Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Предпочтительный реакционный пут

    При отказе от энергетических доводов можно сформулировать условие для наиболее предпочтительного реакционного пути  [c.466]

    Для ряда 2,4-дихлор-1,8-нафтиридинов также наблюдалось, что атомы хлора в положении 2 обладают предпочтительной реакционной способностью по отношению к гидразину [105, 106[. [c.180]

    В качестве катализатора предпочтительно применять активированный алюминий, который первоначально взаимодействием с небольшим количеством хлористого водорода, присутствующего в хлорированном парафиновом углеводороде, превращают в обладающий весьма высокой реакционной способностью хлористый алюминий. В процессе образования этот хлористый алюминий вследствие своей высокой активности катализирует дальнейшее отщепление хлористого водорода из хлористого парафина. [c.240]


    Поддержание определенной температуры нагрева также затруднительно при использовании воздушных бань различных конструкций, обогреваемых пламенем или, что предпочтительнее, электричеством. Простейшую воздушную баню можно устроить, закрепив реакционный сосуд на некотором расстоянии над электроплиткой и оградив нижнюю его часть цилиндрическим экраном из асбеста или другого изоляционного материала. Для этой цели удобна шторка из куска асбестовой ткани, закрепляемая непо- [c.90]

    Это различие особенно ярко отражается на качестве получаемого продукта. Выше указывалось, что в случае сложных реакций распределение продукта может в значительной степени зависеть от типа используемого реактора. Как правило, трубчатый реактор предпочтительнее, еспи побочная реакция протекает быстрее при высокой степени превращения. Кубовый реактор более удобен, если нужно проскочить зону определенного состава реакционной смеси. [c.74]

    Схема б . Для реакций настолько медленных, что количество исходного вещества. превращаемого в течение одного прохода через выносное устройство, очень мало, каждый из этих двух реакторов является удовлетворительным. Однако для более быстрых реакций второй аппарат предпочтительнее потому, что указанное количество превращаемого реагента приблизительно втрое меньше, чем в первом реакторе. При смешении потоков, выходящих из освещаемых элементов, с реакционной массой концентрации веществ в этих потоках отличаются незначительно. [c.177]

    Рассмотренные выше характеристики систем с неидеальным смешением могут оказать практическую помощь при выборе и расчете технологического оборудования, особенно для протекающих с высокими скоростями реакций, по которым в качестве целевого получают промежуточный продукт. Чтобы добиться лучшей гомогенности вещества /4 и в реакционной смеси, необходимо делать зону реакции возможно шире или подавать компонент В в аппарат с компонентом А в распыленном виде. При этом предпочтительно распылять именно вещество В, а не вещество А. [c.319]

    Хорошая реакционная способность по отношению к СО2 и Н2О при низких и средних температурах предпочтительна для газогенераторов бедного газа или циклической работы, но тем не менее она не является в этом случае очень важной характеристикой. В аппаратах циклической работы термические характеристики (теплоемкость и теплопроводность) имеют пе меньшую важность. [c.193]

    Как следует из табл. 2, оптимальной температурой амидирования исследуемых кубовых жирных кислот является температура, равная 160° С. При этой температуре для кубовых жирных кислот с КЧ = 45 а=90% может быть достигнута при соотношении КЖК МЭА=1 1,5, тогда как л а для КЖК с КЧ>76 — практически при любом соотношении, начиная с 1 1,05. Однако вследствие улетучивания из реакционной массы воды и этаноламина в ходе процесса, а также одновременного течения реакций этерификации и амидирования жирных кислот этаноламином твердо установлено [4, 5], что для обеспечения в продукте минимального содержания эфиров необходимо поддерживать в реакционной массе небольшой избыток моно-этаноламина или эквивалентное соотношение между исходными компонентами. Избыточный этаноламин обеспечивает катализ процесса гидролиза эфиров и непосредственно участвует в их омылении. Исходя из этих положений, наиболее предпочтительным оптимальным соотношением КЖК МЭА является 1 1,5. [c.157]


    Топливные элементы появились недавно, срок их службы на более тяжелых, чем природный газ, видах топлива невелик. На практике даже природный газ должен быть конвертирован паром в смесь водорода, окиси и двуокиси углерода, остаточного метана, которая подается в анодную камеру топливного элемента (косвенный топливный элемент). На катодной стороне для обеспечения максимальной реакционной способности вместо воздуха предпочтительнее использовать кислород. [c.333]

    Требования к сырью в данном процессе менее жесткие чем в процессе Лурги - возможна газификация высокозольных (до 40%) и спекающихся углей. Однако предпочтительно использовать угли с достаточно высокой реакционной способностью - бурые угли, реакционноспособные каменные угли, буроугольный кокс и полукокс с размером частиц <10 мм. Интенсивное перемешивание твердых частиц в псевдоожиженном слое приводит к практически изотермическому режиму, что облегчает регулирование температуры в реакторе. [c.89]

    В ряде работ [7-13, 42] указывается на радикальный механизм протекающих реакций, как энергетически более предпочтительных. Последние связаны с так называемым пристенным эффектом, заключающимся в рекомбинации радикалов на стенках, которые ограничивают реакционный объем. Отсутствие однозначных представлений о механизме и стадиях формирования ПУ позволяет оперировать кинетическими зависимостями только скорости образования ПУ от температуры и других факторов парциального давления углеводорода, содержания водорода, вида углеводорода, поверхности осаждения, отношения объема газовой фазы к поверхности осаждения. Следовательно, расчетные значения энергии активации образования ПУ отражают брутто-энергию активации. [c.448]

    Во вторичной реакционной зоне окисление горючих газов идет до конца, т. е. в случае углеводородов — до образования СОг и НгО. В этой зоне преобладают радикалы с окислительным действием (НзО-, СО-, 0-, ОН-, N0-, НСО-), и она является предпочтительной для наблюдений атомной абсорбции элементов, не образующих термостойких оксидов (медь, серебро, золото, цинк, марганец и т. п.). Измерения в этой зоне характеризуются наибольшей стабильностью и наименьшими шумами. [c.146]

    Чтобы сместить равновесие вправо, в реакционную среду вводят окислитель, способствующий отщеплению гидрид-иона (Н-) и связывающий его сразу же после отщепления. Однако такие реакции идут предпочтительно с замещением неводородных атомов. [c.284]

    В ДПЭ-растворителях, напротив, сольватация анионов выражена очень слабо. Причиной этого является отталкивание отрицательных основных центров аниона и молекул растворителя. В соответствии с теорией жестких и мягких кислот образование сольватной оболочки около больших поляризуемых анионов (1 , 5СН-, 5 ) возможно только под действием дисперсионных сил (разд. 33.4.3.4). Жесткие же анионы (Р , ОН , ЫН -) в таких средах совершенно обнажены и поэтому проявляют высокую активность в реакциях с нуклеофильными заместителями. Предпочтительная сольватация катионов, вследствие чего образуются сольватные комплексы большого размера, снижает электростатическое притяжение между сольватирован-ными катионами и анионами, у которых практически не имеется сольватной оболочки. Такое состояние ионов в растворе способствует увеличению реакционной способности анионов, которая увеличивается еще и за счет высокой диэлектрической проницаемости растворителя. [c.449]

    Использование водного раствора ацетона предпочтительнее, так как при этом уменьшаются ошибки за счет его улетучивания и искажения температурного режима в процессе растворения при вливании ацетона в реакционную смесь. [c.353]

    Гидриды лития, бериллия, магния, ципка и кадмия образуются при реакции алюмогидрида лития с соответствующими алкильными соединениями металлов [2]. Эти гидриды не могут быть полностью очищены от эфира, являющегося предпочтительной реакционной средой. Гидрид магния может быть также получен пиролизом диэтилмагния [61], непосредственно из элементов при высоких температурах и давлении [62] и гидрогеиолизом диэтилмагния [40]. Свойства вещества зависят от способа его получения, что может быть обусловлено состоянием измельченности или более важными структурными различиями. Гидрид бериллия также может быть получен пиролизом ди-(тре г-бутил)-бериллия [12], и этот продукт является мепее реакционносиособным и более термически устойчивым, чем продукт, полученный по реакции с алюмогидридом лития. [c.425]

    В настоящее время все больше появляется работ, в которых собственно химическое превращение веществ осуществляется совместно с целенаправленным разделением реакционной смеси в одном и том же аппарате. Сюда можно отнести работы, посвященные исследованию хроматографического эффекта в реакторах, реакционно-абсорбционным и реакционно-экстракционным процессам, а также процессам, в которых химическое превращение успешно сочетается с ректификацией или отгонкой. Известны реакционноосмотические процессы, реакционно-отделительные процессы и многие другие случаи направленного совмещения. В любом из перечисленных процессов химическая реакция составляет единую сложную систему с массопереносом. Естественно, монография Дж. Астарита далеко не восполняет пробела, образовавшегося за последнее время в данной области. Ее задача более скромна — систематизировать в основном знания в области химической абсорбции и дать некоторые толкования механизма столь сложного процесса. Отметим, что наряду с предпочтительностью изложения вопросов, в решении которых принимал непосредственное участие автор, в предлагаемой вниманию читателей монографии существуют и другие крайности. Так, например использованные автором модели массопереноса если и нельзя считать устаревшими, то во всяком случае, далеко не адекватными наблюдаемым явлениям, которые необходимо уточнить. Кроме того, библиография по затронутым в книге вопросам более чем скромна и за редким исклю- Йнием не включает многие исследования, выполненные отечественными исследователями хотя бы в последнее десятилетие. Однако эти серьезные недостатки не обесценивают рассматриваемую монографию, так как представленный в ней в обобщенном виде материал все же дает некоторое представление о современном совтоя-нии затронутых вопросов. [c.5]


    Мы не считаем, что имеющиеся данные подтверждают существование особого реакционного механизма, по которому происходит дальнейшее окисление высших альдегидов. Мы придерживаемся той точки зрения, что группа СНО является более предпочтительным местом атаки активных центров и что получающийся ири этом радикал 7 С0 способен разлагаться затем на I и СО. Таким образом могут образовываться такие радикалы, как СГЬ, СН3СН2, СН3СН2СН2 и т.д. Нрсдиолагается, что такие радикалы способны присоединять О,, разлагаясь затем на ОН и альдегид или на НдО и радикалы типа У СО (—>/ -)- СО), по уравнениям  [c.262]

    Из этих двух схем вторая предпочтительнее [2], хотя, по-видимому, нет никакого физического различия между ними в водном растворе серной кислоты, так как было показано наличие SO3 в концентрированной серной кислоте. Тем не менее увеличение скорости сульфирования с повышением концентрации серной кислоты до 100 % и с увеличением содержания олеума хорошо объясняется при помощи этих двух механизмов. Однако Лоер и Ода на основании изучения кинетики сульфирования антрахинона олеумом пришли к выводу, что моногидрат кислоты является активным сульфирующим агентом, а SO3 просто связывает реакционную воду в виде моногидрата кислоты. [c.528]

    С, избыточном давлении 2,8 ат, отношении изобутана к олефину 1 10. Концентрация кислоты от 90 до 100%, предпочтительно свыше 98% объем кислоты составляет 60—70% от объема реакционной смеси. Расход кислоты около 0,06 кг/л ал-килата, но он зависит в значительной степени от типа сырья и наличия небольших количеств диолефинов. [c.334]

    Большинство исходных данных, необходимых для оптимизации промышленного реактора, можно получить в химической лаборато-рпп. Необходимо иметь сведения о самом дешевом С11 рье, предпочтительной последовательности реакционных фаз при сложном синте.зе, наиболее подходящем катализаторе, возможном нснользованни побочных продуктов и т. п. При оценке результатов экспериментов, связанных с этими вопросами, химик руководствуется в основном полученным выходом целевого продукта. Когда принято решение относительно тина реактора, необходимы дополнительные лабораторные сведения о влиянии переменных процесса па скорости пре-вращепия всех используемых реакций. [c.200]

    Таким образом, знак наклона кривой трр — является показателем для выбора тина реактора, обеспечивающего наибольший выход. Он Э1 вивалентен показателю, приведенному ранее Денби-гом 1 , Трамбузом и Пиретом которые рассматривали знак величины для реакционной спстемы. Когда он отрицателен, наиболее благоприятны для образования целевого продукта низкие степени превращения и предпочтительным является трубчатый реактор когда он положителен, большую часть целевого продукта следует получить ири высокой степени превращения (предпочтительнее кубовый реактор). В последнем случае производительность реактора обязательно будет низкой, так что всегда потребуется большой реакционный объем (по сравнению с трубчатым реактором). Следует лп, и до какой степени целесообразно, пожертвовать некоторой долей выхода для повышения производительности реактора (например, за счет применения каскада кубовых реакторов) Это могут показать только эконолшческпе расчеты. [c.203]

    Важным обстоятельством является способ отвода большого ко-личестна выделяющегося тепла. Имеются системы с внутренними теплообменниками, что усложняет конструкцию реактора. Более предпочтительны реакторы с выносными теплообменниками и циркуляцией жидкости через них. Еще более выгодно отводить тепло за счет испарения исходного углеводорода или растворителя, которые конденсируют из отходящего газа в обратном конденсаторе и возвращают в реактор. На1юнец, в более новых установках, работающих при температурах выше 150°С, за счет реакционного тепла вырабатывают пар, а давление используют для частичного разделения смеси, для получения холода и т. д. [c.367]

    При алкилировании могут применяться твердофазные и жидкофазные катализаторы. Использование твердых гетерогенных катализаторов представляется более предпочтительным, так как лри этом значительно упрощается технологическая схема процесса не требуется отделение катализатора от реагирующих и полученных органических соединений, снижаются затраты на подготовку сырья, промывку реакционной массы и нейтрализацию кислых промышленных сточных вод, катализатор не вызывает коррозию установки. Преимущества гетерогенного алкилирования особенно заметно проявляются при газофазном процессе, но для его осуществления необходимо наличие катализаторов, обладающих не только высокой активностью и стабильностью, но и способных одновременно проводить диспропорциони-рование полиалкилбензолов, повышая выход моноалкилбензо-лов. [c.18]

    Целесообразно остановиться на некоторых особенностях упоминающихся выше методов ФИН, а также фирмы Bayer. Оба эти метода также являются двухстадийными, с получением ДМД в качестве промежуточного продукта. По методу ФИН синтез ДМД протекает в системе жидкость—жидкость, в присутствии 10%-ной серной кислоты, при 75—80 С с использованием двух- или трехступенчатого каскада смеситель—отстойник. Синтез осуществляется с рециркуляцией водного слоя реакционной жидкости, причем избыточное по балансу количество воды (вносимой с 40%-ным формалином) выводится из системы путем упаривания реакционной водной фазы под вакуумом, с рециркуляцией кубового остатка. По данным фирмы Bayer синтез ДМД проводится с использованием ь качестве катализатора суспендированной ионообменной смолы — сульфокатионита (размер частиц от 0,1 до 500 мкм). Процесс также осуществляется с рециркуляцией упаренного водного слоя, однако, в отличие от метода ФИН, упариванию подвергается практически нейтральная жидкость, получающаяся после отделения смолы, что несомненно более предпочтительно. [c.367]

    Другой недостаток динамического крекинга заключается в том, что подавляющее большинство исследователей проводит опыты динамического крекинга в условиях ламинарного потока. При ламинарном режиме скорость движения различных частиц углеводородов по сече-нию трубы распределяется по пзвестному параболическому закону, а потому и продолжительность пребывания их в зоне крекинга оказывается неодинаковой. Дольше всего подвергаются крекингу частицы, примыкающие к внутренней стенке реакционной трубчатки. Наоборот, центральная часть потока будет подвергаться нагреву наиболее короткое время. Помимо некоторого уменьшения вычисленной средней константы скорости крекинга, это обстоятельство может привести к значительному увеличению глубины крекинга некоторой части углеводорода и отложению смолистых и углистых частиц на стенках трубчатки. При внутреннем диаметре трубчатки, равном 5 мм, отложение на внутренней поверхности углистого слоя толщиной всего в 0,5 мм вызовет уменьшение продолжительности пребывания паров углеводорода в трубчатке и соответственно вычисленной константы скорости крекинга почти в два раза. Для устранения указанного недостатка опыты динамического крекинга предпочтительно проводить в условиях турбулентного режима, когда все частицы углеводорода будут продвигаться по трубе с одинаковой скоростью [c.10]

    Труднее найти аргументы, чтобы сделать выбор между кон-формерами а и е. Из общих соображений образование циклического диоксолений-иона предпочтительнее образования ациклического, если исходный ортоэфир циклический. Далее, ири расщеплении конформера а образуются две молекулы, тогда как из конформера е образуется только одна молекула. Взятый отдельно этот энтропийный фактор говорит в пользу конформера а по сравнению с конформером е как с реакционной частицей. Отсюда следует заключить, что циклический ортоэфир гидролизуется преимущественно через конформер а, даже если он существует в быстро устанавливающемся равновесии с конформерами е и д [114]. [c.246]

    При производстве смазок на базе растительных масел значительное внимание уделяют химическому составу дисперсионной среды. Полагают, что производство в автоклавах или контакторах не следует считать пригодным для этих целей, так как на масла воздействуют давление и реакционная вода. Происходящее в результате чрезмерное омыление трудно контролировать, что отрицательно сказывается на катичестве конечного продукта. Более предпочтительно получать смазки в открытом котле, используя готовые мыла. Предложен процесс омыления растительных масел в открытом котле в присутствии защитных агентов. [c.262]

    Поликонденсацией фенольной смолы с формальдегидом в присутствии соляной и серной кислот при 90 С в течение 2 ч получены поликонденсаты (выход 103...112% масс, на смолу), не размягчающиеся при 350°С, с коксуемостью 35.-.40%. Реакционая смесь, содержащая фенольную смоз , формальдегид, НС1 и НгЗОд в массовом соотношении 1 0,4 0,125 0,03, предпочтительна. Термообработка поликонденсата при 150...350°С течение 1 ч сопровождается потерей 6...40% массы и повышением его коксуемости до [c.161]

    Нуклеофильная реакционная способность амина должна быть выше реакционной способности метиленового компонента в противном случае формальдегид будет предпочтительно реагировать с метиленовым компонентом по альдольно-кротоновому типу. С наибольшими выходами реакция Манниха протекает при использовании жирноароматических кетонов, формальдегида и вторичных аминов, например  [c.204]

    Даже в соединениях, у которых реакционная способность неподеленных пар электронов атома азота снижена заменой атома водорода на ацильную группу, замещение идет все равно предпочтительно в пара-положение относительно группы ННСОСНз [формула (51)]. Только в том случае, если атом азота связан с двумя электроноакцепторными группами, например ацильными, -Ь М-эффект снижается настолько, что в соединении (52) замещение идет преимущественно в орго-положение к метильной группе. [c.348]

    Каждая молекула полимерного субстрата фактически представляет собой целый спектр субстратов (реакционных центров) с различной реакционной способностью, которая, как правило, убывает в ходе ферментативной деструкции полимера. Это обусловлено, во-первых, закономерным уменьшением эффективности ферментативного гидролиза при уменьшении степени полимеризации субстрата (см. табл. 1), которая наблюдается для всех эндогид-ролаз и для большинства экзогидролаз, и, во-вторых, предпочтительным расщеплением наиболее реакциоппоспособпых и (или) доступных связей полимера (в особенности нерастворимого полимера) на начальных этапах реакции. Именно поэтому определение начальных скоростей ферментативного превращения полимера в большинстве случаев не является особенно информативным. [c.29]

    Алкилирование ио Фриделю — Крафтсу отличается от основных реакций ароматического замещения тем, что входящая группа является активирующей, поэтому часто наблюдается ди- и полиалкилированпе. Однако активирующее действие простых алкильных групп (например, этильной, изопропильной) таково, что соединения, содержащие эти заместители, подвергаются атаке в реакциях алкилирования по Фриделю—Крафтсу только в 1,5—3,0 раза быстрее, чем бензол [204], поэтому часто оказывается возможным получить высокий выход моно-алкилированного продукта. В действительности тот факт, что часто в обсуждаемых реакциях получаются ди- и полиалкил-производные, объясняется не небольшой разницей в реакционной способности, а тем обстоятельством, что алкилбензолы предпочтительно растворяются в каталитическом слое, где и идет реакция [205]. Этот фактор можно устранить подбором подходящего растворителя, нагреванием или высокоскоростным перемешиванием. [c.350]

    В реакционной среде должно быть полностью исключено. Для превращения арильных реактивов Гриньяра в фенолы предпочтительнее другой метод, включающий использование триме-тилбората и последующее окисление Н2О2 в уксусной кислоте [229] (см. реакцию 12-26). [c.453]

    В процессе превращения субстрата в молекулу 6 лимитирующей стадией может быть либо отрыв протона, либо последующая потеря галогенид-иона. Необычная последовательность реакционной способности уходящих групп (Вг>1>С1) объясняется тем, что меняется стадия, определяющая скорость. Когда уходящей группой является Вг или I, лимитирующей стадией будет отрыв протона, и порядок скорости для этой стадии соответствует последовательности Р>С1>Вг>1. Когда же уходящей группой является С1 или Р, лимитирующим становится расщепление связи С—X, и порядок скорости для этой стадии соответствует последовательности 1>Вг>С1>Р. Подтверждение последнему факту было найдено при изучении конкурентных реакций. жега-Дигалогенобензолы с двумя различными атомами галогена обрабатывали ЫНг [29]. В таких соединениях наиболее кислый водород расположен между двумя атомами галогенов когда он отрывается, остающийся анион может терять любой атом галогена. Поэтому, изучая, какой из атомов галогена отщепляется предпочтительно, можно получить [c.11]


Смотреть страницы где упоминается термин Предпочтительный реакционный пут: [c.136]    [c.199]    [c.1302]    [c.451]    [c.217]    [c.65]    [c.107]    [c.166]    [c.56]    [c.83]    [c.158]    [c.62]    [c.86]   
Реакционная способность и пути реакций (1977) -- [ c.124 ]




ПОИСК







© 2025 chem21.info Реклама на сайте