Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость процессов при регенерации катализатора

    Различные компоненты кокса выжигаются с различной скоростью. Так, легкие углеводороды быстро удаляются из зерна катализатора при регенерации. Углерод крайне медленно выжигается. Часто, особенно при постановке исследований, скорость регенерации характеризуют содержанием именно углерода, а не общим содержанием кокса в катализаторе. Строго говоря, регенерация не является обычным горением, а представляет собой сложный химико-технологический процесс. Применение термина выжигание в данном случае несколько условное. На регенерацию катализатора в кипящем слое влияют ряд факторов. К основным пз них, определяющим скорость процесса регенерации, относятся  [c.240]


    Как и в процессе крекинга регенерация катализатора в кипящем слое весьма выгодно отличается от неподвижного слоя. Большие коэффициенты теплопередачи, возможность лучшего регулирования максимальной температуры сгорания обеспечивают высокую скорость процесса регенерации и меньшую потерю активности катализатора. Регенерация в неподвижном слое ведется газом, содержащим в конце слоя Лишь 2—3 объемн. % кислорода. Сравнительная характеристика гидроформинга в неподвижном и кипящем слое катализатора дана в табл. 3. Исходным сырьем служила лигроиновая фракция [c.250]

    Кроме стабильности катализатора, характеризующей продолжительность его эксплуатации до падения активности ниже экономически целесообразного предела (в так называемом большом цикле), важным параметром, определяющим эксплуатационные качества катализатора, является продолжительность его работы между регенерациями (в так называемом малом цикле). Длительность малого цикла контактирования связана, как правило, со скоростью отложения на катализаторе углерода или высокоуглеродистых высокомолекулярных соединений (называемых условно коксом). Скорость процесса закоксовывания катализатора определяется как его свойствами, так и условиями эксплуатации. Имеется ряд работ по кинетике процессов закоксовывания, например [7, 8]. Среднее количество кокса в зерне катализатора [c.363]

    Внутренняя диффузионная область. Общая скорость процесса регенерации определяется диффузией кислорода через поры к зоне горения кокса. Концентрация кислорода у наружной поверхности гранул близка к концентрации его в объеме между гранулами, а концентрация в зоне горения у контурной поверхности снижается до нуля. Поэтому в пределах каждой гранулы коксовых отложений процесс протекает послойно сначала выгорает кокс, расположенный близко к внешней поверхности гранулы катализатора, а затем процесс горения перемещается в середину гранулы. [c.66]

    Обычно процесс регенерации катализатора ведется при 540—620° С. С увеличением давления скорость выжига кокса также возрастает, но при этом повышаются расходы на дополнительное сжатие воздуха. Расход воздуха составляет [c.186]

    Применяя данное уравнение к константам скорости процесса связывания катализатора с реактантами ( 1) и регенерации катализатора к , приходим к условию оптимума [c.112]


    Внешняя диффузионная область. В этой области скорость процесса регенерации определяется диффузией кислорода из объема к поверхности гранул. Концентрация кислорода у поверхности гранул меньше, чем в газовом пространстве между гранулами катализатора. [c.40]

    Общая скорость процесса регенерации г (в кмоль кг катализатора-ат-ч) определяется скоростью поверхностной реакции и скоростью диффузии кислорода к поверхности частиц катализатора  [c.132]

    Используя данное уравнение для выражения константы скорости процесса связывания катализатора с реактантами (fei) и его регенерации ( г), приходим к условию оптимума [c.19]

    В каждом конкретном случае может возникнуть ряд ограничений при регенерации катализатора, связанных с конструкцией корпуса реактора. Так, при использовании футерованных реакторов накладываются ограничения по скорости подъема, (снижения) температуры и давления процесса. Для используемых марок торкрет-бетона можно рекомендовать скорость подъема температуры в пределах 10—12, а снижения 8—10 °С/ч. В случае незащищенных с внутренней стороны футеровкой биметаллических корпусов температура, в аппарате должна быть не выше 500 °С. [c.129]

    Чем выше скорость горения кокса, тем быстрее завершается процесс регенерации и тем меньшего объема требует( я регенератор. Производительность действующего регенератора может быть увеличена путем применения катализатора с лучшей регенерационной способностью. [c.43]

    Скорость выгорания кокса зависит от его свойств, которые, в свою очередь, определяются качеством перерабатываемого сырья и условиями его переработки. Основная горючая составляющая кокса — углерод. Кроме того, в коксовых отложениях содержится остаточный водород, масса которого может составлять от десятых долей до нескольких процентов относительно массы кокса. Для всех случаев процесс регенерации характеризуется преимущественным выгоранием водородсодержащих компонентов, т. е. чем богаче кокс водородом, тем быстрее он выгорает при регенерации и тем короче фаза регенерации [3.18]. Преимущественное выгорание водорода, по-видимому, связано с его неравномерным распределением в объеме коксовых частиц, которое создается в процессе их формирования [3.31]. Если образование коксовых отложений протекает в среде, содержащей серу, то последняя также частично переходит в кокс. Закономерности выжига коксовых отложений сложного состава, в частности серосодержащих, изучены пока недостаточно. Результаты исследований окисления коксовых отложений на поверхности катализаторов гидроочистки показали, что сера выгорает быстрее, чем углерод [3.52], однако остается непонятным, выгорает сера, входящая в состав коксовых отложений, или происходит окисление сульфида металла катализатора [3.30, 3.45, 3.52]. [c.77]

    Встречаются такие процессы, в которых несколько реагентов поступают в реактор смешения с различными скоростями. В одних случаях некоторые реагенты быстро загружаются в реактор, а другие подаются постепенно. Бывают случаи, когда только одно из исходных веществ поступает в проточный реактор, а другие реагенты подаются на различных расстояниях от входа. Примером последнего варианта являются различные процессы регенерации подвижного слоя катализатора при этом воздух поступает в опускающийся слой катализатора в нескольких точках реактора, позволяет что избежать локальных перегревов. Другим [c.163]

    Условия проведения процесса температура 470—500° С, давление 3,5—5,0 МПа, циркуляция газа 1500—1800 м7м сырья, объемная скорость подачи сырья 1—3 ч . При регенерации катализатора давление в реакторе 2,0—3,5 МПа. [c.28]

    Катализатор из реактора К1 самотеком по системе переточных труб перемещается в реактор Я2, а затем в КЗ. Скорость вертикального движения слоя катализатора в аппарате обычно составляет не менее 3—5 мм/сек. Отработанный катализатор из нижних секций реакторов КЗ и К4 через коллектор 6 поступает в емкости для закоксованного катализатора 7, далее пневмотранспортом подается вначале в бункер 2, а затем в регенератор катализатора 3. Регенерированный катализатор собирается в емкости 8, откуда пневмотранспортом подается в реакторы К1 и К4, куда одновременно поступает и свежий катализатор. Таким образом осуществляется непрерывный процесс риформинга без остановки системы или выключения одного из реакторов на регенерацию катализатора. Возможность постоянно поддерживать свойства регенерированного катализатора на уровне близком к свойствам свежего катализатора позволяет проводить процесс платформинга под невысоким давлением и снизить кратность циркуляции газа. [c.29]

    Водород в продуктах реакции отсутствует, что свидетельствует о протекании реакций окислительного дегидрирования. Кислород для реакции подводится из объема катализатора. При восстановлении катализатора наблюдается период постоянной скорости реакции окислительного дегидрирования. Независимо от условий проведения процесса периоду постоянной скорости реакции соответствует съем 11 —13 см кислорода с 1 г катализатора. Окислительная регенерация катализатора восстанавливает его активность. [c.685]


    В практических расчетах обычно принимают, что, поскольку скорость переноса тепла высока, Г йс Гд. Этим допущением нельзя пользоваться для сильно экзотермических процессов, например, для регенерации катализатора, где разность Тв—Т может достигать 100-150 С. [c.74]

    Рассмотренные закономерности реакции обусловили выбор условий для ее проведения. Процесс осуществляют в жидкой фазе (обычно в растворе того углеводорода, из которого был получен гидропероксид), при 90—110°С и 2—5-кратном избытке олефина по отношению к гидропероксиду. В зависимости от летучести углеводорода-растворителя и олефина для поддержания реакционной массы в жидком состоянии может потребоваться давление до 5— 7 МПа. В этих условиях реакция имеет достаточно высокую скорость при количестве катализатора 0,001—0,005 моль на 1 моль гидропероксида, что позволяет пренебречь его регенерацией. В зависимости от температуры, концентрации катализатора и природы исходных реагентов время реакции изменяется от 0,3 до 2 ч. [c.442]

    Таким образом, с точки зрения повышения селективности ароматизации и снижения затрат на транспорт и регенерацию катализатора, процесс непрерывного риформинга целесообразно проводить при высоких значениях-объемной скорости и температуры. [c.150]

    При использовании шарикового катализатора кинетическая область горения кокса осуществляется при температурах ниже 500— 550 °С. При более высоких температурах горение кокса идет во внутридиффузионной и внешнедиффузионной областях. Повышать температуру регенерации во внешнедиффузионной области нерационально, так как скорость процесса при этом не увеличивается, а возможность местных перегревов частиц катализатора, приводя- [c.228]

    При продувке воздуха через слой катализатора закоксованные шарики спекаются сильнее, чем не содержащие кокса. При 700 °С (фактическая температура в регенераторе промышленных установок) поверхность закоксованных частиц существенно уменьшается. Однако это наблюдается лишь при достаточно большой концентрации кокса на частице. Аналогичные опыты с катализатором, за-коксованным до 3 и 6 вес. %, показали, что удельная поверхность частиц не изменяется вплоть до 750 Х, и лишь при 800 °С наблюдается разница соответственно 15 и 31 м /г. Увеличение скорости спекания катализатора при выжиге в процессе регенерации коксовых отложений обусловлено, по-видимому, значительным разогревом его частиц. Ранее считали, что контактная масса существенно не разогревается. Однако расчеты показали [89], что пылевидный [c.71]

    Влияние металлов на регенерацию катализатора. Металлы, накапливающиеся в процессе работы на поверхности катализатора, должны оказывать определенное влияние и на процесс выжига кокса. Так, на одной установке, долго работавшей на остаточном сырье, при увеличении на катализаторе содержания никеля от 6-10 2 до 7-10 2 вес. %, а ванадия от 3,5-10-2 до 18-10-2 вес. % содержание остаточного (после выжига) кокса уменьшалось с 0,4 до 0,2 вес. % После прекращения подачи остаточного сырья и существенного уменьшения количества металлов содержание остаточного кокса возросло до 0,3 вес. % [186]. О влиянии некоторых металлов на выжиг коксовых отложений с катализатора в литературе имеются лишь отрывочные данные [78, 238—241]. Для получения более полных данных нами были проведены эксперименты на аппарате ГрозНИИ в кинетической (500 °С) и диффузионной (650 °С) областях при удельном расходе воздуха 1500 ч . Во всех опытах отлагалось кокса 2 вес. % на катализатор. В кинетической области горения при добавлении в катализатор различных металлов качественный характер регенерации катализатора на всем ее протяжении не изменялся. Однако металлы, нанесенные на катализатор, способствуют существенной интенсификации выжига кокса в начальный период по сравнению со скоростью выжига исходного катализатора. [c.166]

    Наблюдаемую особенность изменения каталитической активности в процессе регенерации в зависимости от природы оксида авторы объясняют влиянием энергии связи кислорода катализатора на скорость выгорания углеродистых отложений [104]. Энергия связи кислорода в оксиде железа(П1) значительно выше энергии связи для оксидов кобальта и никеля, значения которых близки. Установлено [104, 105], что при низких температурах регенерации процесс лимитируется отрывом кислорода от решетки оксида, и в уравнении, связывающем энергию активации процесса с энергией связи кислорода катализатора, Е = Ео щ, будет знак плюс. В этом случае снижение энергии связи кислорода должно уменьшать энергию активации процесса в целом и увеличивать скорость выгорания углерода. Следовательно, при 450 С наиболее медленно выгорание углерода протекает на оксиде железа(П1), так как кислород в данном случае связан наиболее прочно. [c.41]

    Пусть — константа скорости процесса связывания катализатора (образования предполагаемого промежуточного соединения), а А, — константа скорости процесса регенерации катализатора (разрушения укаван-ного соеджнення с образованием продуктов реакции). Естественно допустить, что наиболее активным будет такой катализатор, для которого [c.365]

    На рис. VI. 13 приведена схема с верхним расположением регенератора. Исходное сырье вводится в слой катализатора 8. Продукты крекинга через циклонные сепараторы 4 выводятся на разделение. Отработанный катализатор из реактора через боковые прорези поступает в отпарную секцию 11 и далее эжектируется воздухом от регулируюш,его клапана 10 и по катализаторопроводу 2 через решетку 3 подается в регенератор 5. Регенерированный катализатор по катализаторопроводу возвращается в реактор 1. Воздух на регенерацию поступает по кольцевому распределителю 6. На выходе газа из регенератора расположены циклонные сепараторы 4. В этом варианте расположения секций агрегата регенератор работает при более низком давлении, чем реактор. Преимущество такого расположения заключается в том, что уменьшается расход энергии на нагнетание воздуха в регенератор из-за низкого давления в нем. С другой стороны, уменьшение давления в регенераторе снижает скорость процесса регенерации, как это следует из уравнения ( 1.9). В результате приходится увеличивать габариты регенератора. [c.201]

    Политропический процесс, протекающий с отводом или подводом тепла, когда скорость отвода или подвода тепла не пропорциональна количеству выделенного или поглощенного тенла. В рассматриваемом случае температура в реакторе также меняется от входа к выходу, но характер температурной кривой зависит в большей степени от работы поверхности теплообмена, чем от вида кинетической кривой. К полптропическим системам могут быть отнесены реакционные секции змеевиков печей термического крекинга и пиролиза, реакторы каталитического крекинга с неподвижным катализатором в процессе регенерации, змеевиковые реакторы полиэтилена ысокого давления и др. [c.263]

    Для проектируемых регенератороз время пребывания в них катализатора устанавливается расчетным путем. В действующих регенераторах продолжительность пребывания катализатора зависит от интенсивности его циркуляции между реактором и регенератором чем она выше, тем с большей скоростью данная порция катализатора проходит через оба эти аппарата и тем менее продолжительное время она в них находится. С увеличением количества 1 окса па катализаторе и понижением температуры процесса регенерации требуется больше времени для выжига. [c.92]

    При дальнейшем повышеиии скорости газа частицы начинают энергично перемешиваться и быстро менять положение относительно друг друга. Расстояния между ними увеличиваются, и слой расширяется еще больше. Часть наиболее быстро движущихся твердых частиц вылетает из слоя. Такой слой катализатора с довольно четко обозначенным уровнем взвешенных в газе частиц напоми нает кипящую жидкость. Это состояние называют турбулентной флюидизацией. Па современных установках второй подгруппы процессы крекинга сырья и регенерации катализатора осуществляют в псевдокипящем слое взвеси, т. е. при режиме турбулентной флюидизации. [c.140]

    В процессе Гудри [2, 40, 80, 88] для дегидрирования используется тепло, аккумулированное катализатором и инертным веществом катализатора. Процесс ведется над алюмохромовым катализатором, обработанным предварительно в течение 10 часов водяным паром при 760° С и смешанного с двухкратным количеством алунда [30, 31]. При продолжительности дегидрогенизационного цикла от 7 до 15 минут наблюдается снижение температуры на 50° С, после чего температура снова повышается путем выжига углерода на катализаторе неразбавленным воздухом. Путем соответствующего подбора условий можно добиться теплового равновесия между теплотой реакций и теплотой регенерации катализатора. При применении в качестве сырья к-бутана процесс может быть направлен па получение как бутиленов, так и бутадиена. Установка может работать при малых давлениях (порядка 127 мм рт. ст.), необходимых для получения хороших выходов бутадиена. Температура процесса устанавливается от 566 до 593° С, и объемная скорость от 0,8 до 2,0. В настоящее время завод в Эль-Сегундо (штат Калифорния) максимально развивает производство бутенов как сырья для последующего превращения в бутадиен посредством процесса Джерси (описанного ниже). [c.199]

    Итак, существует оптимальное соотношение концентрации водорода и углеводорода на поверхности катализатора, при котором устанавливается равновесие между процессами регенерации поверхности катализатора водородом и адсорбционным вытеснением молекул углеводорода водородом с поверхности катализатора и ограничением протекания побочных реакций. Определение области оптимального соотношения очень важно для выбора технологических параметров процесса, определяющих активность, селективность и стабильность катализатора. Нами было показано, что в случае осуществления реакции изомеризации н-гексана на HF-SbFs с увеличением парциального давления водорода скорость реакций гидрокрекинга и диспропорционирования н-гексана снижается, одновременно несколько снижается и скорость его изомеризации (рис. 1.20, 1.21). [c.36]

    В процессе на. катализатор вместе с сырьем непрерывно поступает промотор — хлорорганическое соединение (несколько миллионных долей). На платиновом катализаторе промотор превращается в хлороводород. Рециркуляция НС1 не предусмотрена. Низкая скорость реакций гидрокрекинга и небольшая величина коксоотложения на катализаторе позволяют использовать его длительное время без регенерации. Присутствие очень незначительных количеств XJ opoвoдopoдa и практически полное отсутствие влаги в реакционной системе позволяют сооружать установки из углеродистой стали.  [c.102]

    Гидрогенизация. Был предложен способ гидрогенизации смеси побочных продуктов при 100—350 °С и 70 ат (катализатор 2 4-N15 на А12О3). Для повышения селективности процесса, увеличения выхода целевого продукта и облегчения регенерации катализатора можно использовать алюмо-кобальт-молибденовый катализатор . В этом случае гидрогенизацию ведут при 310—360 °С, 50—70 ат, объемной скорости сырья 1,5 и подаче водорода 800 л на 1 л сырья. Расход водорода 2% от сырья. Смесь, направляемая на переработку, кроме дифенилолпропана и побочных продуктов содержала 0,5% воды, 9,6% хлорбензола и 6% фенола. Полученный гидрогенизат имел такой состав (в расчете только на побочные продукты, без хлорбензола и фенола)  [c.181]

    Следуя теории активного комплекса, считаем, что существует равновесие между исходными веществами и активным комплексом. Это допущение, как будет показано ниже, необязательно, но определяет вид получаемого кинетического урав-нення. Следовательно, правильность его в конкретных случаях может быть проверена экспериментально. Скорость процесса в целом определяется скоростью распада активного комплекса в наираЕшении образования продуктов реакции и регенерации катализатора  [c.277]

    Регенерация катализатора, проводимая обычно продувкой катализатора кислородсодержащими газами, является нестационарныАс процессом, формально аналогичным процессам на катализаторах с падающей активностью . Она может цротекать в кинетическом или диффузионном режиме. Первый случай характерен для относительно низких температур (порядка 400—500° С) и высокополимерных, ароматического характера углеродсодержащих отложений. В кинетическом режиме скорость реакции равна [c.299]

    VII. Основные технологические параметры ХТП и производства. В этом разделе наряду с указанием для каждого ХТП и аппарата основных технологических параметров (давление, температура, объемная и линейная скорости, степень насыщения, степень диспергирования, концентрации веществ в растворах, скорости расслаивания, размеры газанул и кристаллов, допустимое влагосодер-жание) отмечаются технологические условия приготовления и регенерации катализаторов, адсорбентов, растворителей и реагентов, которые осуществляются на данном объекте химической промышленности. Кроме того, приводятся сведения о механической прочности и гидравлическом сопротивлении применяемых катализаторов и адсорбентов условия образования осадков, полимеров и пены, методы предотвращения их образования и методы их удаления рекомендации по характеру перемешивания жидкостных сред рекомендации по значениям флег-мовых чисел и плотностей орошения для специальных процессов разделения [c.19]

    В патентах приведены прямоточные и противоточные сз емы циркуляции катализатора и подачи сырья. Из-за пониженного (1,15 М1]а) рабочего давления в реакторе необходимо было выбрать схему, обеспечивающую низкий перепад давления. Использование одноходового вертикального сырьевого теплообменника и новой конструкции огневого подогревателя снизило перепад давления в реакторе с 0,8 до 0,42 МПа. Использование вертикального теплообменника позволило уменьшить потери тепла на 40% по сравнению с обычными горизонтальными теплообменниками. Соответственно уменьшились эксплуатационные и капитальные затраты на охлаждение отходящего из реактора потока. Применение оборудования, обеспечивающего снижение перепада давления и повышение эффективности теплосъема, позволило повысить жесткость процесса риформинга. Непрерывная регенерация катализатора сохраняет его равновесную активность при низком давлении, повышает выход и октановое число риформата. Регенерация осуществляется в четырех независимых зонах нагрева, выжига кокса, оксихлорирования, сушки и охлаждения при радиальном потоке газа через слой катализатора. В дальнейшем за счет реконструкции давление в реакторе снизили до 0,7 МПа, объемную скорость подачи сырья повысили до 1,5 Ч-1, кратность циркуляции ВСГ понизили до 2,5, скорость циркуляции катализатора повысили с 300 до 900 кг/час. [c.162]

    Наши данные, представленные на рис. 76, показывают, что действительно существует определенная зависимость изменения коксообразования катализатора и его регенерации от положения металла в периодической системе. Если рассмотреть элементы 4 периода, по которым мы имеем более полные данные, то видно, что металлы, расположенные по концам периода (калий, рубидий), способствуют уменьшению коксообразования, в то время как на скорость выжига кокса они влияют незначительно. Металлы же, расположенные в средней части периода (кобальт, никель, медь), ускоряют процесс коксообразования и некоторые из них одновременно сильно катализируют и регенерацию катализатора. Элементы, входящие в главную подгруппу I группы, мало различаются по характеру их влияния на скорость образования кокса. Но особо здесь можно выделить легкие металлы, которые резко усиливают регене,рациониую способность алюмосиликатного катализатора. Влияние на скорость образования кокса и на регенерацию катализатора элементов главной подгруппы II группы совершенно идентично. [c.177]

    В процессе крекинга тяжелого углеводородного сырья на катализаторе отлагаются металлы, которые могут влиять на закономерности окисления кокса в регенераторе. Детально это исследовано авторами работы [94]. Установлено, что при добавлении в катализатор различных металлов качественный характер регенерации катализатора не изменяется. Однако металлы, нанесенные на катализатор, интенсифицируют выжиг кокса в начальный период по сравнению со скоростью выжига исходного ка (нлизатора. Наибольшее ускорение наблюдается на образцах, содержащих хром. За первые 25 мин на образце катализатора, содержащем 0,8% (масс.) Сг, сгорает 84% отложенного кокса, в то время как на исходном катализаторе за это же время сгорает только 52% кокса. С уменьшением содержания хрома скорость выжига кокса заметно снижается. На образцах, содержащих ванадий, медь и молибден, доля сгоревшего кокса в начальный момент времени также значительно выше, чем на исходном катализаторе, но несколько меньше, чем на образцах, содержащих хром. Так, при примерно таком же содержании металлов за первые 25 мин выгорает только 70-74% отложенного кокса. При добавлении железа, никеля и кобальта скорость регенерации исходного катализатора мало изменяется. При содержании 0,8% (масс.) железа за первые 25 мин сгорает только 66% отложенного кокса, а на образцах, содержащих 0,48-0,50% (масс.) никеля и кобальта, за то же время сгорает 55% кокса при регенерации исходного образца катализатора сгорает 52% кокса. Свинец не влияет на регенерацию катализатора. [c.33]

    Данные по закономерностям окисления кокса на хромкальцийни-кельфосфатном катализаторе марки ИМ-2206 приведены ъ работе [57]. Исследования проводили при парциальных давлениях кислорода от 0,001 до 0,006 МПа, содержании кокса до 0,7% (масс.), мольном соотношении водяной пар/воздух, равном 2, 15 и 44, температурах 620-675 °С. Установлено, что скорость выгорания кокса не зависит от исходного сырья. Обработка закоксованного катализатора потоком гелия с водяным паром в течение 30 мин не изменяла массы кокса. Продукты регенерации содержали только диоксид углерода и водяной пар. Введение диоксида углерода в исходную смесь в количестве, в полтора раза превышающем образующееся в ходе эксперимента, не изменяло скорости выгорания кокса, что указывает на отсутствие влияния СО2 на закономерности этого процесса. Наблюдался нулевой порядок реакции по водяному пару. Установлено, что скорость процесса окисления кокса возрастает с увеличением содержания кокса и кислорода. Однако эта зависимость по каждому компоненту является нелинейной. При выводе кинетического уравнения, описывающего наблюдаемые закономерности, предполагали двухстадийную схему протекания процесса [c.38]


Смотреть страницы где упоминается термин Скорость процессов при регенерации катализатора: [c.119]    [c.141]    [c.283]    [c.44]    [c.160]    [c.152]    [c.76]    [c.121]    [c.129]    [c.263]    [c.37]   
Смотреть главы в:

Физико-химические и технологические основы получения дивинила из бутана и бутилена -> Скорость процессов при регенерации катализатора




ПОИСК





Смотрите так же термины и статьи:

Процесс скорость

Скорость от катализатора



© 2025 chem21.info Реклама на сайте