуктов. [c.40]

    Нами также оценивались производительност . работы катализаторов (ммоль СвИ(5/(ч г катализатора)) и ато.мная каталитическая активность — количество превращенных молекул бензола на одном атоме никеля в 1 с. Предварительными опытами установлено, что исход 1ый цеолит NaX пе активен в реакции гидрирования бензола. Активность полученных пикельцео-литных катализаторов сравнивалась с промышленными никель-хромовым (ОСТ 6—03—314—71) и никель-кизельгуровым (ТУ 15ц—1—66), а также с катализатором никель на оксиде алюмипия, полученном по методике [71. [c.336]

    Некоторые исследователи использовали перманганатное окисление в условиях межфазного катализа для менее обычных субстратов. Например, Димрот [561] превращал боковую цепь-фосфорсодержащего гетероцикла, показанного на схеме 3.229, в соответствующий альдегид. В этих условиях гетероцикл не окисляется. Реакцию, приведенную на схеме 3.229, можно осуществить и при использовании хромовой кислоты. Окисление сульфидов (и особенно сернистых гетероциклов с малым размером цикла) до сульфонов с использованием водного или твердого КМПО4 при комнатной температуре в присутствии боль- [c.383]

    Влияние условий процесса в основном хорошо согласуется с поженными выше его химическими особенностямя. Повышение давления водорода, облегчая стабилизацию радикалов (реакция Щ должно тормозить реакции конденсации типа J0, 11. Поэтому ц Ги-меняются повышенные давления, но так, чтобы пе уменьшить селективность Повышение температуры увеличивает выход продуктов деметилирования как в каталитических, так и в термических процессах. Однако одновременно растет выход продуктов конденсации и усиливаются отложения кокса на катализаторе. Поэтому для каждого катализатора подбирается оптимальная температура, составляющая для хромового и молибденового катализаторов на активированном угле 535—550 °С, для окисного алюмокоТбальтмояиб-денового катализатора — 580—600 °С, для хромового катализатора без носителя — 600—650 °С. Во многих процессах в сырье вводят водяной пар, что уменьшает образование продуктов конденсации и кокса. Такое действие пара объясняют ассоциацией молекул воды с радикалами, что снижает реакционную способность радикалов, но не в такой мере, чтобы препятствовать реакции 2. [c.333]

    Окислительные агенты и техника безопасности в процессах окисления. Если в лабораторной технике и при тонком органическом синтезе нередко применяют такие окислительные агенты, как перманганаты (в щелочной, нейтральной или кислой среде), би-хроматы, хромовый ангидрид, пероксиды некоторых металлов (марганца, свинца, натрия), то в промышленности основного органического и нефтехимического синтеза стараются пользоваться более дешевыми окислителями и лишь в отдельных случаях при-меняк1т агенты, способные к реакциям, не выполнимым при помощи других окислителей. [c.353]

    Другим направлением окислительного дегидрирования углеводорода является проведение процесса на промышленных цинк-железо-хромовых или каль-ций-никель-фосфатных катализаторах в присутствии кислорода. При добавлении небольших количеств О2 механизм процесса в сущности не меняется, т. е. включает стадию образования молекулярного водорода. Однако скорость брутто-реакции возрастает за счет частичного сгорания последнего, а также в результате уменьшения перепада температур в зоне реакции и частичной регенерации и активации катализатора. В то же время селективность процесса несколько снижается из-за глуф сого окисления (сгорания) некоторого количества целевых углеводородов, В цМЗм эффект от применения указанного приема, по-видимому, [c.358]

    Стадия гидрирования имеет три технологических узла реакционный, отделения катализатора и отделения растворителя и очисткИ продукта. В реактор непрерывно подается смесь метилбензоата с катализатором и растворитель (смесь метилового спирта с толуолом). Реакция протекает при температуре 130—170 °С и давлении 25 МПа. Применяется медно-хромовый катализатор. Суспензия из реактора подвергается непрерывному фильтрованию. Паста катализатора высушивается и реактивируется в прокалочной колонне с псевдоожиженным слоем и возвращается в процесс. [c.49]

    Дегидрирование парафинов Q—Са не применяется для производства соответствующих олефинов, получаемых в настоящее время олигомеризацией олефинов Ся—Q в мягких условиях (например, процесс Димерсол , разработанный Французским институтом нефти, — см. гл. 10). Ароматизация парафинов Q— g является одной из важнейших реакций процесса каталитического риформинга (см. гл. 5). Дегидроциклизация индивидуальных парафинов (гексана в бензол и гептана в толуол) интенсивно изучалась с целью разработки технологического процесса (Казанский, Дорогочинский — в СССР, Арчибальд и Гринсфельдер — в США) в присутствии промотированного алюмо-хромового катализатора. При 550 °С выход бензола и толуола составлял 60—70% при использовании в качестве сырья индивидуальных углеводородов чистоты 98—99%. Разработан вариант процесса в подвижном слое катализатора, что позволило обеспечить непрерывность рабочего цикла и подвод теплоты, необходимой для компенсации эндотермического теплового эффекта дегидроциклизации (см. табл. 2.1). Однако перспективы его внедрения в настоящее время неопределенны и, вероятно, будут обусловлены экономической эффективностью по сравнению с современными модификациями риформинга жесткого режима [платформинг низкого давления в подвижном слое катализатора, разработан фирмой Universal Oil Produ ts—UOP (США) — см. гл. 5]. Наибольшую роль дегидроциклизация парафинов Q—Се играет в процессе Аромайзинг , разработанном Французским институтом нес и. По рекламным данным, процесс осуществляется в подвижном слое полиметаллического алюмо-платинового катализатора при давлении < 1 ЛШа (приблизительно 0,7 МПа) и температуре 540—580 X. Доля реакции дегидроциклизации парафинов в образовании ароматических углеводородов превышает 50% (см. гл. 5). [c.59]

    Научные основы процесса каталитического риформинга углеводородов были заложены в начале XX в. В 1911 г. Зелинский показал, что на платиновом и палладиевом катализаторах можно без побочных реакций проводить дегидрирование шестичленных циклоалканов в арены. В том же году Ипатьев осуществил эту реакцию на окпсном металлическом катализаторе. В 1936 г. одновременно в трех лабораториях Советского Союза была открыта реакция дегидроциклизации алкайэв в арены Молдавский и Ка-мушер осуществили эту реакцию при 450—470°С на окиси хрома Каржев с сотрудниками — при 500—550°С на медно-хромовом катализаторе Казанский и Платэ —с применением платины на активном угле при 304—310°С. [c.252]

    В процессе селективной конверсии гомологов метана водяным паром использовался промышленный никадь-хромовый катали8атор(50%Л4), показавший высокую активность в реакциях низкотемпературной конверсии жидких углеводородов /6,77. Окисная форма катализатора перед его применением восстанавливалась водородом в течение 8 ч при объемной скорости газового потока 800 ч" и температуре в реакторе 300°С, [c.54]

    Получена зависимость эффективности использования внутренней поверхности катализатора от температуры для реакций гидрогенолиза этана и пропана при давлении I ата (см. рис. 4). Однако промышленные установки очистки ПГ работают под давлением около 2 ата. Положительное влияние давления на протекание реакций гидрогенолиза этана и пропана объясняется увеличением степени использования внутренней поверхности никель-хромового катализатора. Дело в том, что с ростом давления механизм переноса вещества в порах катализатора изменяется от Кнудсеновской до нормальной диффузии. Поэтому при высоких давлениях, когда практически во всех порах перенос осуществляется по механизму нормальной диффузии, величина /остается практически неизменной и оптимальной является однородная мел-копористая структура катализатора. [c.69]


Смотреть страницы где упоминается термин Хромовы реакции: [c.231]    [c.66]    [c.107]    [c.364]    [c.377]    [c.655]    [c.399]    [c.400]    [c.267]    [c.326]    [c.194]    [c.482]    [c.384]    [c.514]    [c.330]    [c.111]    [c.159]    [c.110]    [c.151]   
Гетероциклические соединения, Том 2 (1954) -- [ c.193 , c.201 , c.270 ]




ПОИСК





Смотрите так же термины и статьи:

Хромовая



© 2025 chem21.info Реклама на сайте