Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость влияние катализаторов

    Температура. Согласно классическим представлениям, если исключить влияние катализаторов, скорость химических реакций является функцией температуры и концентрации реагирующих веществ. По известному правилу Вант-Гоффа, повышение температуры на 10 градусов ускоряет реакцию в 2—3 раза. Это правило не является строгим, так как температурный коэффициент скорости реакции меняется с температурой. К. И. Ивановым [35 было показано, что температурный коэффициент окисления углеводородов, равный 2, наблюдается только для 140—150 °С. При температурах ниже 140 °С он во всех случаях гораздо больше, а выше 150°С он меньше. [c.69]


Таблица 3.2. Влияние катализаторов на энергию излучения пламени и на скорость его распространения в смеси СО + О [150 Таблица 3.2. <a href="/info/26056">Влияние катализаторов</a> на <a href="/info/6186">энергию излучения</a> пламени и на скорость его распространения в смеси СО + О [150
    Влияние катализаторов. Известны многие реакции сульфирования с применением катализаторов— сульфата ртути, меди, натрия, ванадата аммония, бихромата калия, иода, которые изменяют или общую скорость реакции, или избирательно скорость образования какого-либо [c.323]

    Влияние жесткости процесса риформинга на скорость дезактивации катализатора. [c.14]

    Влияние давления на относительную скорость дезактивации катализатора риформинга. [c.19]

    Мольное соотношение водород углеводороды, характеризуемое в промышленной практике кратностью циркуляции водородсодержащего газа, практически не оказывает влияния на протекание реакций превращения углеводородов в процессе каталитического риформинга. Как правило, выход ароматических углеводородов, суммарного жидкого продукта и водорода мало изменяется с изменением этого параметра. Вместе с тем, изменение мольного соотношения водород сырьё оказывает существенное влияние на стабильность работы катализатора риформинга. Как следует из графика на рис. 2.16, снижение мольного соотношения с 10 1 до 6 1 увеличивает скорость дезактивации катализатора вследствие накопления кокса на нём в 1,7 раза, дальнейшее снижение этого соотношения приводит к более резкому падению активности катализатора. Причиной усиленного [c.22]

    Влияние катализаторов на скорость реакции ири этом остается необъяснимым. [c.339]

    Необходимо отметить, что процесс, обратный первой стадии (адсорбции углеводорода) приводит к изомеризации (миграции двойной связи), что и наблюдали на опыте, а скорость восстановления катализатора, измеренная в отсутствие кислорода, достаточна для объяснения скорости окислительной дегидрогенизации [81]. Но эти модели не дают ключа к решению вопроса о происхождении различий в селективности у разных окислов, т. е. эти модели не раскрывают причин, заставляющих окислы отдавать предпочтение одному из возможных реакционных путей (через альдегид или диен). Начальный выход первичных продуктов окисления никогда не равен 100%, и всегда присутствует какое-то количество продуктов деструкции. Этот новый тип селективности связан с легкостью десорбции первичных продуктов, которые очень часто адсорбируются сильнее, чем олефин, как показывает их влияние на кинетику реакции. В экстремальных случаях не десорбируется ни одно из промежуточных соединений между олефином и СО или СОг, и единственной реакцией, которую удается наблюдать, является полное сгорание, и притом не только на неселективных катализаторах, но и на селективных, таких, как В1— —Мо—О (например, циклопентен) [83]. По той же причине при работе со всеми этими катализаторами следует избегать микропористости, поскольку из-за медленной диффузии в порах удлиняется время контакта, что приводит к глубокому разрушению желательных продуктов. [c.165]


    Катализ. Основные понятия. Катализом называют явление иэменения скорости реакции или возбуждения ее, происходящее под действием некоторых веществ, называемых катализаторами, которые, участвуя в процессе, сами к концу реакций остаются химически неизменными. Как известно, влияние катализаторов может быть весьма сильным и под их действием скорости реакций могут изменяться в миллионы и большее число раз как в ту, так и в другую сторону. Под действием катализаторов могут [c.491]

    Влияние катализаторов. Сильное влияние на скорость химической реакции оказывают некоторые вещества — катализаторы. Катализаторы, образуя с реагентами промежуточные продукты, повышают скорости химических реакций на много порядков, выделяясь в конце реакции в неизменном химическом состоянии. Так, например, в смеси Нг и О2 при нормальной температуре скорость реакции образования воды практически равна нулю. Если же ввести в сосуд. [c.529]

    Зависимость удельной поверхности от температуры и длительности термопаровой обработки, или пропарки (рис. 15) практически такая же, как и при прокалке в сухом воздухе. Только при пропарке все изменения происходят в области более низких температур. Из рис. 15 видно, что на результаты термопаровой обработки большое влияние оказывает парциальное давление водяного пара. Скорость спекания катализатора под влиянием паров воды наиболее сильно возрастает при повышении парциального давления с О до 0,1 МПа. При дальнейшем повышении давления скорость спекания также увеличивается, но уже в меньшей степени. [c.36]

    В диффузионной области горения наибольшее влияние на выжиг коксовых отложений оказывает добавление железа. На образце катализатора, содержащем 0,8 вес. % железа, отложенный кокс сгорает в два раза быстрее, чем на исходном катализаторе. Остальные металлы в какой-то степени ускоряют выжиг кокса при их содержании в катализаторе в больших концентрациях. Так, на образцах, содержащих до 0,5—0,8 вес. % никеля, меди, кобальта, хрома, молибдена и до 1,5—1,3 вес. % лития, натрия, калия, бериллия, магния, кальция, стронция, кокс выжигается в 1,2 раза быстрее. На образцах, содержащих микродобавки этих металлов, скорость горения кокса такая же, как исходного образца катализатора. Добавка свинца не влияет на скорость регенерации катализатора. [c.167]

    Условия процесса оказывают влияние не только на выход и состав продуктов каталитического риформинга, но и на скорость дезактивации катализатора, которая, в свою очередь, зависит от скорости его закоксовывания. Поэтому представляется целесообразным рассмотреть роль параметров процесса применительно к двум аспектам. С одной стороны, следует проследить их влияние в условия с, когда коксообразование настолько мало, что не лимитирует скорость протекающих реакций. С другой стороны, значительный практический интерес представляет вопрос о том, как влияют параметры процесса на скорость дезактивации катализатора при его закоксовывании. Данные об изменении >скорости и селективности превращений индивидуальных углеводородов в зависимости от условий каталитического риформинга изложены в гл. 1. [c.142]

    Стабильность катализатора риформинга зависит от применяемого в процессе" давления. В промышленных условиях, по мере снижения активности катализатора, повышают температуру процесса с тем, чтобы октановое число получаемого риформата оставалось постоян-ным. Подобный подход был принят в работе [274] для количественной оценки влияния параметров процесса на стабильность катализатора. Средняя скорость подъема температуры (в °С/сут) служила критерием скорости дезактивации катализатора. Очевидно, чем больше эта величина, тем больше и скорость дезактивации катализатора. В качестве стандартного катализатора был принят полиметаллический катализатор КР-108 (массовое содержание платины 0,36%). Сырьем служила бензиновая фракция 85—180 °С с массовым содержанием ароматических углеводородов 14,8% и нафтенов 24%. Риформинг проводили под давлением 1,5 МПа и при молярном отношении водород углеводород = 5, продолжительность каждого испытания 10 сут. [c.146]

    Было проведено исследование влияния технологических параметров (давление, объемная скорость, вид катализатора) на снижение содержания ароматических углеводородов п дизельной фракции (200-350°С) гидрогенизата совместной гидроочистки прямогонного вакуумного газойля с газойлями коксования. Оценка влияния проводилась по показателям, косвенно характеризующим содержание ароматических углеводородов. Известно, что [c.109]

    Влияние водяного пара на скорость регенерации катализатора показано на рис. 128. [c.240]

    На проточной установке исследовано в широком диапазоне объемных скоростей влияние соотношения водород непредельные углеводороды, температуры и давления на протекание процесса гидрирования непредельных углеводородов, содержащихся в нефте-заводских газах, используемых для производства водорода. Выявлен диапазон рабочих значений перечисленных параметров. Приведены кинетические уравнения и определены значения энергии активации, констант скорости и порядком реакций гидрирования этилена, пропилена и бутилена на алюмоникельмолибденовом катализаторе. Рис. 4, таблица, библ. ссылок 3. [c.157]


    В дальнейшем [711 объемная скорость (или обратная ей величина— время пребывания сырья в зоне реакции) была заменена так называемым параметром времени со, который должен отражать влияние на скорость процесса удельной массовой скорости подачи сырья и скорости циркуляции катализатора и определяется как [c.101]

Рис. 85. Влияние поверхности активного металла на скорость старения катализатора Рис. 85. <a href="/info/1223610">Влияние поверхности активного</a> металла на <a href="/info/304171">скорость старения</a> катализатора
    Рассмотрим влияние катализатора на скорость реакции (рис. 105). Пусть в отсутствие катализатора протекает простая одностадийная бимолекулярная реакция (рис. 105, а, кривая I) [c.406]

Рис. 51. Влияние давления водорода на скорость дезактивации катализатора в процессе гидрокрекинга вакуумного дистиллята кувейтской нефти при постоянной глубине превращения сырья 70% Рис. 51. <a href="/info/794852">Влияние давления водорода</a> на <a href="/info/330306">скорость дезактивации</a> катализатора в <a href="/info/311079">процессе гидрокрекинга</a> вакуумного дистиллята кувейтской нефти при <a href="/info/1470378">постоянной глубине</a> превращения сырья 70%
    Приведенный набор реакций носит в известной мере предположительный характер. Однако с его помощью объясняются некоторые особенности горения водорода, пределы воспламенения, влияние катализаторов и т. п. Кинетические характеристики промежуточных реакций подбираются путем сопоставления с имеющимися опытными данными. Отметим, что после воспламенения, когда реакции разветвления цепей доминируют над реакциями обрыва, скорость горения (скорость получения конечного продукта — водяного пара) определяется промежуточной реакцией 2. Выше уже говорилось, что к элементарным реакциям применимы рассмотренные закономерности (формальная кинетика). Зависимость скорости реакции от температуры по-прежнему будет отвечать закону Аррениуса, но с низкой энергией активации. С ростом температуры скорость реакции возрастает. При высоких температурах особенности цепного механизма сглаживаются. [c.103]

    Таким образом, влияние катализатора на скорость химического процесса связано с понижением энергии активации реакции. Определение энергии активации каждой стадии каталитического процесса в отдельности невозможно, поэтому для оценки влияния катализатора на скорость реакции пользуются формальной энергией активации, представляющей обобщенное значение энергии активации каталитической реакции в целом. Данные об энергиях активации различных каталитических реакций приведены в [1, т. 3, с. 850—873 2, табл. 148, 149]. [c.172]

    Из (П1.13) следует, что чем сильнее влияние катализатора на энергию активации, тем значительнее изменение ее скорости  [c.172]

    Увеличение скорости реакции под влиянием катализатора энергетически можно объяснить тем, что катализатор снижает энергию активации реакции, увеличивая тем самым долю активных молекул. Гомогенный катализ достаточно хорощо объясняется теорией промежуточных соединений, согласно которой катализатор, реагируя с исходным веществом, образует неустойчивое промежуточное соединение. Возьмем медленную реакцию  [c.35]

    В присутствии катализатора снижается энергия активации — механизм реакции изменяется и она протекает по другому пути, энергетически более выгодному. Этим и объясняется увеличение скорости реакции под влиянием катализатора. [c.345]

    Опыт 4. Влияние катализатора на скорость реакции [c.45]

    Влияние катализаторов. Катализаторами называются вещества, которые изменяют скорость реакции, но сами, хотя и принимают в реакции непосредственное участие, остаются после нее химически неизменными и в прежнем количестве. Каталитические процессы очень распространены в природе. Например, вода является уйй- [c.28]

    Задание. Подумайте о влиянии катализатора на скорость обратного направления данной реакции. [c.340]

    Кинетика и катализ. Скорость химических реакций, зависимость скорости реакции от внешних условий, связь скорости реакции со строением молекул, влияние на скорость реакции катализаторов — предметы изучения кинетики и катализа. [c.10]

    ВЛИЯНИЕ КАТАЛИЗАТОРОВ НА СКОРОСТЬ ХИМИЧЕСКОЙ РЕАКЦИИ [c.56]

    Механизм действия катализатора принципиально отличается от влияния температуры на скорость реакции. При повышении температуры скорость реакции возрастает вследствие увеличения концентрации активных молекул за счет поглощения энергии извне. Катализатор источником энергии не является и концентрацию активных молекул изменить не может. Роль катализатора сводится к тому, что в его присутствии энергия активации реакции снижается и, следовательно, скорость реакции возрастает. Так как катализатор снижает энергии активации прямой и обратной реакций на одинаковую величину, то смещения химического равновесия под влиянием катализатора не происходит. [c.120]

    Различают положительный катализ — увеличение скорости резь ции под влиянием катализатора — и отрицательный катализ, при]юдящий к уменьшению скорости химического превращения. При положительном катализе промежуточное взаимодействие реагирующих веществ с катализатором открывает новый, энергети — чес(<и более выгодный (то есть с меньшей высотой энергетического бар ,сра), по сравнению стермолизом, реакционный путь (маршрут). При отрицательном катализе, наоборот, подавляется (ингибируется) быс трая и энергетически более ле1кая стадия химического взаимо — действия. Следует отметить, что под термином "катализ" подразумевают преимущественно только положительный катализ. [c.79]

    Влияние катализатора может сказываться не только на скорости окисления и длительности индукционного периода, но и на внутристадийном превращении одних продуктов окисления в другие, а также на характере конечных продуктов [101]. По некоторым данным, металлы катализируют окисление в основном в тех случаях, когда они образуют соли с кислотами. Чаще всего это происходит в присутствии воды и кислорода воздуха. Каталитическое действие металла прекращается, если он покрывается защитной пленкой, создаваемой продуктами окисления. Большая часть исследователей считает, что основную роль в катализирующем действии солей оказывает катион [96]. При этом, однако, соли одного и того же металла, но разных кислот могут обладать неодинаковой катализирующей активностью, т. е. активность солей может зависеть не только от катиона, но и от аниона. Анион может и не оказывать принципиального действия, а может влиять, например, на растворимость соли в масле и таким образом косвенно воздействовать на эффективность металлического катализатора. [c.77]

    Реакционная способность углерода сильно зависит от его структуры и наличия в его составе примесей. Как показали эксперименты, проведенные в работе [3.49] с катализаторами крекинга, наибольшее влияние на выжиг коксовых отложений в диффузионной области горения оказывает добавление железа. На образце катализатора, содержащем 0.8% железа, отложенный кокс сгорал в два раза быстрее, чем на исходном катализаторе. В кинетической области присутствие железа мало влияет на скорость регенерации катализатора каталитического крекинга. Сгорание кокеа на образце, содержащем железо, обусловлено характером распределения кокса по сечению частицы катализатора. На таком катализаторе кокс в основном откладывается в периферийных областях частицы, а если учесть, что у используемого нами железоокисного катализатора объем пор и поверхность значительно меньше, чем у катализаторов крекинга, то необходимая глубина проникновения кислорода в зону горения уменьшается, в результате должно происходить ускорение выгорания отложений. [c.76]

    Однако, работа в области высоких температур, обеспечивающих более высокие глубины и селективность ароматизации парафиновых углеводородов, затруднена высокой скоростью дезактивации катализатора вследствие его закоксовывания. Влияние температурной жёсткости процесса риформинга, оцениваемой октановым числом каталиэата, на относительную скорость дезактивации катализатора на примере риформинга фракции 85-180 °С с использованием катализатора КР-108 видно из кривой рис. 2.7. Увеличение октанового числа каталиэата с 82 до 85 пунктов усиливает скорость дезактивации в 2 раза, а с 85 до 89 пунктов - в 4 раза. Соответственно снижается межрегенерационный период работы катализатора. [c.12]

    Полимеризация изопрена под влиянием катализаторов Циглера-Натта. Характерной особенностью реакций полимеризации изопрена в присутствии каталитической системы R3AI + Ti U является резкая зависимость скорости процесса от состава катализатора (рис. 6). Максимальный выход полимера наблюдается при строго эквимолекулярном содержании алюминия и титана. Это соотношение оптимально и с точки зрения получения высокомолекулярного стереорегулярного полимера. При избытке Ti U превалируют процессы катионной полимеризации, приводящие к малорастворимым полимерам, содержащим циклические фрагменты. Катализаторы, полученные при отношениях Al/Ti > 1, приводят к образованию наряду с ч -1.4-полиизопренами олигомерных продуктов — циклических и линейных димеров (тримеров) изопрена. Выход [c.211]

    В рамках рассматриваемой схемы важно установить роль катализаторов. Окисление сероводорода диоксидом серы носит кислотноосновной характер. Этот факт можно объяснить следующим образом [83]. Взаимодействие и 50, в водных растворах протекает с высокими скоростями. Согласно схеме Абеля, образуется неустойчивая тиосернистая кислота Н,5,0,, которая распадается на поли-тионаты и тиосульфат. Последние продукты оказываются довольно стабильными в интервале рН=3...7 и медленно распадаются с образованием серы. Как показано выше, для ускорения этого процесса необходимо присутствие катализаторов. Процессы образования серы, высших политионатов, сульфанмоносульфонатов сопровождается разрывом одних 5-5 связей и образованием других 5-5 связей. Перенос протона на один из атомов серы может существенно ослабить связи с соседними атомами и привести к расщеплению связи. Например, образование циклической молекулы серы из сульфанмоносульфоната под влиянием катализатора можно представить следующем образом  [c.203]

    Введение. Кинетикой химических реакций называется учение о скорости- их протекания и зависимости ее от различных факторов (концентрации реагирующих веществ, температуры, влияния катализаторов и пр.). Изучение этих вопросов представляет большой практический и теоретический интерес. Разные реакции совершаются с самыми различными скоростями. Некоторые из них, как, например, реакции разложения взрывчатых веществ, заканчиваются в десятитысячные доли секунды другие продолжаются 1инутами, часами, днями, а третьи, например некоторые процессы, совершающиеся в земной коре, растягиваются на десятки, сотни и тысячи лет. К тому же не только между скоростями разных реакций существует такое большое различие, но и скорость какой-нибудь данной реакции может сильно изменяться в зависимости от условий, в которых реакция происходит. [c.462]

    Таким образом, результаты, полученные при исследовании автоокисления топлива свободным кислородом в присутствии солей меди и железа, подтверждают, что ускоряющее действие этих соединений сводится в основном к увеличению скорости распада гидропероксндов на радикалы под влиянием катализаторов. [c.116]

    Влияние катализатора на скорость химицргкпй репкиии nfi-ьяг-няется участием катализатора в образовании активного комплекса, по крайней мере на одной из стадий реакции, то позволяет да ь более глубокое определение понятия катализатор, катализатором называется вещество, изменяющее скорость химической реакции участием в образовании активного комплекса одной или нескольких стадий химического превращения и не входящее в состав конечных продуктов (Г. К. Боресков). [c.404]

    Степень влияния многих из перечисленных выше факторов на скорость регенерации катализатора крекинга определяется соотношением скоростей массообмена и химической реакции на по-верхностиг В зависимости от условий и стадии регенерации (начало, середина или окончание) окисление кокса может протекать [c.150]

    Влияние катализаторов па скорость поглощения этилена серной кислотой изучали, кроме других псследоватолей, также Дамьеп с сотрудниками [22]. Действие катализаторов будет нами обсу кдаться позже [23]. [c.445]

    Механизм действия катализаторов сложен и в средней школе не изучается. Суть влияния катализатора сводится к тому, что в присутствии катализатора реакция происходит по иному механизму, чем без него. Сам катализатор принимает участие только в обра ювании промежуточных соединений, которые в процессе реакции мгновенью разрушаются. Поэтому количество катализатора не изменяется в резулы ате реакции. В некоторых случаях скорость реакции пропорциональна количеству катализатора. [c.270]


Смотреть страницы где упоминается термин Скорость влияние катализаторов: [c.167]    [c.449]    [c.27]    [c.236]   
Практикум по физической химии изд3 (1964) -- [ c.228 ]

Практикум по физической химии Изд 3 (1964) -- [ c.228 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние катализаторов на скорость горения и газификации

Влияние катализаторов на скорость поглощения этилена

Влияние концентрации катализатора на скорость реакции

Влияние объемной скорости и начального содержания аммиака на производительность катализатора

Влияние размера зерен катализаторов на скорость реакций

Влияние температуры и катализаторов на скорость химических реакций

Влияние температуры на скорость окисления двуокиси серы на ванадиевых катализаторах

Влияние условий крекинга на скорость старения катализаторов

Катализатор, влияние концентрации скорость

Кинетика синтеза на железных катализаторах влияние объемной скорости

Кинетика синтеза на железных катализаторах влияние скорости пропускания

Кинетика синтеза на кобальтовых катализаторах, влияние объёмной скорост

Меняйлов П. Н., Матрос Ю. Ш. Влияние неравномерного профиля скорости в слое катализатора на производительность сернокислотных реакторов

Нахождение констант скорости протонизации катализатора влияние строения двойного слоя на протонизацию, протекающую в объемном реакционном пространстве

О влиянии заряда субстрата и катализатора на скорость водородного обмена

Обмен дейтерия с метанолом над платиновым катализатором Адамса. Влияние некоторых нитросоединений на скорость этого обмена (Э. Мак-Даниел, X. Смит)

Опыт 3. Влияние катализатора на скорость химической реакции

Реакции влияние на скорость катализатор

Скорость от катализатора

Скорость химических реакций влияние катализатора

Состав продуктов синтеза на железных катализаторах влияние объемной скорост

Ферменты Общие свойства ферментов Влияние температуры на скорость реакций, ускоряемых неорганическим катализатором и ферментом

Химическая кинетика Теоретическая часть Влияние концентрации, температуры и катализаторов на скорость реакции



© 2025 chem21.info Реклама на сайте