Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связывание, центры примеры

    В литературе имеется всего несколько работ, в которых рассмотрены возможные кинетические схемы реакций, катализируемых лизоцимом [129—133]. При этом авторы работ пошли по заведомо усложненному пути, пытаясь включить в схему наряду с продуктивным также и непродуктивное связывание субстрата с ферментом. В последнем случае рассматриваются, как правило, различные способы ассоциации исходного субстрата п продуктов его частичного и полного расщепления с различными сайтами (от А до Р) активного центра. Более того, реакции трансгликозилирования, вводимые в подобные схемы, включают также различные варианты ассоциации молекул акцептора с соответствующими сайтами (Е и Е) активного центра, а также различные комбинации размеров молекул акцептора с размерами гликозильной части, удерживаемой в активном центре. Пример (не самый усложненный) подобного подхода рассмотрен в недавней работе [132] и соответствующая кинетическая схема выглядит следующим об- [c.183]


    Молекула антигена попадает в полость между легкой и тяжелой цепями антитела - антигенсвязывающий центр. Примером такого взаимодействия может служить связывание у-гидроксилированной формы витамина К с иммуноглобулином G (миеломный белок NEW). Поданным рентгеноструктурного анализа, с антигеном контактируют 10-12 аминокислотных остатков, расположенных в гипервариабельных участках тяжелой и легкой цепей на рисунке эти остатки обозначены цифрами, указывающими их позиции. [c.150]

    Пример 8. В работе [14] исследуется влияние множественной атаки на величины кинетических параметров ферментативного гидролиза гомополимеров в зависимости от степени полимеризации последних. Данные, приведенные в табл. 28 (отражающие зависимость кинетических параметров ферментативного гидролиза от степени полимеризации субстрата, и в целом подчиняющиеся известному правилу лучшее связывание — лучший катализ [15]), послужили для авторов работы [14] основанием для разработки весьма детализированной кинетической модели множественной атаки. Эта модель включает более десяти микроскопических параметров (число сайтов активного центра положение каталитического участка в активном центре число возможных способов ассоциации субстрата с ферментом число связей субстрата, расщеп- [c.87]

    Другими ионами кальций в этой системе заменить нельзя. Ионы ртути, цинка, кадмия связываются в областях фиксации кальция и вызывают ингибирование ферментной активности этот эффект исчезает при добавлении в смесь ионов кальция. При замещении иона кальция на ион стронция сохраняется активность по отношению к гидролизу ДНК, но замещение ионом бария ведет к полной инактивации, как считают, вследствие геометрических искажений центра связывания кальция, которые передаются и на область связывания нуклеотида. Стерическое соответствие фермент — субстрат при этом утрачивается и активность резко падает. Эти примеры говорят о большом значении геометрической структуры, создаваемой и поддерживаемой ионом в системе фермент—ион—субстрат для правильного протекания ферментативной реакции. [c.364]

    Кислотные и основные центры на ионных кристаллах проявляют большую активность в каталитических реакциях, удаляя из молекулы углеводорода ионы Н+ или вводя ионы Н+, например в процессах крекинга (расщепления), риформинга (изомеризации и переформирования связей), дегидратации спиртов и др. [И]. Хемосорбция воды на кремнеземе —процесс, широко распространенный в природе и в технике (например, в производстве вяжущих веществ и др.). — являет пример кислотно-основного связывания на поверхности ионного твердого тела и перемещения поверхностных атомов адсорбента. [c.143]


    Ингибирование бывает обратимым и необратимым. Последнее относится к реакциям, приводящим к безвозвратной потере активности фер- мента [33а]. Примером необратимого ингибирования может служить инактивация фермента ацетилхолинэстеразы под влиянием ядов нервно-паралитического действия — фосфорорганических соединений (гл. 7, разд. Г, 1). Часто стадии необратимой инактивации предшествует обратимое связывание ингибитора с комплементарным ему центром на поверхности молекулы фермента. Здесь мы не будем рассматривать математическую обработку кинетических данных, соответствующих необратимому ингибированию, и ограничимся обсуждением количествен лых аспектов действия обратимых ингибиторов. [c.27]

    Помимо общей регуляции с помощью БАК-сАМР существует индивидуальная регуляция катаболитных оперонов. Классическим примером является негативная регуляция лактозного оперона. В отличие от ранее рассмотренных димерных белков-регуляторов репрессор лактозного оперона представляет собой тетрамер и содержит два идентичных центра связывания ДНК- Пространственная структура этих центров формируется Х-концевыми участками полипептидных цепей, которые, судя по их аминокислотной последовательности, способны образовывать биспиральные элементы, аналогичные биспиральным ДНК-узнающим элементам репрессора фага л и БАК - С-концевые домены субъединиц лактозного репрессора формирует два центра связывания индуктора лактозного оперона. [c.150]

    Таким образом, из приведенных примеров следует, что белок в роли фермента или апофермента принимает участие в выполнении четыре.ч главных функций. Во-первых, белок обеспечивает специфичное опознавание субстратов, приводящее к образованию комплекса, в котором реагирующие части этих субстратов необходимым образом ориентированы относительно каталитического центра. Во-вторых, он принимает участие в каталитическом акте своими кислыми и основными группами по механизму общего кислотно-основного катализа. В-третьих, в ряде случаев ковалентно связывает часть молекулы субстрата с образованием промежуточного продукта, выступая в этом случае в качестве нуклеофильного катализатора. В-четвертых, в качестве апофермента белок обеспечивает связывание в активном центре иона или молекулы кофактора. [c.207]

    Конкурентный ингибитор связывается с активным центром фермента и далее, в отличие от фермент-субстратного комплекса, не подвергается ферментативной трансформации Следовательно, конкурентный ингибитор выступает конкурентом субстрату за связывание с активным центром Изменяя концентрации субстрата, можно вытеснить из комплекса ингибитор Примером конкурентного ингибитора сукцинатдегидрогеназы является малонат (в норме — субстратом выступает сукцинат) [c.74]

    В этом комплексе наблюдается повышенная скорость переноса Н к пиридиниевой соли субстрата. Это первый пример ускоренного Н-переноса (гранс-восстановления) от 1,4-дигидропириднна к ниридиннй-иону в синтетическом молекулярном макроцикли-ческом рецептор-субстратпом комплексе. Значит, такой синтетический катализатор обнаруживает некоторые характерные свойства, присущие ферментам. Он обеспечивает как акцепторный центр для связывания субстрата, так и активный центр для превращения связанного субстрата. Следовательно, он интересен и как ферментативная модель, и как представитель нового типа эффективных и селективных химических агентов [278]. [c.405]

    Связывание металла, если оно происходит, может обеспечивать различные пути протекания реакций. Интересный пример такого влияния наблюдается для ь-серилгидроксиметилтрансферазы, которая может также катализировать переаминирование о-серина. Центр связывания тот же. но продукты образуются другие  [c.440]

    В последнее время работами Хесса с сотрудниками [5—7] на примере а-химотрипсина был развит новый метод изучения кинетики начальных стадий ферментативных реакций, получивший название метода вытеснения профлавина . Метод основан на том факте, что краситель профлавин (3,6-диаминоакридин) при связывании с а-химотрипсином в водном растворе изменяет свой спектр поглощения в ультрафиолетовой области. Величина разностного спектра поглощения, имеющего максимальное значение при длине волны 465 нм, пропорциональна -концентрации комплекса фермент-профлавин. Введение в систему фермент-профлавин субстрата, конкурирующего с красителем за связывание на активном центре а-химотрипсина, приводит к двум последовательным процессам вытеснения профлавина. Первый, очень быстрый процесс, заключается в обратимом вытеснении красителя из комплекса его с ферментом за счет образования нековалентного фермент-субстратного комплекса. Второй процесс, времена прохождения которого лежат обычно в пределах разрешения установок типа остановленной струи , вызван химическим взаимодействием субстрата с ферментом (например, образованием ацилферментного промежуточного соединения), что приводит к дополнительному уменьшению концентрации комплекса фермент-профлавин. Изучение кинетики второго процесса при различных концентрациях субстрата в дополнение к изучению кинетики ферментативной реакции в стационарном режиме позволяет сделать заключения о стадийности изучаемой реакции, а также найти значения констант скоростей промежуточных стадий ферментативной реакции. [c.188]


    Пример 4 [1]. Раосмотр им фермент, содержащий два эквивалентных активных центра (или две активные субъединицы), взаимодействующие друг с другом (13.11), Этот процесс кооперативен если оба активных центра заняты, реакция превращения субстрата в продукт идет со скоростью, отличающейся от скоростей реакции при связывании субстрата одним активным центром [c.290]

    Подход Хироми для определения сродства отдельных сайтов активного центра фермента к мономерным звеньям субстрата можно наглядно продемонстрировать на примере фермента экзо-действия типа глюкоамилазы [9]. Для связывания олигосахарида глюкоамилазой, очевидно, возможно существование различных позиционных изомеров, но лишь один из них является продуктив- [c.42]

    Так как каталитический участок активного центра р-амнлазы расположен между вторым и третьим сайтами, на что указывают данные но составу продуктов ферментативного гидролиза (почти исключительно мальтоза), то величины Лг и Лз не могут быть найдены с помощью онисанного метода картирования активного центра. Однако величину Л, можно найти при анализе состава продуктов гидролиза мальтотриозы под действием а-амилазы. Так, в работе [16] на примере гидролиза мальтотриозы, меченной по восстанавливающему концу, показали, что содержание радиоактивной глюкозы в продуктах реакции в 240 раз превыщает содержание радиоактивной мальтозы. Поскольку мальтотриоза может связываться с активным центром р-амилазы лишь двумя продуктивными способами (I и II, рис. 10), которые приводят соответственно к образованию меченых глюкозы и мальтозы как продуктов реакции, то можно заключить, что способ I — основной продуктивный способ связывания мальтотриозы. Далее, поскольку относительные количества образовавшихся меченых глюкозы и мальтозы соответствуют вероятности Р связывания субстрата в положениях I и II (рис. 10), что согласно рассматриваемой теории имеет прямое отношение к разнице в аффинностях соответствующих сайтов, то можно записать [c.55]

    На этом примере видны некоторые важнейшие черты, свойственные большому числу ферментов. Во-первых, катализатор имеет как бы два центра—связывающий (контактный) и собственно каталитический. Один из них, представленный в рассмотренном случае протонированной гуанидиновой группой и тремя гидрофобными радикалами, обеспечивает образование комплекса фермент — субстрат (связывание субстрата ферментом), в результате чего расщепляемая связь направляется на каталитический центр. Собственно каталитический центр представлен в рассмотренном случае ионом цинка и оксигруппой тирозина. [c.326]

    Связывание протона анионом тиамина — это пример кооперативного процесса, названного так потому, что присоединение первого протона облегчает присоединение второго. При связывании небольших молекул кооперативные процессы встречаются сравнительно редко, однако в биохимии они распространены ч резвычайно широко и играют большую роль. Кривую кооперативного связывания называют сигмоидной (5-образной), поскольку график зависимости у от [X] (изотерма связывания) имеет 5-образную форму. Процесс связывания называется полностью кооперативным, если возможная степень кооперативности максимальна Это значит, что п-й центр связывания с лигандом X практически не обладает сродством к X до тех пор, пока не заняты остальные (п—1) центров. Однако после того как этн центры будут заняты, сродство п-го центра к X возрастает настолько сильно, что в любой равновесной смеси присутствуют в значительных количеству только Р и РХ . [c.262]

    Многие металлопротеиды содержат особые металл-связывающие простетические группы, примером которых может служить порфириновая группа в гемоглобине (рис. 10-1). Иногда специфический центр связывания создается кластерами из карбоксильных, имидазольных или других групп. В качестве одного из лигандов в некоторых белках может выступать МН-группа пептидной связи, которая утратила протон. Небольшие пептиды реагируют с ионами Си +, образуя комплексы [30, 31] в некоторых из них ион меди ковалентно связан с азотом амидной группы [уравнение (4-38), стадия б]. [c.268]

    Известны ферменты (и число их непрерывно растет), которые наряду с каталитическими субъединицами, несущими активные центры, содержат регуляторные субъединицы, слабо (или, напротив, сильно) взаимодействующие с каталитическими субъединицами и выступающие в роли аллостерических модификаторов. В свою очередь регуляторные субъединицы могут претерпевать конформационные изменения, индуцируемые связыванием ингибиторов или активаторов. Наилучшим примером такого рода служит аспартат—карбамоилтрансфераза (гл. 4, разд. Г). Ее регуляторные субъединицы содержат центры связывания цитидинтрифосфата (СТР), который выступает в роли специфического ингибитора фермента. Значение этого ингибирования с точки зрения регуляции становится очевидным, если учесть, что аспартат—карбамоилтрансфераза катализирует первую реакцию пути синтеза пиримидиновых нуклеотидов (гл. 14, разд. Л, 1). СТР является конечным продуктом этого пути и вызывает ингибирование фермента по принципу обратной связи. [c.39]

    Какова структура активных центров Благодаря кристаллографическим исследованиям мы можем неиосредственно увидеть , как устроено все большее и большее их число. Однако рентгеноструктурный анализ обычно не позволяет получить четкого представления о конформацион-ных изменениях, обеспечиваюш их индуцированное соответствие. Кроме того, кристаллографические исследования с высоким разрешением проведены лишь для относительно небольшого числа ферментов. Поэтому для выяснения структуры активного центра энзимологи продолжают широко использовать традиционные химические методы картирования , измеряя константы связывания ингибиторов, структуру которых последовательно изменяют, и исследуя, как влияют изменения структуры субстратов на связывание и скорость реакции. Хорошим примером исследования такого рода может служить работа Мейстера (Meister) и его сотрудников, исследовавших глутаминсинтетазу из мозга овцы. Субстратами фермента являются как D- и L-глутаминовая кислоты, так и а-аминоадипиновая кислота. В то же время из десяти монометильных производных D- и L-глутаминовой кислот субстратами глутаминсинте-тазы могут служить только три. Если допустить, что субстраты связываются в полностью вытянутой конформации, то все атомы водорода, замена которых не приводит к исчезновению активности, лежат с одной стороны остова молекулы (за плоскостью рисунка на следующих двух схемах)  [c.43]

    Условный ряд катионных иммобилизованных катализаторов начинается от простейшей Н-кислоты воды. В этой связи заметим, что, хотя концепция нанесенных катализаторов сформировалась как направление для металлокомплексных систем [106], нанесенные катализаторы были известны гораздо раньше. Твердые кислоты минерального происхождения с поверхностными льюисовскими и бренстедовскими центрами, по существу, являются первым примером иммобилизованных систем, на которых была установлена зависимость кислотно-каталитических свойств от природы носителя [40]. Хотя при формировании иммобилизованных катализаторов используются различные способы фиксации кислотного компонента - от пропитки, импрегнирования, интерколяции до химического ковалетного связывания, можно проследить общий характер влияния носителя на поведение катализатора. Являясь основанием или имея в своем составе места разной степени основности, подложка вступает с катализатором в кислотно-основные взаимодействия, зависящие от химической и физической природы компонентов. Благодаря наличию спектра кислотных (основных) свойств компонентов происходит отбор кислотно-основных взаимодействий в соответствии с известной концепцией жестких и мягких кислот и оснований (ЖМКО) [107]. В итоге подложка выступает как макролиганд, увеличивающий размеры ионов и стабилизирующий их. Как следствие, имеет место повышение кислотной силы и каталитической активности систем. [c.55]

    Регуляция путем ингибирования. Ингибирование ферментов может быть необратимым и в этом случае вызывается обычно внешними факторами, например, нагреванием, ядами, денатурирующими агентами. Примеры необратимого ингибирования - действие диизопропилфторфосфата на сериновые ферменты, связывание гидроксильных или тиоловых групп в активном центре ионами тяжелых металлов, например при взаимодействии пдра-хлормеркурибензоата с 8Н-группами остатков цистеина в АЦ фермента. Действие необратимых ингибиторов не регулируется. [c.34]

    Изобилие структурных повторений свидетельствует о том, что новые формы укладки цепей были редкими, но очень важными нововведениями. Дупликация аминокислотной последовательности и укладки цепи обнаружены в ферредоксине (разд. 5.3). В парвальбумине повторение последовательности наблюдается в основном для остатков, находящихся в центре связывания Са однако общее повторение укладки цепи явно проявляется в третичной структуре [59, 590]. Простое повторение типа свертывания цепи без какой-либо гомологии в аминокислотной последовательности встречается в роданезе (рис. 5.17, а), а также в трипсиноподобных белках, где эти участки имеют вид двух цилиндров (рис. 5.17, г). Все эти примеры показывают, что новый тип свертывания цепи возникал чрезвычайно редко, а новая укладка цепи повторялась и затем сохранялась в каждой копии. [c.231]

    Архитектура иммуноглобулина может служить основой для синтеза in vitro пептидов с заданными связывающими свойствами. Для теоретических и практических исследований может оказаться крайне полезным синтез in vitro полипептидной цепи с определенной специфичностью и сродством к данному соединению. Один из возможных путей может начаться с природной или синтетической области VlIVh без гипервариабельных петель в качестве остова. Путем включения подходящих последовательностей на место гипервариабельных сегментов можно затем сформировать специфичный центр связывания рассматриваемого лиганда без нарушения процесса свертывания и стабильности остова [498]. Пример Си —Zn -содержащей пероксид-дисмутазы [286] можно рассматривать как. природный прецедент этого метода пептидной инженерии. В этом случае геометрия координации атомов металла в активных центрах имеет очень много общего с соответствующими фрагментами кристаллических структур медь-имидазольных и цинк-имидазольных. комплексов [661]. Таким образом, обе основные особенности этогО фермента, структура иммуноглобулина и комплекс металла, могуг быть воспроизведены химиками-органиками. [c.246]

    Эксперименты по фиксации интермедиатов являются, таким образом, весьма мощным приемом в работе по изучению механизмов действия ферментов, и борогидрид был использован в ряде случаев для регистрации таких интермедиатов. Мы не можем, однако, ожидать, что неспецифичный реагент обычно будет способен вмешиваться в химию процессов фермент-субстратного комплекса. Борогидрид — особый случай, так как это очень маленькая молекула, почти такого же размера и формы, как Н2О. Ферменты обычно способны оставлять посторонние молекулы вне активного центра. Наилучший способ поместить реагент в активный центр — это замаскировать его под субстрат, т. е. использовать аналог субстрата, располагающий структурными особенностями, необходимыми для связывания, но несущий также функциональную группу, предназначенную для необратимой реакции с группами активного центра. (Поэтому такие реагенты пригодны больше для идентификации функциональных групп активного центра, чем для регистрации интермедиатов.) Далее мы детально опищем подход с применением аналогов субстратов, используя некоторые из многочисленных примеров, доступных из работ по химотрипсину. [c.481]

    Фактором, определяющим силу взаимодействия между двумя молекулами, возможно, даже более важным, чем водородная связь или электростатическое притяжение, является гидрофобное связывание [8,84]. Молекулы или части молекул, недостаточно сольватируемые водой, разрушают сеть водородных связей, составляющую структуру растворителя. Это разрушение снижается в случае сближения таких молекул, в результате чего уменьшается общая площадь контакта неполярной поверхности с водой. Углеводороды, например, образуют отдельную вторую фазу, в то время как детергенты, обычно представляющие собой длннноце-почечные углеводороды с полярными группами с одного конца, образуют мицеллы [9]. Последние представляют собой шарообразные агрегаты молекул с заряженными концевыми группами на поверхности, сольватпрованными водой и с углеводородными цепочками внутри, в контакте только друг с другом. Маленькие неполярные участки или полости на поверхности белка также слабо сольватированы водой, однако они не контролируют состояния агрегации молекулы в целом. Эти участки могут, однако, взаимодействовать с гидрофобными молекулами или частями молекул близкого размера, соединяясь с ними, в результате чего уменьшается общая площадь контакта неполярной поверхности с водой, как это указано выше. При обсуждении трехмерной структуры химотрипсина уже рассматривался пример такого рода (см. с. 488). Вблизи активного центра этого фермента располагается образованный гидрофобными группами карман [46], размер которого позволяет связыванию в нем индольного бокового радикала остатка триптофана. Сам индол прочно связывается в этом кармане (энергия связывания 60 кДж-моль ) [88]. Селективность действия химотрипсина в отношении той или иной пептидной связи в большой степени определяется комплементарно-стью соответствующего бокового радикала аминокислоты этому гидрофобному карману. [c.505]

    Многие белки в противоположность приведенным выше примерам связывают ионы металлов либо временно, либо в течение всего времени их существования в организме. Ранее уже упоминался пример временного связывания Са + в связи с протеолитической активацией протромбина и других компонентов системы свертывания крови (см. разд. 24.2.1.2). Иной случай представляют щелочные фосфатазы и фосфокиназы, где, по-видимому, для экранирования отрицательных зарядов фосфатной группы для облегчения атаки атома фосфора нуклеофилом требуется ион двухвалентного металла типа Mg + или Zn +. Более постоянное связывание ионов металлов белками может служить для выполнения одной из указанных ниже целей. Ионы Са + предохраняют трипсин от автолиза. Конкавалин А (см. ниже) не связывает производных глюкозы до тех пор, пока не свяжет предварительно один ион Са + и один ион Мг 2+ на субъединицу. В данном случае катионы, по-видимому, осуществляют подгонку конформации молекулы, образуя центр связывания глюкозы. Ионы металлов принимают также участие в формировании активных центров ферментов. По- [c.561]

    Метод афинной модификации центров связывания IgG можно проиллюстрировать несколькими примерами. Ион ж-нитробензо-диазония, близкий по размерам к лг-динитробензолу, реагировал с антителами свиньи, выработанными против 2,4 динитрофениль-ного гаптена, присоединяясь к боковым радикалам Туг-33 Н-цепи и Туг-33 и Туг-313 L-цепи антитела. Л -Бромацетил-(л1-арсанилазо)-L-тирозин (16) реагировал с боковым радикалом Lys-59 Н-цепи [c.566]

    Неконкурентное ингибирование вызывается веществами, не имеющими структурного сходства с субстратами и часто связывающимися не с активным центром, а в другом месте молекулы фермента. Степень торможения во многих случаях определяется продолжительностью действия ингибитора на фермент. При данном типе ингибирования благодаря образованию стабильной ковалентной связи фермент часто подвергается полной инактивации, и тогда торможение становится необратимым. Примером необратимого ингибирования является действие йодацетата, ДФФ, а также диэтил-и-нитрофенилфосфата и солей синильной кислоты. Это действие заключается в связывании и выключении функциональных групп или ионов металлов и молекуле фермента. [c.150]

    Ферменты природного происхождения, являясь катализаторами биохимических реакций, отличаются от обычных химических катализаторов высокой специфичностью, в силу которой действуют строго на одно вещество (субстрат) или очень небольшое число близких по химической структуре веществ. Данная особенность обеспечивается уникальной структурой активных центров ферментов, определяющих эффективность связывания только со своим субстратом и исключающих связывание других веществ. Классическим постулатом энзимологии является стерическое соответствие структуры молекулы субстрата структуре активного центра фермента, то есть каждый фермент подходит к субстрату, как ключ к отпираемому замку. В то же время степень специфичности ферментов варьирует. Принято различать абсолютную, абсолютную групповую, относительную групповую и оптическую виды специфичности. Абсолютная предусматривает только сродство к одному субстрату, не взаимодействуя даже с родственными по структуре субстратами. Примером может служить фермент уреаза (карбамидаминогидролаза), катализирующая гидролиз мочевины. Этот фермент был выделен в ГНЦЛС из семян столовых арбузов доказана его специфичность, изучены основные биохимические свойства [18, 19]. [c.163]

    В предыдущих примерах геометрия рецептора была ответственна за селективность взаимодействия с субстратом, а собственно связывание обеспечивалось кулоновскими взаимодействиями четко локализованных, почти точеч-ньк заряженных групп рецептора и субстрата. В электронейтральных, чисто ковалентных субстратах таких дискретных центров, разумеется, нет. Их связывание может бьггь основано только на гораздо более слабых и пространствен- [c.479]

    Рецепторы являются белками, которые, будучи центрами связывания и действия физиологических эффекторов (гормонов, нейромедиаторов), передают внеклеточные сигналы внутрь клетки. Они состоят из узнающих и связывающих белков, принимающих сигнал, и из эффектора, трансформирующего этот сигнал в определенный эффект. Эффектор может быть ионным каналом, транспортной системой или ферментом. Мы обсуждали различные модели механизма сопряжения связывания лиганда (гормона, медиатора) и его действия самая вероятная из них основана на аллостерической модификации рецепторного белка. Функции связывания и осуществление эффекта относятся, возможно, к различным субъединицам рецепторного комплекса. В качестве примера можно привести гормончувствительную аденилатциклазу, которая в качестве эффектора может быть отделена от связывающего участка и биохимически очищена. Согласно гипотезе плавающего рецептора, этот фермент латерально диффундирует в клеточной мембране и регулируется разнообразными рецепторами. Внеклеточный сигнал переносится к этому ферменту через третий компонент — группу сопрягающих белков, называемых N-белками. Они могут обладать стимулирующим (Ns) или ингибирующим (N ) действием. В свою очередь N-белки активируются GTP, а функция рецеп- [c.299]

    Второй важный случай кооперативных взаимодействий проявляется в системах, построенных из нескольких субъединиц, содержащих однотипные центры связывания лиганда Ь. В качестве детально изученного примера можно привести уже неоднократно упоминавшийся гемоглобин, содержащий четыре остатка гема, по одному на каждой из двух а- и двух /3-субъединиц, и тем самым способный связывать до четырех молекул Ог- Важной особенностью этой структуры является тот факт, что присоединение О2 к одной из субъединиц вызывает конформационное изменение не только в ней самой, но и в контактирующих с ней субъединицах, причем в результате этих изменений повышается их сродство к кислороду. Это существенно изменяет вид зависимости степени насыщения кислородом от его парциального давления по сравнению с гиперболической зависимостью, описываемой уравнением (3.12). Важно, что при этом зависимость становится значительно более благоприят1Юй для выполнеш я гемоглобином его основной биологической функции — переноса кислорода от легких к тканям живого организма. [c.121]

    В гл. IV мы показали на двух примерах (см. стр. 148), что с помощью сефадекса G-25 можно определить число центров связывания в молекуле фермента, или сродство ферментов к различным реагентам, а также изучить влияние кофакторов на фермент (см. стр. 142). Аналогичным образом, измеряя способность к связыванию восстановленного ДПН, удалось найти эквивалентный вес семи дегидрогеназ (30 000— 40000) [20]. Иногда образуются стабильные комплексы фермента с реагентом, как, например, при действии свободной от цинка карбоксипептидазы на пептидный субстрат [21]. Этот комплекс, который с помощью гель-хроматографии можно отделить от избытка субстрата, уже не активируется ионами цинка. Очистка гель-фильтрацией на сефадексе G-50 является стандартным приемом при определении металла в карбоксипепти-дазе [22]. Лизоцим образует нерастворимый комплекс с продуктом, получающимся при действии этого фермента на- определенный гликопептид. Растворение этого комплекса (в растворе Na l) и последующий анализ с помощью гель-хроматографии на сефадексе (j-75, а затем на G-25 дает информацию о кинетике ферментативной реакции [23]. При добавлении цито-хромоксидазы к избытку цитохрома с и последующем разделении на сефадексе G-200 в некоторых случаях получают высокомолекулярную фракцию, содержащую эквимолярные количества обоих ферментов эта фракция есть по сути не что иное, как часть дыхательной цепи [24]. В некоторые ферменты цикла лимонной кислоты, для которых кофактором служит биотин, удалось ввести метку (С Ог) в результате реакции с соответствующими субстратами с последующей очисткой на сефадексе G-50 это дало возможность после деградации под действием проназы [c.214]


Смотреть страницы где упоминается термин Связывание, центры примеры: [c.300]    [c.23]    [c.166]    [c.469]    [c.259]    [c.469]    [c.249]    [c.281]    [c.103]    [c.389]    [c.183]   
Принципы структурной организации белков (1982) -- [ c.62 , c.114 , c.116 , c.243 ]

Принципы структурной организации белков (1982) -- [ c.62 , c.114 , c.116 , c.243 ]




ПОИСК





Смотрите так же термины и статьи:

Связывание



© 2024 chem21.info Реклама на сайте