Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализатор жидкофазного синтеза углеводородов

    В литературе имеются сведения о проведении газо-жидкофазных реакций в кипящем слое катализатора. Описана промышленная установка синтеза углеводородов из окиси углерода и водорода [19]. В этом случае реакция протекает с раствором окиси углерода в смеси нефтяного масла и продуктов реакции. Нефтяное масло циркулирует через колонный реактор снизу вверх, поддерживая катализатор в псевдоожиженном состоянии. Газ под давлением также подается снизу, но количество его и линейная скорость потока не связаны с условиями работы слоя катализатора. Жидкие продукты реакции вместе с маслом выводятся из аппарата и отделяются ректификацией. [c.181]


    Такая относительная легкость жидкофазного окисления и несколько лучшая управляемость процессом с целью получения максимума однородного продукта способствовали развитию не только теоретических работ, но и нахождению оптимальных. условий и селективно действующих катализаторов. Стремление найти способы окисления до ценных кислородсодержащих соединений нефтяных продуктов в виде не индивидуальных углеводородов, а нефтяных фракций способствовало постановке чисто эмпирических работ. С другой стороны, цепная теория окисления углеводородов, развивавшаяся преимущественно в трудах Семенова и его сотрудников, долгое время не рассматривала примеры окисления в жидкой фазе. Поэтому до 40-х годов цепная теория в работах по жидкофазному окислению служила больше средством объяснения процессов, а не средством активного синтеза. С помощью этой теории были объяснены существование индукционного периода, самоускорение процесса, а также влияние ничтожных количеств примесей. [c.330]

    Методы окисления, используемые в промышленности нефтехимического синтеза, можно подразделить на жидкофазные и парофазные и на каталитические и некаталитические. Обычно некаталитическое окисление углеводородов в жидкой или паровой фазе протекает по свободнорадикальному механизму и часто заканчивается образованием смеси продуктов. В то же время каталитические реакции более селективны, причем роль катализатора заключается в увеличении скорости окисления в целевой продукт по отношению к скоростям побочных процессов. Это позволяет снизить температуру реакции и тем самым улучшить ее селективность. [c.163]

    Следует отметить, что окись углерода имеет большое значение не только как сырье для нефтехимии и промышленности органического синтеза. Проблемой огромной важности современной металлургии является очистка защитных атмосфер от следов СО и получение сверхчистых металлов разложением карбонилов. Карбонилы и карбонильные комплексы переходных металлов являются катализаторами не только реакции карбонилирования, но также и других промышленных реакций, например жидкофазного гидрирования, изомеризации, диспропорционирования. Окись углерода часто применяется при изучении адсорбционных свойств металлических и окисных, в том числе цеолитных, катализаторов, а карбонильные комплексы переходных металлов являются модельными системами при изучении структуры и превращений координационных соединений. В последние годы окись углерода привлекает внимание исследователей как газовый модификатор катализаторов селективного гидрирования ацетиленовых углеводородов в олефины. [c.163]


    В последнее время разработаны дещевые и удобные методы получения алифатических ненасыщенных альдегидов (акролеина, метакролеина, кротонового альдегида и др.) окислением углеводородов нефти [96, 124]. Они стали наиболее доступными продуктами для синтеза непредельных кислот. В литературе (главным образом патентной) предлагаются три основных метода жидкофазного окисления алифатических ненасыщенных альдегидов при низких температурах (20—60°) в присутствии солей переходных металлов [125— 128], гетерогенного серебряного катализатора [129—131] и ванадиевой кислоты [132, 133] в различных растворителях (углеводородах, органических кислотах, эфирах, кетонах и т. д.). [c.123]

    В табл. 177 представлены результаты испытания двухступенчатого жидкофазного Процесса фирмы Рурхеми . Хотя количество катализатора на 1 л суспензии не указано, но, сравнивая степени превращения и объемные скорости в табл. 176 и 177, можно заключить, что в обеих ступенях применялось около 445 г катализатора на 1 л масла. Отходящий газ из реактора в каждой ступени охлаждали до комнатной температуры. При этом фракция дизельного топлива и парафин конденсировались полностью, а бензиновая фракция и вода—частично. Из холодильника отходящие газы поступали на адсорбцию активированным углем. Маслянистый слой, сконденсировавшийся при охлаждении, отделяли от воды и возвращали в реактор. Постоянный уровень масла в реакторе поддерживали, периодически отбирая масло через трубу с фильтром, погруженную в суспензию катализатора в масле. Через 2—3 недели работы состав жидкой фазы достигал стационарного состояния, типичного для характеристики процесса. Наибольшая продолжительность работы в жидкой фазе на установке фирмы Рурхеми составляла 7,5 недели. Извлечение продукта синтеза было неполным. Выход углеводородов С3 и выше, вычисленный по данным газового анализа, составлял около 170 г на 1 прореагировавших На-Ь СО и около 155 г на 1 и газа, не содержащего инертных примесей. Степень превращения прореагировавшей окиси углерода в метан составляла около 2% вначале опыта и возросла до 6% в конце 7,5-недельного периода работы. [c.354]

    Процесс получения синтетических жирных кислот методом жидкофазного окисления парафиновых углеводородов в присутствии кислорода и марганец-натриевого катализатора сопряжен с образованием значительного количества сточных вод и кубовых остатков, содержащих органические и неорганические кислоты и их соли, спирты, альдегиды, кетоны, сульфат натрия, соли кальция, марганца, железа и другие продукты органического синтеза. В связи с этим возникает необходимость создания технологических процессов переработки сточных вод и кубовых остатков производства синтетических жирных кислот с выделением загрязняющих компонентов и последующим их использованием. [c.151]

    Химическое отделение Заведующий R. N. Haszeldine Направление научных исследований теория молекулярного строения применение рентгеновской дифракции для изучения молекулярного строения катализ и ингибирование реакций в газовой фазе электронный парамагнитный резонанс свободных радикалов в газовой фазе ЯМР высокого разрешения применение электронно-вычислительных машин для физико-химического анализа газожидкостная хроматография применение галогенов в аналитической химии гидриды металлов сильные неорганические кислоты химия фтора, висмута, фосфора, ванадия методы спектроскопического определения фтора в органических и металлорганических соединениях окисные катализаторы жидкофазное окисление углеводородов органические соединения азота использование полифосфорной кислоты в органическом синтезе кремний-, фосфор- и сераорганические соединения эмульсионные полимеры фторсодержащие полимеры фенол-форм альдегидные смолы силиконы, силоксаны, полисилоксаны масс-спектроскопическое изучение полимеров деструкция полимеров. [c.264]

    Этот синтеза может представлять интерес как способ получения сырья для химической промышленности лишь при наличии дешевого газа (колошниковый или газ карбидных печей). Условия проведения процесса, состав и выход продуктов зависят от применяемого катализатора и состава исходного газа. Так, для железных катализаторов оптимальная температура лежит в интервале 250—300 °С, а давление определяется содеря анием оксида углерода в исходном газе. При 90%-ном превращении СО на железных катализаторах выход углеводородов Сз и выше составляет 160—170 г/м а на кобальтовых — до 200 г/м . Следует отметить, что на кобальтовых катализаторах метанообразование практически не идет. Получаемые продукты аналогичны продуктам жидкофазного синтеза Фишера — Тропша. В табл. 8.13 приведены усредненные данные о жидкофазном синтезе на основе колошни- [c.301]


    В некоторых случаях для увеличения выхода кислородсодержащих соединений восстановленный катализатор в течение нескольких часов обрабатывали при 200—250 °С аммиаком или газами, содержащими аммиак. На полузавод-ской установке в присутствии азотированных железных катализаторов, суспендированных в углеводородной фракции (жидкофазный синтез), при 250 С и к52,1 МПа получали продукт такого состава [в % (масс.)] 26,9 углеводородов С1—Сг, 38,5 углеводородов Сз и выше, 18,7 кислородсодержащих соединений (водорастворимых), 15,9 соединений, растворимых в масле. [c.308]

    Основные научные работы относятся к химии и технологии топлива и нефтехимическому синтезу. Один из пионеров получения в СССР искусственного жидкого топлива из окиси углерода и водорода. Разработал синтезы на основе оксидов углерода и водорода (с применением железных катализаторов), углеводородов, выспшх первичных спиртов, этилового спирта, алкиламинов и др. Открыл способ управления реакцией окисления углеводородов, осуществил синтез высших вторичных алифатических спиртов и разработал технологию этого производства, на основе которой в СССР в 1959 впервые в мире было организовано промышленное производство. Разработал и реализовал в промышленном масштабе жидкофазный синтез циклогексанола и цик-лододеканола в присутствии стоп-реагента. [22, 208] [c.42]

    Разработан непрерывный процесс жидкофазного синтеза дурола и других полиметилбензолов [73]. Этот процесс основывается на жидкофазном метилировании псевдокумола или других исходных углеводородов хлористым метилом в присутствии хлористого алюминия как катализатора. Реакцию проводят при давлении, близком к атмосферному, со степенью превращения хлористого метила 90% за один проход. В этих условиях сколько-нибудь значительных количеств побочных продуктов не образуется расход катализатора незначителен. Продукт выделяют перегонкой или сочетанием перегонки с кристаллизацией. Циркулирующие потоки после выделения целевых продуктов возвращают в реактор, где они повторно участвуют в реакциях трансалкилирования — диспропорционирования — изомеризации. Для получения, например, мезитилена из псевдокумола как исходного продукта, добавки метилирующего агента не требуется. Однако отходящие потоки после операций извлечения и очистки целевого продукта должны возвращаться в реакционную зону для дальнейшего использования. [c.332]

    Каталитическое жидкофазное окисление. Газофазное окисление не может быть использовано в случаях, когда образуются кислоты, не способные к образованию стабильных циклических ангидридов. Серьезные трудности возникают и при газофазном окислении боковых алкильных групп, так как промежуточные продукты окисления последних с большой скоростью сгорают, образуя диоксид углерода и воду. Даже при окислении о-ксилола во фталевый ангидрид подбор селективных катализаторов и оптимальных условий процесса был весьма сложен [60, с. 356—357]. При газофазном каталитическом окислении не удается получить и многих индивидуальных продуктов окисления полициклических ароматических углеводородов. Однако, если получение фталевого ангидрида жидкофазным окислением о-ксилола, несмотря на близкий к теоретическому выход целевого продукта, не выдержало конкуренции с газофазным окислением [61, 62], то терефталевую кислоту и диметилтерефталат получают только жидкофазным окислением л-ксилола. Только жидкофазное окисление можно использовать для синтеза поликарбоновых кислот из триметилбен- [c.41]

    Жидкофазное окисление толуола используется в промышленности для производства бензойной кислоты [18, с. 210]. Окисленш толуола ведут при 150—230 °С и давлении 7—35 кгс/см (опти мальное давление 21 кгс/см ) в растворе бензойной кислоты, со держащем менее 5% толуола. Катализатором являются кобаль товые или марганцевые соли органических кислот, промотирован ные соединениями брома. Выход кислоты в этом процессе близор к теоретическому. Завод, работающий в Англии по этой техноло ГИИ, мощностью 26,5 тыс. т/год был построен в 1964 г. Исполь зование полярного и зачастую агрессивного растворителя услож няет подбор материалов для изготовления аппаратуры и удоро жает последнюю. Значительны затраты и на регенерацию раство рителя и катализатора, расход которого больше, чем при окис лении без растворителя [19]. Поэтому, если жидкофазное окисле ние в среде полярных растворителей и является одним из наибо лее надежных и распространенных способов синтеза терефталево кислоты, то окисление в среде углеводорода, по-видимому, лучши способ получения монокарбоновых кислот. Исключение состав ляет получение нафтойных кислот. При окислении соответствуй щих метилнафталинов в расплаве выход кислот незначителен велико смолообразование. Единственным надежным способом окг зывается окисление в среде уксусной кислоты в присутствии ац тата кобальта, промотируемое бромидами [20, 21]. [c.149]

    В последнее время появился еще один способ проведения реакции, названный синтезом в трехфазной системе (рис. 151, в). Процесс осуществляют в жидкой фазе инертного углеводорода с суспендированным в жидкости гетерогенным катализатором и барботированием синтез-газа через эту суспензию. Тепло реакции отводят за счет циркуляции жидкости через парогенератор или при помощи внутренних теплообменников с кипящим водным конденсатом. Метанол (и часть углеводорода) уносятся непревращенным синтез-газом их тепло используют для подогрева исходного газа. Преимущество этого способа состоит в более благоприятном для синтеза состоянии равновесия при жидкофазной реакции, что позволяет достигнуть концентрации метанола в реакционном газе 15 % (об.) вместо 5 % (об.) при обычном синтезе, доведя степень конверсии син- [c.512]

    В последние годы широкое распространение для синтеза кислородсодержащих соединений (спиртов, альдегидов, кетонов, кислот и т. п.) получил метод жидкофазного окисления ароматических и алициклических углеводородов. Представляло интерес выяснить влияние типа конденсации на реакционную способность и характер превращений в условиях жидкофазного окисления алкилзамещенных тиенотиофенов и бензо[Ь]тиофена, зависимость скорости их окисления от температуры и концентрации катализатора, а также исследовать влияние ряда органических бромидов — инициаторов окисления. С этой целью нами изучено окисление молекулярным кислородом 2-метил- (XV), 3-метил- (XIV) и 2-этил-бензо[Ь]тиофепов, сульфонов 2-метил- и 3-метилбензо[ ]тиофе- [c.227]

    Реакция каталитического восстановления и гидрирования находит широкое применение в промышленности для получения полупродуктов органического синтеза, нанример ароматических аминов из нитросоединений, циклогексанола и циклогексанона из фенола, углеводородов этиленового ряда из ацетиленовых производных. В качестве катализаторов в этих реакциях применяют платину, палладий, никель или в виде высокодисперсных порошков, или нанесенных на различные носители казельгур, окись хрома, окись алюминия, уголь. Реакции жидкофазного гидрирования обычно проводят в среде гидрируемого вещества, продукта реакции или в растворителях при температурах О—200 °С и давлениях водорода (1—200) бар. Каталитический процесс осуществляют в аппаратах, позволяющих интенсивно перемешивать гетерогенную систему в целом. [c.233]

    Влияние изменения состава лигандов на катали.э. При катализе по лигандному механизму активность катализаторов и характер процесса могут сильно изменяться за счет изменения состава лигандной оболочки. Для гомогенных комплексных катализаторов такие эффекты хорошо известны и широко используются. В последнее время Хидекель в своих работах по синтезу и исследованию каталитических систем — аналогов ферментов для жидкофазных реакций обнаружил подобные явления при катализе различных реакций гидрирования молекулярным водородом на платине и на других металлах У1П группы. Введением различных органических и неорганических веществ с резко выраженными донорными и акцепторными свойствами в одних случаях удается получать весьма активные катализаторы гидрирования углеводородов, в других случаях — высоко селективные катализаторы мягкого гидрирования непредельных карбонильных соединений в соответствующие непредельные спирты. Основной механизм действия таких добавок, вводимых в жидкую фазу,— алкоголятов щелочных металлов, хинонов и др.,— по-видимому, сводится к образованию на поверхности лигандных соединений, содержащих наряду с субстратом (Из и гидрируемое соединение) лигандные активаторы, создающие новые более сложные и более совершенные каталитические системы, напоминающие биокатализаторы с сокатализаторами [40]. Эти явления в то же время сходны и не всегда отличимы от разных случаев модифицирования. В этом плане весьма интересны данные по сильной металлоидной активации платины для газовых реакций, полученные в последнее время в нашей лаборатории при изучении действия металлических катализаторов с поверхностью, очищенной в ультравакууме. Поучительный пример сильной активации наблюдается при реакции СО2 + Н2СОН2О. После нескольких опытов самоактивация снижает температуру реакции с 1200 до 400° С. По-видимому, она связана с частичным восстановлением СОхем водородом до С, образующего поверхностный карбид платины. [c.61]


Смотреть страницы где упоминается термин Катализатор жидкофазного синтеза углеводородов: [c.219]    [c.19]    [c.530]    [c.78]    [c.496]   
Химия и технология синтетического жидкого топлива и газа (1986) -- [ c.300 , c.301 ]




ПОИСК





Смотрите так же термины и статьи:

Катализаторы углеводородов



© 2025 chem21.info Реклама на сайте