Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Непрерывные смеси ректификации

    Экстрактивная перегонка удобна также и для разделения азеотропных смесей. На азеотропную смесь циклогексан—бензол можно воздействовать тем же разделяющим агентом (анилином) таким образом, что в дистилляте получится чистый циклогексан. Кортюм и Биттель [61 ] сообщили о разделении первичных, вторичных и третичных ароматических аминов с помощью таких разделяющих агентов, как глицерин и парафиновое масло. Достойна внимания полностью автоматизированная установка этих исследователей для периодической и непрерывной экстрактивной ректификации. Экстрактивная перегонка оправдала себя и при разделении многокомпонентных смесей, содержащих вещества различных классов. Так, экстрактивной перегонкой можио извлечь [c.314]


    По способу работы различают периодическую и непрерывную перегонку. Периодическая перегонка (разгонка) — это простая дистилляция или ректификация, в процессе которой содержимое куба частично или полностью отгоняется. Непрерывная перегонка —это простая дистилляция или ректификация, в процессе которой исходную смесь непрерывно вводят в перегонный аппарат, а различные выделенные из смеси продукты непрерывно выводят из аппарата. [c.40]

    Точный термодинамический - расчет ректификации нефтяных смесей представляет довольно сложную вычислительную задачу из-за сложности технологических схем разделения, используемых в промышленности, большого числа тарелок в аппаратах, применения водяного пара или другого инертного агента, из-за необходимое дискретизации нефтяных смесей на большое число условны компонентов и вследствие нелинейного характера зависимости констант фазового равновесия компонентов и энтальпий потоков от температуры, давления и состава паровой и жидкой ф 1з, особенно для неидеальных смесей. Таким образом, основная сложность расчета ректификации нефтяных смесей заключается в высокой размерности общей системы нелинейных уравнений. В связи с этим для разработки надежного алгоритма расчета целесообразно понизить размерность общей системы уравнений, представив непрерывную смесь, состоящей из ограниченного числа условных [c.89]

    Лабораторную ректификацию большей частью проводят в периодическом режиме, однако возможны такие процессы разделения, для которых непрерывный способ является предпочтительным или даже обязательным (см. разд. 5.2.2). В противоположность периодической ректификации, при которой концентрации кубовой жидкости, дистиллята и всего содержимого колонны непрерывно изменяются, при непрерывной ректификации эти параметры остаются неизменными. При непрерывной ректификации исходную жидкую смесь постоянного состава предварительно подогревают до темпер ату ры установившейся в колонне в месте ввода смеси ее пары обогащаются в укрепляющей части колонны 1 (рис. 62). Участок колонны 3 между местом ввода исходной смеси 2 и кубом (перегонная колба 4) называют исчерпывающей частью. Обозначим количество дистиллята (головной продукт) через Е, а количество продукта, отбираемого из нижнего конца колонны (над кубом) или [c.103]


    Для разделения бинарных смесей с большой разностью температур кипения преимущества непрерывного метода работы особенно очевидны. На сравнительно простых установках можно проводить ректификацию непрерывно в течение продолжительного времени, достигая сравнительно высокой производительности в условиях работы как при атмосферном давлении, так и под вакуумом. В установке, состоящей из двух ректификационных колонн, можно непрерывно разделять тройную смесь (см. разд. 4.9). Известно, что для разделения смееи, состоящей из п компонентов, необходимо п—1 колонн. Однако, смеси с числом компонентов больше трех вследствие значительных аппаратурных затрат следует разделять не за один проход, а прежде выделить две или три фракции из нескольких компонентов, после чего эти фракции периодически разделить на чистые вещества. [c.238]

    Дифференциальный метод представления состава непрерывных смесей используют при расчете процессов перегонки п ректификации нефти и нефтяных фракций с получением продуктов широкого фракционного состава, так как в этом случае сложный характер нефтяных смесей не проявляется и можно считать, что непрерывная смесь представляет собой практически идеальный раствор. Последующее уточнение характеристик смеси — учет влияния углеводородного или группового состава и наличия азеотропных смесей, очевидно, потребуется при дальнейшем повышении четкости перегонки и ректификации, повышении глубины отбора продуктов, а также при выделении индивидуальных компонентов или группы компонентов из узких нефтяных фракций, [c.33]

    Непрерывный способ ректификации имеет то преимущество, что условия процесса остаются неизменными. Кроме того, при этом имеется возможность в качестве головного или кубового продукта получать как отдельные компоненты, так и смесь нескольких компонентов. Если необходимо получить х различных фракций, то для разделения требуется х—1) колонн. Возьмем в качестве примера предварительно отогнанную смесь жирных кислот С4—Q, для которой на рис. 84 показана диаграмма разгонки [1761. Очевидно, для непрерывного разделения этой смеси на отдельные фракции (по числу атомов углерода) потребовалось бы четыре колонны. Опыт показывает, что лучше работать, отбирая отдельные фракции по возможности в виде головного продукта (рис. 85) при этом фракции получаются в виде прозрачного и бесцветного дистиллята. Однако можно проводить ректификацию и по схеме, изображенной на рис. 86. [c.133]

    Исходная смесь С1—С30 непрерывная пленочная ректификация [c.239]

    При проведении непрерывных процессов ректификации необходимо, чтобы исходная смесь, поступающая в колонну, была нагрета до температуры, соответствующей температуре жидкости внутри [c.398]

    Как видно из кривой истинных температур кипения (рис. 27), большая часть смолы представляет собой непрерывную смесь, выкипающую в основном при температурах выше 300 °С, и что возможно получение нафталиновой фракции с высоким содержанием и большой полнотой извлечения основного компонента. Однако простой ректификацией смолы нельзя получить остальные компоненты в виде высококонцентрированных фракций. Их целесообразно извлекать из относительно малоконцентрированных фракций, применяя повторную ректификацию и другие методы. [c.161]

    Кроме того, нри высоком содержании воды в исходной смеси недостаток в случае промышленного осуществления этого процесса состоит в том, что скрытая теплота парообразования для воды почти в пять раз больше, чем для уксусной кислоты. Ввиду этого было бы значительно выгоднее получать при непрерывном методе ректификации уксусную кислоту в виде дистиллата, а воду выводить из куба. Этого моншо достичь, добавив к смеси 8 вес. хлористого кальция [36]. Например, если имеется смесь уксусная [c.351]

    Таким образом, становится ясной положительная роль отгонной части колонны в непрерывном процессе ректификации как аппарата, обеспечивающего питание укрепляющей части колонны паровой смесью постоянного и в то же время максимально возможного состава равновесного или близкого к равновесному составу исходной жидкости Х/ . Именно в отгонной колонне, в результате осуществления принципа непрерывного противотока, сама исходная смесь используется как флегма для укрепления бедной паровой смеси, поднимающейся из куба колонны. Эта бедная паровая смесь с концентрацией, равновесной или близкой к равновесной кубовой жидкости укрепляется в отгонной колонне до концентрации, равновесной или близкой к равновесной исходной жидкости [c.41]

    В отличие от периодической и полунепрерывной ректификации при непрерывном методе работы исходную смесь непрерывно подают в колонну через штуцер, расположенный между укрепляющей и исчерпывающей ее частями (рис. 162). После пуска установки все условия проведения процесса ректификации остаются. постоянными. Исходную смесь, предварительно подогретую до температуры, равной температуре жидкости в колонне в месте ввода исходной смеси, разделяют до заданного соотношения на дистиллят и кубовый продукт, которые имеют постоянный состав. [c.235]


    Исторически раньше сложилось представление о расчетах перегонки и ректификации смеси, характеризующейся плавной, непрерывной кривой ИТК, как многокомпонентной с небольшим числом компонентов. В этом методе экспериментально получаемая кривая ИТК заменяется ступенчатой линией, т. е. так называемая непрерывная смесь заменяется многокомпонентной (дискретной). Для. этого исходную смесь по кривой ИТК разбивают на фракции, выкипающие в узком интервале температур. Каждую узкую фракцию рассматривают как условный компонент с температурой кипения, равной средней температуре кипения фракции. Чем на большее число узких фракций разбита смесь, тем точнее результаты вычислений, но расчет становится более громоздким и трудоемким. [c.36]

    В установке непрерывного действия для проведения процесса азеотропной ректификации исходная смесь и разделяющий агент подаются в ректификационную колонну 1, из которой в качестве дистиллата отбираются азеотропные смеси разделяющего агента с отгоняемыми компонентами. Кубовая жидкость, являющаяся одним из продуктов разделения, может быть получена с минимальным содержанием разделяющего агента. Ди- [c.35]

    Более совершенной установкой для периодической экстрактивной ректификации является установка с непрерывным возвратом разделяющего агента, схема которой изображена на рис. 79. Установка состоит из двух колонок, расположенных друг над другом. Исходная смесь загружается в куб верхней — экстрактив-но-ректификационной колонки. В процессе разгонки колонка непрерывно орошается разделяющим агентом, подаваемым с помощью насоса 1 или самотеком из емкости 2. По переливной трубе 3 раствор компонентов заданной смеси в разделяющем агенте вытекает из куба верхней колонны, поддерживая таким образом в нем постоянный уровень жидкости, и поступает в верх исчерпывающей ректификационной колонки 4, предназначенной для отгонки компонентов исходной смеси и регенерации разделяющего агента. Эта колонка в дальнейшем называется отгонной. Полнота отгонки компонентов исходной смеси, имею- [c.202]

    Описанный прием определения минимального флегмового числа для непрерывной ректификации основан на допущении, что разделяемая смесь поступает в колонну при температуре кипения. В этом случае количество жидкости в исчерпывающей части колонны увеличится на количество исходной смеси, т. е. [c.106]

    При ректификации исходная жидкая смесь делится на две части часть, обогащенную НК (дистиллят), и часть, обедненную НК (остаток). Непрерывная ректификация проводится в аппаратах (ректификационных колоннах), состоящих из двух ступеней (рис. 19-9). Исходная смесь вводится в верхнюю часть нижней ступени (исчерпывающая колонна 2). Здесь исходная жидкая смесь взаимодействует в противотоке с паром, начальный состав которого аналогичен составу остатка в результате происходит исчерпывание смеси, т. е. извлечение из нее НК и обогащение ее ВК. [c.670]

    При периодической перегонке разделяемую смесь, загруженную в куб, сначала нагревают до температуры кипения. При дальнейшем подводе тепла (в соответствии с энтальпией испарения смеси) происходит испарение. Скорость испарения зависит от количества тепловой энергии, подводимой в единицу времени. При непрерывной ректификации часть тепла подводят к исходной смеси уже в теплообменнике для предварительного подогревания исходной смеси. Основная часть тепловой энергии расходуется для нагревания куба. [c.175]

    При разделении многокомпонентных смесей, когда исходная смесь имеется в достаточном количестве, сырую смесь предварительно разделяют на отдельные фракции путем расширительной дистилляции (см. разд. 5.4.2) или же методом обычной непрерывной ректификации (см. разд. 5.2.2). При этом к эффективности разделения не предъявляют высоких требований, а объем отдельных фракций определяют заранее путем предварительной пробной разгонки (см. разд. 7.2) сырья. Фракции, полученные-при грубом разделении, затем дополнительно разделяют на исходные компоненты путем аналитической ректификации, используя то благоприятное обстоятельство, что соотношение т при этом значительно уменьшается. [c.203]

    При непрерывной ректификации питающую жидкость предварительно подогревают во вспомогательном теплообменнике, выполненном в виде и-образной трубки (рис. 138). При частично закрытом кране 1 уровень жидкости в теплообменнике поднимается до соединительной трубки 2 в этот момент начинается рециркуляция жидкости. В ходе рециркуляции смесь может нагреваться до 250 С. [c.209]

    Основное преимущество непрерывной ректификации состоит в том [28], что разделяемая смесь находится в мягких температурных условиях. Кроме того, при непрерывной, 15 работе часто удается достигнуть производительности лабораторной уста-новки, такой же, как и для полупромышленных установок периодического действия. Непрерывно работающие лабораторные установки производительностью 10—20 кг/сут можно использовать для получения различных продуктов, например термически нестойких фармацевтических препаратов, для отгонки растворителей и т. д. Пропускная способность лабораторных установок составляет 0,5— 5 л/ч. Сильно агрессивные вещества, вызывающие коррозию металлической аппаратуры, обычно разделяют в стеклянных установках непрерывного действия. На основе опытных данных, полученных с использованием таких установок, с достаточной степенью надежности можно разрабатывать полупромышленные и промышленные установки из фарфора, технического стекла или металла. [c.236]

    Характерным примером разделения смесей близкокипящих компонентов азеотропной ректификацией является разделение смеси индол—дифенил с применением диэтиленгликоля в качестве разделяющего агента. При атмосферном давлении разность температур кипения указанных веществ составляет всего 0,6 °С. Благодаря добавке диэтиленгликоля разница в температурах кипения образовавшихся азеотропов достигает уже 12,2 °С. Кипящие соответственно при 230,4 и 242,6 °С азеотропные смеси дифенил—диэтиленгликоль и индол—диэтиленгликоль, которые содержат почти по 60% диэтиленгликоля, можно легко разделить, даже используя малоэффективные колонны, при небольшом флегмовом числе. Так как дифенил в отличие от индола мало растворим в диэтиленгликоле, то больших количеств гликоля не требуется. Отгоняемый в первую очередь азеотроп дифенил—диэтиленгликоль расслаивается в приемнике дистиллята, и гликоль непрерывным потоком возвращают на стадию ректификации. Из полностью отогнанной смеси индол—диэтиленгликоль индол осаждают, разбавляя смесь водой [36]. [c.304]

    При ректификации прежде всего необходимо измерять температуру пара в верхней части колонны перед конденсатором и температуру кубовой жидкости. При работе с термолабильными веществами следует обязательно наблюдать за температурой в кубе. При непрерывной ректификации необходимо подогревать исходную смесь до температуры, соответствующей температуре жидкости в колонне в месте ввода в нее исходной смеси. Кроме того, требуется измерять температуру обогревающего кожуха колонны и жидкого теплоносителя (при использовании обогревающей бани) или потока греющего пара. [c.428]

    Раствор бензола в хлорбензоле, вытекающий из нижней части аппарата, частично через холодильник 7 вновь направляют на орошение конденсатора смешения из другой части раствора выделяют бензол в ректификационной колонне 3. Жидкую смесь хлорбензола, бензола, полихлоридов, хлорного железа, хлористого водорода, растворенного в жидкости, и других продуктов реакции непрерывно отбирают из расширенной части хлоратора 2. Вместе с раствором, отбираемым из конденсатора 5, ее направляют на разделение в двухколонный ректификационный агрегат непрерывного действия. Поступающая в насадочную колонну 8 смесь содержит 64—65% (масс.) бензола, 33,5—34% хлорбензола, около 1,5% полихлоридов и немного растворенных хлористого водорода и хлорного железа. Иногда реакционную массу перед ректификацией обрабатывают слабым раствором едкой щелочи для нейтрализации хлористого водорода и разрушения хлорного железа. В кубовой части колонны 8 поддерживают температуру 133—141 С, а в верхней части — 75—81 °С. Дистиллят, отгоняемый из колонны, содержит 99,5% бензола и 0,5% хлорбензола. Из кубовой части колонны непрерывно [c.423]

    Для непрерывной ректификации многокомпонентных сме-с применяют установки, состоящие из нескольких колонн. [c.685]

    При непрерывной ректификации тепло остатка может быть использовано для предварительного подогрева исходной смеси до температуры кипения. Для этого горячий остаток пропускают через теплообменник (см. рис. 19-15), в котором подогревается смесь, поступающая на ректификацию. Можно также охлаждать исходной смесью дефлегматор нагретая в дефлегматоре смесь поступает затем в теплообменник, где подогревается остатком. Для подогрева смеси можно использовать и конденсат водяного пара, обогревающего кипятильник колонны. [c.687]

    Предварительное выделение головной фракции позволяет отделить от фракции ВТК неудаляемый в процессе сернокислотной очистки сероуглерод, значительное количество примесей насыщенного характера, а также основную массу циклопентадиена, вызывающего смолообразование при сернокислотной очистке. Очистку проводят в непрерывном процессе, чаще в системе диафрагмен-ных смесителей (одним из вариантов являются шаровые смесители). Очищенная фракция после нейтрализации разделяется ректификацией на товарные продукты бензол, толуол, смесь ксилолов и ароматический растворитель — сольвент. [c.157]

    При ректификации происходит многократное испарение жидкости и конденсации паров, движущихся противотоком, в результате чего осуществляется непрерывный мас-со- и теплообмен между ними. При этом на нижней ступени из жидкой смеси извлекается низкокипящий компонент, который переходит на верхнюю ступень, а высококипя-щий компонент переходит из паровой фазы в жидкую. В результате после конденсирования паров смесь разделяется на дистиллят и остаток (рис.10.6). [c.115]

    При последующей ректификации по периодической схеме или в системе колонн непрерывного действия отбирают чистый пиридин, пиридин-растворитель, представляющий собой смесь пиридина и 2-метилпиридина, и так называемую -пиколиновую фракцию - смесь 2- и 4-метилпиридинов с 2,6-лутидином (2,6-диметилпиридином). Возможна организация приготовления чистого 2-метилпиридина. [c.356]

    Для непрерывного проведения ректификации необходимо, чтобы поступающая на разделение смесь соприкасалась со встречным потоком пара с несколько большей концентрацией ВК, чем в жидкой смеси. Поэтому исходную смесь подают в то место ректификационной колонны 3, которое соответствует этому условию. Место ввода исходной смеси, нагретой до температуры кипения в подогревателе 2, называют тарелкой питания, или питательной тарелкой. Положение тарелки питания или ввода исходной смеси специально рассчитывается. Тарелка питания делит колонну на две части верхнюю-укрепляющую и ямжтою-исчерпывающую. В укрепляющей части происходит обогащение поднимающихся паров низкокипящим компонентом, а в исчерпывающей-удаление НК. Поток пара, поднимающегося по ректификацион- [c.114]

    Сравнение итогов расчета ректификации непрерывной смеси по двум методам разработанным применительно к непрерывным смесям и методз , в котором непрерывная смесь представляется [c.67]

    Представляет интерес непрерывная ректификация сырого гидрогенизата, получаедюго прп гидрировании эфиров. Ректификация проводится на пяти колоннах. Сверху первой колонны (температура 105° С) удаляется смесь воды, бутанола, инертных газов и углеводородов. Эта смесь поступает на вторую колонну, где от смеси отделяются с помощью метанола углеводороды и инертные примеси. Азеотроп охлаждается до 35° С и смешивается с водой для отмывки от углеводородов. Далее смесь следует в скруббер, где от нее отделяются инертные примеси. Смесь воды, углеводородов и метанола расслаивается в отстойнике, откуда метанол [c.98]

    Ректификационные установки служат для разделения жидких однородных смесей на составляющие вещества или группы составляющих веществ в результате противоточного тепло- и массообме-на жидкой смеси и ларо1а этой смеси. Процесс ректификации можно осуществить в том случае, когда кипящая смесь выделяет пары, содержащие те же компоненты, но в другой пропорции обычно в ларах процент содержания компонентов, кипящих прн данном давлении при более низкой температуре (легкоктящие компоненты), больше, чем в жидкой смеси. Ректификация может осуществляться в ректификационных колоннах периодического я непрерывного действия. Типы и конструкции колонных аппаратов приводят ся в главе третьей. [c.29]

    В основе промышленных процессов, осуществляемых на установках непрерывного действия, находится Т1ерегонка нефти с одно-и многократным испарением. При перегонке с однократным испарением нефть нагревают до определенной температуры и отбирают все фракции, перешедшие в паровую фазу. Перегонка нефти с многократным испарением, например с трехкратным, заключается в том, что сначала нефть нагревают до температуры, позволяющей отогнать из нее фракцшо легкого бензина. Затем отбензиненную смесь нагревают до более высокой температуры и отгоняют фракции, выкипающие примерно до 350° С (т. е. фракции тяжелого бензина, реактивного и дизельного топлив). В остатке от перегонки получается мазут, из которого в дальнейшем под вакуумом отгоняют фракции смазочных масел в остатке щ)Лучается гудрон. Другими словами, нефть последовательно нагревают три раза, каждый раз отделяя паровую фазу от жидкой. Образующиеся паровую и жидкую фазы подвергают ректификации в колоннах. Таким образом, промышленные процессы перегонки нефти основаны на сочетании перегонки с одно- и многократным испарением и последующей ректификацией паровой и жидкой фаз. [c.199]

    Будем рассматривать процесс непрерывной ректификации в колоннах, в кот1зрых исходная смесь разделяется на два продукта верхний продукт, или дистиллят, обогащенный более летучим компонентом, и нижний продукт, или кубовый остаток, обогащенный менее летучим компонентом (рис. III.9). Кипятильник и дефлегматор будем считать аппаратами соответственно полного испарения и полной конден- [c.58]

    В непрерывном процессе азеотропной ректификации исходная смесь с заданным расходом подается в среднюю часть колонны, а сверху и из куба отбираются соответственно дистиллат и кубовая жидкость, которые представляют собой продукты разделения. Последние, кроме компонентов заданной смеси, всегда содержат некоторое количество разделяющего агента. Это количество зависит от свойств ректифицируемой системы. При расслаивании дистиллата большая часть разделяющего агента возвращается в коллону в виде флегмы. В противном случае весь разделяющий агент, подаваемый в колонну, выводится с продуктами разделения. В обоих случаях для проведения непрерывного процесса азеотропной ректификации необходимо непрерывно подавать в колонну разделяющий агент в количестве, равном отводимому из системы. [c.215]

    Свежий бензол вместе с бензолом, возвращенным со стадии разделения, поступает в колонну 3, предназначенную для осушки бензола азеотропной ректификацией. Низкокипящая азеотропная смесь бензола с водой кондеиснруется в конденсаторе 4 и разделяется в сепараторе 5 на два слоя. Воду с растворенным в ней бензолом отводят (ее можно использовать для промывки реакционной массы), а бензольный слой стекает на верхнюю тарелку колонны 3, создавая брошение. Осушенный бензол из куба колонны 3 в теплообменнике 2 подогревает бензол, идущий на осушку, и попадает в сборник 8, откуда насосом непрерывно закачивается в алг.илатор 9. [c.253]

    Получение диметилвинилкарбинола. В 1969—1972 гг. в СССР был разработан и испытан в полупромышленном масштабе метод получения диметилвинилкарбинола — ценного сырья для производства витаминов А и Е — из промежуточных продуктов синтеза изопрена из изобутилена и формальдегида (см. раздел 2.1). Технологическая схема процесса представлена на рис. 3.17. Водный раствор изобутенилкарбинола, выделенный азеотропной ректификацией с водой из фракции возвратного 4,4-диметил-1,3-диоксана. подается в куб реакционно-отгонной колонны 1, куда загружен катализатор (серная или щавелевая кислота). В кубе поддерживается кипение реакционной смеси (температура в парах 87—88 °С). Из верхней части колонны 1 непрерывно отбирается смесь водного азеотропа диметилвинилкарбинола н изопрена с примесью непревращен-ного изобутенилкарбинола. Для обеспечения полного расслаивания дистиллята и повышения степени осушки органической фазы в линию отбираемых продуктов подается дополнительное количество изопрена, отгоняемого в колонне 3. В отстойнике 2 смесь расслаивается. Нижний водный слой возвращают в колонну 1 в виде флегмы. Органическая фаза поступает в систему ректификационных колонн [c.97]

    Ректификация многокомпонентных смесей непрерывным методом осуществляется в аппаратурных агрегатах, построенных по типу многоколонных схем (рис. 12-27). Если исходная смесь должна быть разделена на три части А, В и С, ю одна колонна может обеспечить разделение лг бо па А - - ВС, либо на АВ -(- С для последующего разделения АВ или ВС необходима вторая 1 олонпа. Следовательно, для разделения исходной смеси на п частей необходим ректификационный агрегат, состоящий иа ге — 1 ректификационных аппаратов. [c.313]

    При непрерывной ректификации (рис. 19-15) смесь подается в среднюю часть колонны через теплообменник 1, обогреваемый остатком или паром. В верхней части колонны 2, расположенной выше точки ввода смеси, происходит укрепление паров. В нижней части колонны 5, расположенной ниже точки ввода смеси, происходит исчерпывание жидкости. Из исчерпываюшей колонны жидкость стекает в кипятильник (куб) 4, обогреваемый паром. В кипятильнике образуются пары, поднимающиеся вверх по колонне остаток непрерывно отводится из куба. Пары, выходящие из укрепляющей части колонны, поступают в дефлег-г, 2тор 5, откуда флегма возвращается в колонну, а дистиллят направляется в холодильник 7 (см. также стр. 686). [c.684]

    Оксидат обрабатывают щелочью (содой) для перевода кислот в натриевые соли. Затем смесь нагревают при температуре 300—350°С и давлении 15—30 кГ/вм для отделения неокисленных углеводородов и основной части нейтральных кислородных соединений. Оставшиеся мыла разлагают минеральной кислотой или двуокисью углерода. Выделившиеся сырые алифатические карбоновые кислоты разделяют на фракции перегонкой и, если необходимо, ректификацией в вакууме. Эти процессы осуществляют преимущественно непрерывно. [c.287]

    В начале разработки процесса производства хлористого металлила газообразный хлор барботировади через жидкий изобутилен. При этом в качестве побочного продукта образовывалось большое количество хлористого трет-бутпла, так как хлористый водород, выделявшийся в результате реакции замещения, очень легко присоединялся к непрореагировавшему изобутилену. Указанное затруднение было преодолено тем, что процесс стали проводить по непрерывной схеме, стараясь как можно быстрее удалять из зоны реакции хлористый водород [26]. Для этого жидкий изобутилен и хлор (молярное отношение 1,5 1) пропускали через форсунку (инжектор), обеспечивавшую хорошее перемешивание реагирующих веществ. Полученная смесь поступала затем в короткий реактор, охлаждаемый водой (время пребывания смеси в реакторе при 0° составляло 0,0057 сек.), откуда попадала в колонну, в которой хлористый водород отмывался теплой водой. Все хлорированные продукты конденсировали, после чего смесь подвергали ректификации для выделения хлористого металлила. [c.181]

    В немецком процессе [38] получившийся в результате реакции между этиленом, хлором и водой (стр. 185) 4—5%-ный водный раствор этиленхлоргидрина, содержавший некоторое количество дихлорэтана, смешивали с 10—20%-ным избытком горячей кашицы гашеной извести и подавали в верхнюю часть колонного реактора, откуда эта смесь стекала вниз, перетекая с полки на полку. В нижнюю часть колонны вводили острый пар с таким расчетом, чтобы жидкость в верхней части все время кипела. Выходящие из аппарата пары состояли из окиси этилена, дихлорэтана и воды. Больитую часть водяных паров конденсировали и возвращали обратно в реактор. Окись этилена отделяли от дихлорэтана и остатка водяных паров ректификацией под атмосферным давлением на двух колоннах непрерывного действия. В этом процессе потери окиси этилена за счет ее гидратации в этиленгликоль были незначительными. [c.188]


Смотреть страницы где упоминается термин Непрерывные смеси ректификации: [c.43]    [c.174]    [c.9]    [c.202]    [c.321]    [c.304]    [c.469]   
Многокомпонентная ректификация (1983) -- [ c.15 , c.18 , c.20 , c.94 ]




ПОИСК





Смотрите так же термины и статьи:

Непрерывные смеси

Ректификация непрерывная



© 2025 chem21.info Реклама на сайте