Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронная спиртов

    Из табл. 6 можно также заметить количественное различие в величине энергии одной и той же связи, входящей в разные по составу молекулы. Так, в алканах с-н=412,96 кДж/моль, в алкенах — 415,89 кДж/моль и в бензоле — 421,33 кДж/моль в молекуле воды о-н=457,73 кДж/моль, а в спирте — 438,06 кДж/моль. Следовательно, заменяя в молекулах углеводородов один атом Н на другой, создается не только новая связь, но изменяется энергия соседней связи, что обусловлено изменением электронной плотности связей за счет индуктивного смещения зарядов. Такое влияние связей друг на друга было теоретически предсказано Марковниковым, который отметил влияние заместителей в молекуле на их реакционную способность. [c.73]


Рис. 1-4. Связи О—Н в молекулах воды и метанола (метилового спирта) полярны, потому что атом кислорода сильнее притягивает электронную пару и перемещает к себе ее отрица- Рис. 1-4. Связи О—Н в <a href="/info/5256">молекулах воды</a> и метанола (<a href="/info/8123">метилового спирта</a>) полярны, потому что <a href="/info/27605">атом кислорода</a> сильнее <a href="/info/756736">притягивает электронную</a> пару и перемещает к себе ее отрица-
    При гетеролитическом катализе промежуточное взаимодействие реагирующих веществ с катализатором протекает по гетеролитиче-скому механизму при этом образование и разрыв двухэлектронных связей протекает без разрушения и образования электронных пар. Гетеролитический механизм осуществляется при каталитических реакциях дегидратации спиртов, гидратации олефинов, крекинга, изомеризации, алкилирования углеводородов, гидролиза и многих других. Катализаторы для этой группы реакций должны обладать способностью к образованию координационной связи путем отдачи или присоединения электронной пары. В частности, они могут представлять собой протонные или апротонные кислоты и основания. [c.406]

    При взаимодействии галогеналканов со спиртами получаются простые эфиры. Эта реакция называется алкоголизом галогеналканов. В качестве нуклеофила выступает молекула спирта, том кислорода которой имеет неподеленную пару электронов. Спирты являются довольно слабыми нуклеофилами, так как электроотрицательный атом кислорода прочно удерживает неподеленную пару электронов. Для усиления нуклеофильности нейтральную моле- Улу спирта превращают в алкоксид-ион действием металлического атрия, т. е. проводят активацию нуклеофила. [c.143]

    Благодаря наличию в молекуле спирта атома кислорода с непо-де-ленной парой электронов, спирты способны выступать в ро и нуклеофильных реагентов в реакциях с другими соединениями [c.166]

    Сродство к электрону спиртов, сложных эфиров, простых эфиров и кетонов во всех случаях различно, но величина и конфигурация углеводородной части мало влияют на него. [c.268]

    На рис. 21-14 представлены структурные формулы некоторых производных бензола. Фенол обладает слабой кислотностью в отличие от спиртов, ароматическим аналогом которых его можно считать. Способность фенола и его производных отщеплять гидроксильный протон обусловлена тем, что в результате электроны атома кислорода принимают некоторое участие в делокализации. Связь бензольного кольца с атомом кислорода приобретает частично двоесвязный характер, а водород, частично лишенный связывающей электронной пары, легко диссоциирует. Однако кислотность фенолов обьино ниже, чем у карбоновых кислот. [c.305]


    К реакциям, протекающим по окислительно-восстановительному механизму, относятся такие, как гидрирование олефинов, ароматических соединений и других соединений с кратными связями, СО и СО2 до метана, дегидрирование органических соединений, синтез аммиака, синтез углеводородов и спиртов из СО и водорода, окисление углеводородов, а также сернистого ангидрида и аммиака и т. д. Все эти процессы являются гомолитическими [4], при которых промежуточное взаимодействие с катализатором включает гомолитический разрыв двухэлектронных связей в реагирующих веществах и образование связей с катализатором с использованием неспаренных электронов последнего. [c.26]

    Гидроксильный ион состоит из атомов кислорода и водорода, но это не то же самое, что гидроксильная группа в молекуле спирта. У него один избыточный электрон, что придает ему совершенно иные свойства. [c.178]

    Так как реакция восстановления сольватированными электронами происходит ие непосредственно на поверхности электрода, то его каталитические свойства перестают играть заметную роль. Исключается также или сводится до минимума возможность образования металлоорганических соединений с участием металла электрода, изменяется природа промежуточных продуктов и т. д. Вопрос об изменении природы промежуточных продуктов рассматривался в литературе довольно подробно в связи с реакцией выделения водорода. Речь шла о водных средах, где, по указанным выше причинам, восстановление через промежуточное образование сольватированных (гидратированных) электронов не очень вероятно, хотя и возможно. Эти рассуждения имеют, однако, более общее значение, так как могут быть отнесены практически к любым протонным средам, а также к апро-тонным, содержащим протонодонорные добавки (вода, спирты и т. д.), необхо- [c.444]

    Результат исследования регистрируется в виде кривой поглощения (рис. 94), которая выражает зависимость поглощения излучения от напряженности магнитного поля. Спиновые переходы ядра зависят от состояния электронной оболочки атома. Поэтому разные молекулы и разные атомные группировки в них поглощают при разной напряженности магнитного поля. Анализ формы и положения пиков на кривой поглощения позволяет делать заключение о структуре соединений. Так, анализ кривой поглощения этилового спирта показывает, что пики (рис. 94) отвечают спиновым переходам протонов соответственно атомных группировок СНз, СНг и ОН. Таким путем подтверждается строение молекулы С2Н5ОН. [c.147]

    При адсорбции часто происходит образование водородной связи между молекулой адсорбата и соответствующими группами или ионами на поверхности адсорбента. Так, при адсорбции молекул воды, спиртов, эфиров, аминов и т. п. на адсорбентах, поверхность которых покрыта гидроксильными группами, например на силикагеле (высокополимерной кремнекислоте), в дополнение к неспецифическим дисперсионным, ориентационным и индукционным взаимодействиям происходит образование молекулярных комплексов с водородной связью. Такие более специфические взаимодействия проявляются также при адсорбции и других молекул с периферическим сосредоточением электронной плотности, например имеющих л-электронные связи, на поверхностях, [c.438]

    Так, работа выхода электронов ф возрастает, когда на N 0, СиО, 2пО или УгОй адсорбируется О2 [67], и уменьшается, когда тот же эксперимент производится с углеводородами или спиртами. Это значит, что кислород является акцептором, а углеводороды и спирты — донорами электронов. [c.30]

    Метиловый спирт с добавкой акцепторов электронов (НСООН и др.) [c.115]

    В окислительно-восстановительных реакциях важная роль принадлежит некоторым катализаторам, являющимся полупроводниками ( 55 ), причем между их каталитическим действием и электронно-физическими свойствами (энергетическими уровнями и работой выхода электрона) существует связь. Так, С. Я. Пшежецкий и И. А. Мясников показали, что существует отчетливая связь между электропроводностью окиси цинка и ее каталитической активностью в реакции дегидрогенизации изопропилового спирта с образованием ацетона. Это наблюдается и между каталитической активностью и температурой, и при сопоставлении результатов, полученных в атмосфере чистого азота, с результатами, получаемыми при добавлении к азоту 0,4% кислорода, сильно снижающего и электропроводность, и каталитическую активность окиси цинка в данном процессе. [c.498]

    При сгорании углерода, связанного с гидроксильной группой, перемещаются не все электроны, а только три. Не перемещается электрон,участвующий в образовании связи между углеродом и кислородом, а также электрон водорода, находящегося в гидроксильной группе /) = 2 То же, что и дл алифатических спиртов [c.906]

    К нефтяной фракции или к раствору ароматического углеводорода добавляют раствор пикриновой кислоты (в ацетоне, хлороформе, спирте). Смесь подогревают, при охлаждении выпадают кристаллы пикратов—молекулярных соединений пикриново кислоты с углеводородам] . Образование комплекса происходит за счет донорно-акцепторного взаимодействия с участием л-электронов ароматического углеводорода (я-комплекс)  [c.72]


    Класс II. Жидкости, состоящие из молекул, содержащих активные атомы водорода и атомы-доноры электронов (кислород, азот и фтор), т. е. спирты, кислоты, фенолы, первичные и вторичные амины, оксимы, нитросоединения с водородными атомами, нитрилы с атомами водорода в а-положении, аммиак, гидразин, фтористый водород, цианистый водород и т. д..  [c.203]

    Реакция ацилирования по конечным результатам является нуклеофильным замещением (в случае кислот равновесная) и ускоряется небольшим количеством концентрированных минеральных кислот. Протон, присоединяясь к кислородному атому карбонильной группы, превращает органическую кислоту в карбокатион, облегчая тем самым нуклеофильную атаку этиловым спиртом (кислота в избытке блокирует неподеленную пару электронов спирта, понижая его нуклеофильную активность). Продукт присоединения выделяет воду и через ониевое производное превращается в сложный эфир  [c.166]

    Представленные выше в этом раздел"е временные зависимости характерны для чистых веществ, малореакционноспособных или совсем нереакционноспособных по отношению к своим продуктам радиолиза (под малой реакционной способностью понимают отсутствие реакций с промежуточными частицами за времена негомогенной стадии радиолиза). Если же соединение может реагировать с короткоживущими продуктами (например, карбонильные соединения или галогенуглеводороды эффективно захватывают даже квазисвободный электрон, спирты и алкиламины эффективно реагируют и с дырками и с кати-он-радикалами по реакции переноса протона и т.д.), то соответствующая реакция заменяет промежуточную частицу предыдущего поколения на частицу последующего поколения за время внутритрековых реакций. Образующиеся при этом частицы имеют другие константы скорости и. доля рекомбинировавших и нейтрализовавшихся в треке промежуточных частиц меняется. [c.237]

    В этой главе мы прошли долгий путь рассуждений, начав с рассмотрения сравнительной химии элементов В, С, N и Si. Углерод несомненно играет особую роль, обусловленную наличием у его атомов одинакового числа валентных электронов и орбиталей, отсутствием отталкивающих неподеленных электронных пар и способностью образовывать двойные и тройные связи. Простые алканы, или соединения углерода и водорода, с простыми связями иллюстрируют многообразие соединений, которые может образовывать углерод благодаря своей способности создавать длинные устойчивые цепи. Алкилгалогениды - это своеобразный мостик от алканов с их сравнительно низкой реакционной способностью к изобилию производных углеродов спиртам, простым эфирам, альдегидам, кетоиам, сложным эфирам, кислотам, аминам, аминокислотам и соединениям других типов, которые не обсуждались в данной главе. Способность углерода образовывать двойные и тройные связи была проиллюстрирована на примере алкенов и алкинов, она играет чрезвычайно важную роль при образовании сопряженных и ароматических молекул. [c.337]

    Триг.1лиды бора — сильные акцепторы электронной пары ВРз, на-прим ф, присоединяет молекулу воды, аммиака, эфира, спирта и пр. [c.439]

    С повышением адсорбции присадок на металле. Например, высокая теплота адсорбции 4-этиллиридина и стеариш>вой кислоты обусловливает достаточно высокую эффективность их противоизносного действия при умеренных режимах трения на машине трения шар по диску (табл. 5.1). Полагают, что более высокая теплота адсорбции 4-этилпиридина по сравнению с пиридином и 2-этилпиридином объясняется образованием более прочной поверхностной пленки вследствие электронодонорного эффекта метильной группы, обусловливающего сдвиг электронной плотности к азоту. Если молекула адсорбата содержит в своем составе химически активные группы, отличающиеся повышенной полярностью или поляризуемостью в силовом поле металла, то величина адсорбции повышается. Так, более высокая теплота адсорбции стеариновой кислоты на стали по сравнению со спиртами объясняется интенсивным взаимодействием между карбоксильной группой и поверхностью металла, вплоть до образования химической связи. Это и определяет более высокие противоизносные свойства стеариновой кислоты по сравнению со спиртами. [c.257]

    Причиной молекулярной ассоциации в водных растворах и многих жидкостях часто является возникновение водородной связи между соприкасающимися полярными частями молекул, содержащих, например, гидроксильные группы (см. стр. 164). Такая ассоциация проявляется также и при адсорбции на адсорбентах, содержащих на поверхности гидроксильные группы, например при адсорбции воды, спиртов, аммиака, аминов и т. п. на поверхностях гидроокисей, т. е. на гидроксплированных поверхностях силикагелей, алюмогелен, алюмосил икатных катализаторов и т. п. адсорбентов. Поверхность силикагеля покрыта гидроксильными группами, связанными с атомами кремния кремнекислородного остова. Вследствие того что электронная -оболочка атома кремния не заполнена, распределение электронной плотности в гидроксильных группах поверхности кремнезема таково, что отрицательный заряд сильно смеш.ен к атому кислорода, так что образуется диполь с центром положительного заряда у атома водорода, размеры которого невелики. Часто молекулы адсорбата, обладающие резко смеш,енной к периферии электронной плотностью или неподеленными электронными парами (например, атомы кислорода в молекулах воды, спиртов или эфиров), образуют дополнительно к рассмотренным выше взаимодействиям водородные [c.496]

    На схеме 3.244 показаны другие реакции гипохлорита в условиях межфазного катализа. В первой схеме, предложенной Кори и сотр. [1240], представлен привлекательный препаративный метод для превращения кетонов в нитросоединения. Табуши и Кори [1358] наблюдали комбинацию каталитических процессов двух типов — межфазного и электронного переноса, — действующих в одном направлении, при гипохлоритном окислении бензилового спирта и бензилового эфира до бензальдегида и циклогексана в циклогексилхлорид. [c.401]

    Такой механизм, впервые предложенный еще Писаржевским [9], можно хорошо проследить на примере каталитического окисления спиртов, описанном в работе 110]. Была замерена скорость адсорбции молекулярного кислорода на платине, которая оказалась чрезвычайно малой. Также малой оказалась скорость взаимодействия адсорбированного кислорода со спиртом (этиловым). По изменению катодного потенциала платинового электрода в растворе спирта было замерено время передачи электронов от спирта ката.лизатору. Оно составило—0,1 с. Наконец, электрохимическим методом были измерены скоростп двух процессов  [c.51]

    Кванте во-химические расчеты. Приложение квантово-химических расчетов к количественной оценке каталитических свойств веществ находится в начальной стадии. Ионеда и другие применили разработанный Фукуи [46 ] индекс реакционности ст-электронных систем — степень делокализации электрона — в качестве коррелирующего параметра в уравнениях типа ЛССЭ [47, 481. В основу были положены представления, что в этих сложных реакциях имеет место одна лимитирующая стадия, в которой активные центры катализатора отрывают радикал от молекулы КХ. При этом была установлена хорошая сходимость экспериментальных и расчетных величин для реакции дегидрогенизации различных спиртов и для дегидрирования дикло-гексана и его гомологов на окисных катализаторах. Нет сомнений, что аналогичные корреляции удастся осуществить и для п-электронных систем по таким общепринятым индексам, как л-электронная плотность, индекс свободной валентности и т. п. [c.163]

    Кислород отличается от остальных элементов подгруппы VIA отсутствием высших (превышающих. 2) степеней окисления. Это обусловлено тем, что в валентном электронном слое атома кислорода нет i-орбиталей. В водородсодержащих соединениях кислорода (Н2О, Н2О2, спирты и т. д.) образуются водородные связи. [c.437]

    Ассоциация молекул и структура жидкостей и твердых тел. Молекулы таких жидкостей, как НР, вода и спирты, могут при образовании водородных связей выступать как акцепторы и доноры электронного заряда одновременно. В результате этого образуются димеры (НР)з, (Н.,0)2, (СНзОН)2, трнмеры, тетрамеры и т. д., пока тепловое движение не разрушит образовавшегося кольца или цепочки молекул. Когда тепловое движение понижено, через водородные связи создается кристаллическая структура. Известная аномалия плотности воды и льда обусловлена водородными связями в кристаллах льда каждая молекула воды связана с четырьмя соседями водородными связями через две неподеленные пары атома кислорода молекула образует две докорные Н-связи и через два атома Н —две акцепторные. Эти четыре связи направлены к вершинам тетраэдра. Образующаяся гексагональная решетка льда благодаря этому не плотная, а рыхлая, в ней большой объем пустот. При плавлении порядок, существующий в кристалле (дальний порядок), нарушается, часть молекул заполняет пустоты, и плотность жидкости оказывается выше плотности кристалла. Но в жидкости частично сохраняется льдообразная структура вокруг каждой молекулы (ближний порядок). Эта структура делает воду уникальным по свойствам растворителем. Ассоциация через водородные связи приводит к аномально высоким значениям диэлектрической проницаемости таких жидкостей, как НС , НзО, метанол и др. Водородные связи типа —СО...Н—N1 — [c.139]

    При рассмотрении азеотропной перегонки мы уже познакомились с приемами, позволяющими установить для какой-либо смеси вероятность образования азеотропа (см. разд. 6.2.1). Дополнительные возможности в этом направлении представляет методика Шайбеля [65], основанная на использовании коэффициентов активности компонентов разделяемой смеси. Выделение экстрагированного компонента относительно высококипящего разделяющего агента перегонкой не представляет трудностей. Согласно Бергу [34, 52] в соответствии с данными табл. 41 (см. разд. 6.2.1) наиболее подходящими разделяющими агентами для экстрактивной ректификации являются вещества, принадлежащие классам I и П. Это, главным образом, вещества, которые имеют склонность к образованию прочных водородных связей и могут взаимодействовать и как доноры протонов, и как доноры электронов. Сюда относят фенолы, ароматическе амины (анилин и его производные), высшие спирты, гликоль и т. д. [c.316]

    Комплексы пропанола-1 с 80 и 96%-й Н2504 изучены в работе [145]. Отсутствие в спектрах ЯМР Н изменения мультиплетности сигналов спирта указывает на отсутствие изомеризации ионных превращений углеводородного радикала. С другой стороны, сдвиг сигналов ОН-группы и протонов радикала в слабое поле указывает на перестройку электронной структуры всей молекулы спирта (табл. 3.4). [c.74]

    Гидролизуется ли вторая сульфохлоридная группа до образования двойной связи, происходят ли оба эти процесса одновременно или образование двойной связи предшествует гидролизу—неизвестно. Факт образования некоторого количества этиленсульфокислоты при гидролизе 2-бромэтан-1-сульфохлорида указывает на то, что различные соединения, содержащие нри втором углеродном атоме группу, притягивающую электрон, могут вести себя аналогичным образом. Как упомянуто выше (стр. 123), даже этансульфохлорид при кипячении со спиртом выделяет небольшое количество двуокиси [c.186]

    В качестве поверочной жидкости используют бензин авиационный Б-70, топливо Т1, Т2 или ТС1, масло трансформаторное марки ТК, масло индустриальное, углерод четырёххлористый, тетрамин С ЮН 12, спирт этиловый ректификованный технический, вода дистиллированная, водно-спиртовые смеси. Метрологические характеристики определяют в рабочем диапазоне измерений. При этом используют три вида поверочной жидкости, имеющие значения плотности, равные верхнему, нижнему пределам и среднему значению диапазона. В качестве образцового средства измерения плотности применяют образцовые ареометры, плотномеры, пикнометры и вспомогательные средства измерений манометры, термометры, весы, гири, электронные приборы и др. Поверка может производиться в лаборатории или на месте эксплуатации. Рассмотрим методики поверки плотномеров фирмы [c.141]


Смотреть страницы где упоминается термин Электронная спиртов: [c.164]    [c.143]    [c.189]    [c.375]    [c.91]    [c.370]    [c.464]    [c.26]    [c.63]    [c.54]    [c.387]    [c.548]    [c.141]    [c.904]    [c.26]    [c.71]   
Органическая химия Том1 (2004) -- [ c.517 , c.518 ]




ПОИСК







© 2025 chem21.info Реклама на сайте