Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пропан, летучесть

    Разделение углеводородов в газофракционирующей секции может проводиться по двум вариантам. Первый вариант предусматривает последовательность выделения компонентов в порядке уменьшения их летучести. В этом случае все тяжелые углеводороды проходят последовательно этановую, пропановую и бутано-вые колонны. По второму варианту из сырья выделяют широкую гамму углеводородов с последующим фракционированием их в отдельных колоннах. В этом случае первой по ходу сырья является бутановая колонна, сверху которой отбирают этан, пропан и бутан, подвергающиеся дальнейшему разделению в про-пановой колонне на этан-пропановую фракцию и бутан, а остаток бутановой колонны поступает в следующую (пентановую) колонну для разделения на пентановую фракцию (головной погон) и гек-сановую фракцию (нижний остаток). Чистота пропана, бутанов и гексана, получаемых по второй схеме, достигает 98%. Пентано-вая фракция в изопентановой колонне фракционируется на н-пен-тан и изопентан (рис. 1). [c.19]


    В качестве метода дальнейшего снижения потерь этилена предлагается на верхние тарелки колонны вводить относительно нелетучий компонент, который позволяет снизить летучесть этилена по отношению к метану и тем самым способствует снижению потерь этилена. В качестве такого компонента в ХТС производства этилена может быть использован пропан. На рис. 1У-22 представлена схема № 8, в которой перед последним холодильником на линии потока питания Т4 введен поток пропана. [c.186]

    При ректификации смеси, состоящей из ограниченного числа компонентов, например из этана, пропана, бутана и пентана, в качестве условных НКК и ВКК принимаются смежные по летучести компоненты, из которых один (НКК) преимущественно входит в состав ректификата, а другой (ВКК) входит в состав остатка. Так, если целью ректификации данной колонны является отделение смеси этапа и пропана от смеси бутана и пентана, то для построения кривой равновесия фаз за НКК принимают пропан, а за ВКК — бута] . [c.191]

    Давление пара является мерой летучести СНГ. Установлено, что при любой данной температуре пропан (наиболее низкокипя-щнй жидкий СНГ) имеет наивысшее значение давления насыщенных паров, а бутан (наиболее высококипящий жидкий СНГ) — наименьшее значение давления насыщенных паров (табл. 10). [c.49]

    Е ли через А обозначен более летучий компонент, тот>1,0. Чем больше по температурам кипения отличаются компоненты, тем выше значение т. Как правило, с понижением давления или температуры системы относительная летучесть т возра-стае". Например, летучесть пропилена по отношению к пропану равна 1,12 при р =20,б бар, 1,15 при 15,4 бар и 1,21 при [c.361]

    Была также сделана попытка применить в качестве параметра, характеризующего состав, молекулярный вес, однако это оказалось менее точным, чем применение среднемольной температуры кппенпя. Это было установлено путем сравнения коэффициентов летучести, рассчитанных посредством уравнений предыдущей статьи для ряда состояний в системах метан — этилен — нзобутан и метан — пропан — н- пентан, с коэффициентами летучести, рассчитанными для бинарных смесей метан — изобутан и метан — к-пентан, имеющих ту же среднемольную температуру кипения пли тот же молекулярный вес. [c.25]

    Одним из клатратных соединений является газированный лед. Опыт показывает, что при охлаждении воды, насыщенный каким-либо газом под давлением, образуется лед, содержащий в своей кристаллической решетке молекулы газа. При этом молекулы Н2О посредством водородных связей образуют многогранники, полости внутри которых достаточно велики, чтобы молекула газа могла в них находиться почти свободно. Выйти из многогранника или войти в уже образовавшийся газо-гидрат молекула не может (рис, 5.21). Поэтому, несмотря на летучесть газов, эти соединения являются относительно устойчивыми. Молекулами-гостьями в гидратах могут быть углекислый газ, аргон, криптон, ксенон, метан, этан, этилен, пропан, циклопропан и др. Гидраты экономичны в смысле хранения газа. В 1 м газового гидрата около 200 м метана. Добыть газ из гидрата очень легко нагреванием. Существует предположение, что большие запасы природного газа хранятся в недрах Земли в форме газогидратов. [c.149]


    Приведем в качестве примера следующие данные по разделению смеси пропилена с пропаном [141]. Исходные данные мольная доля пропилена в сырье ал=0,6 в дистилляте ул = = 0,95 в остатке л д = 0,1. Рабочее давление в колонне 20,6 бар. Относительная летучесть т=1,12 принята постоянной по высоте колонны. Расчет проведен графически по диаграмме у—х. Найдено (й //)) мин. = 12,05. При увеличении кратности орошения по сравнению с минимальным на 30% для реальной колонны имеем 15,66. Число теоретических тарелок в обеих сек- [c.362]

    Пример 11.3. Нагретая до температуры начала кипения (при заданном давлении) четырехкомпонентная смесь пропан, изобутан, н-бутан и н-пентан подается в полную ректификационную колонну с целью получения практически чистого н-пентана в качестве нижнего продукта. Состав сырья и летучесть его компонентов приведены в табл. 11.3. Для упрощения техники расчета вместо констант фазового равновесия использовались усредненные коэффициенты относительных летучестей компонентов, взятые согласно уравнению (11.119) по отношению к наиболее тяжелому компоненту — к-пентану. [c.369]

    Установки фракционирования газов путем ректификации характеризуются некоторыми особенностями. Необходимость полной или частичной конденсации головного погона заставляет осуществлять ректификацию под давлением, которое тем выше, чем легче головной погон. Однако повышенное давление затрудняет разделение. Например, для бинарной смеси пропан+изобутан относи-, тельная летучесть а при 100 Х и 2 МПа равна 1,7, а при той же температуре, но при 1 МПа уже а=1,9, т. е. разделение облегчается. [c.281]

    Возникшая в последнее время потребность химической и нефтеперерабатывающей промышленности в практически чистых индивидуальных соединениях, получаемых из нефтяных фракций, например этилене, пропилене, пропане, изобутане, н-бутане, изопентане, н-пентане, смешанных гексанах, гептанах, бензоле, толуоле и ксилолах, стимулировала разработку специальных методов, позволяющих осуществлять разделение компонентов, обладающих приблизительно одинаковой летучестью. [c.102]

    Одной из важнейших расходных статей стоимости производства пропилена чистотой 90—99% являются затраты на фракционирование. Средняя относительная летучесть пропилепа по отношению к пропану равна 1,12 при 21 ата,. 1,15 при 15,7 ата и 1,21 при 7 ата. Эта весьма низкая относительная летучесть, и объясняет высокую стоимость фракционирования при производстве пропилена. [c.110]

    Данные по фазовым состояниям для системы пропилен — пропан опубликованы в литературе [17, 33]. На рис. 6 показана зависимость относительной летучести от равновесного давления и состава согласно источнику [33 ]. Можно видеть, что, как и для системы этилен — этан, относительная летучесть пропилена по отношению к пропану снижается с увеличением молярной доли пропилена в головном погоне. Из рис. 6 видно также влияние давления на относительную летучесть для системы пропилен — пропан по мере приближения к критическому давлению относительная летучесть стремится к единице. В предыдущем примере относительная летучесть предполагалась постоянной. Для решения этой задачи можно использовать данные рис. 6. Для этого колонну подразделяют на соответствующие секции и для каждой секции используют среднее значение относительной летучести таким образом возможно учесть изменения относительной летучести в зависимости от концентрации пропилена. [c.112]

    При работе двигателя на сжатом природном газе (СП Г) межремонтный пробег в два раза выше, чем на бензине, и существенно меньше расход масла. Недостатком СНГ является необходимость использования специальных толстостенных баллонов. Сжиженные нефтяные газы (СНГ), содержащие преимущественно пропан и бутан, в качестве автомобильных топлив имеют ряд преимуществ перед сжатыми газами и поэтому в настоящее время находят более широкое применение. СНГ - качественное углеводородное топливо с высокими антидетонационными свойствами (ОЧ(И.М.) около 110), широкими пределами воспламенения, хорошо перемешивается с воздухом и практически полностью сгорает в цилиндрах. В результате автомобиль на СНГ имеет в 4 -5 раз меньшую токсичность в сравнении с бензиновым. При работе на СНГ полностью исключается конденсация паров топлива в цилиндрах двигателя, в результате не происходит сжижения картерной смазки. Образование нагара крайне незначительно. К недостаткам СНГ следует отнести высокую их летучесть и большую взрывоопасность. [c.656]

    Остаток состоит в основном из бутана, пентана и гептана, однако очень небольшое количество пропана все же попадает в остаток. Равным образом и дестиллат, состоящий в основном из метана, этана и пропана, содержит небольшое количество бутана. Эти два компонента, пропан и бутан, являются типичными представителями тех пограничных компонентов, называемых ключевыми, между которыми как бы проходит граница раздела исходной системы. Один из этих пограничных компонентов, в рассматриваемом случае пропан, называется легким ключевым компонентом, а другой —тяжелым. Важно отметить, что легкий и тяжелый ключевые компоненты не обязательно должны быть смежными, непосредственно примыкающими друг к другу компонентами на шкале летучести. Между ними могут расположиться и другие компоненты промежуточной летучести, различным образом распределяющиеся между дестиллатом и остатком. Основное значение имеет лишь то, что все компоненты исходного сырья, более летучие, чем легкий ключевой компонент, попадают только в дестиллат, а все компоненты, менее летучие, чем тяжелый ключевой компонент, попадают только в нижний продукт. [c.442]


    Очевидно закономерное влияние молекулярной массы алканов на температуры плавления и кипения, на плотность, которая даже у полиэтилена и полипропилена, тем не менее, остается меньше единицы Разветвления цепи, уменьшая межмолекулярные взаимодействия и делая более рыхлой упаковку молекулярной кристаллической решетки, закономерно снижают по сравнению с нормальными (неразветвленными) изомерами температуры кипения, плавления и плотность Первые четыре члена гомологического ряда алканов в нормальных условиях являются газами, от пентана до пентадекана — жидкостями, начиная с гексадекана — твердые вещества Для бытовых целей обычно используют пропан-бутановую смесь, которая легко сжижается при небольших давлениях Газообразные и твердые алканы не имеют запаха, жидкие имеют характерный бен-зино-керосиновый запах Запах бытового газа связан с очень малыми добавками серосодержащих соединений, которые специально вводят для обнаружения утечки газа Высокая летучесть и испаряемость жидких алканов приводит к образованию взрывоопасных концентраций их паров в закрытых помещениях, о чем необходимо всегда помнить для создания безопасных условий труда в таких помещениях [c.220]

    Давление пара. Низкое давление пара экстрагента обеспечивает лучшие условия хранения экстрагента и дает возможность проводить процесс экстракции при атмосферном или умеренном избыточном давлении одновременно уменьшаются потери экстрагента. Иногда экстракцию проводят при повышенном давлении, чтобы облегчить регенерацию экстрагента методами, в которых используется высокая летучесть последнего. Например, в процессах очистки нефтепродуктов обычно применяют в качестве селективных растворителей жидкие пропан и двуокись серы, высокая летучесть которых позволяет эффективно осуществлять последующий процесс регенерации экстрагента. [c.150]

    Выпаривание. Если распределяемый компонент нелетуч, экстрагент может быть выделен из экстракта выпариванием. Эту операцию применяют при низких температуре кипения и теплоте парообразования экстрагента. В некоторых случаях, если относительная летучесть распределяемого компонента очень мала, большую часть растворителя можно регенерировать при однократном испарении. Остаток либо подвергают ректификации, либо обрабатывают другими способами. Так регенерируют, например, низкокипящие экстрагенты, подобные пропану или двуокиси серы, при отделении их, например, от высококипящих компонентов нефтяных масел, [c.164]

    Пропан представляет собой осадительный растворитель, вытесняющий из раствора асфальты. На большей части нефтеперерабатывающих заводов пропан является легко доступным и дешевым сырьем. Применяется обычно при температурах несколько ниже 120° С и при довольно высоком объемном соотношении растворителя и исходного раствора. Вследствие высокой летучести пропан легко регенерируется. Экстракт (т. е. масло, из которого удалены асфальтены) можно охлаждать в результате испарения пропана для предварительного удаления твердых парафинов. [c.636]

    Сжиженные нефтяные газы (СНГ), содержащие преимущественно пропан и бутан, в качестве автомобильных топлив имеют ряд преимуществ перед сжатыми газами, и поэтому в настоящее время находят более широкое применение. Автомобиль на СНГ имеет в 4-5 раз меньшую токсичность выхлопа в сравнении с бензиновым. К недостаткам СНГ следует отнести высокую их летучесть и большую взрывоопасность. [c.8]

    При производстве бензина очень важно контролировать летучесть готового продукта. Самые легкие углеводороды, до пропана включительно, должны отделяться от бензина, так как их присутствие ведет к образованию паровых пробок. Избыточные количества бутана и изобутана также могут вызывать подобное явление. Тем не менее присутствие определенных количеств м-бутана полезно с точки зрения пусковых характеристик бензина. Кроме того, этот углеводород имеет превосходную детонационную стойкость. Поэтому нефтепереработчики отделяют бутан в процессе стабилизации и затем определенное количество его добавляют обратно в бензин. Стабилизация осуществляется путем ректификации, проводимой при давлении до 13,6 ат, при этом пропан и бутаны отделяются для дальнейшего использования. Большая часть получаемого из нефти и-бутана возвращается обратно в бензин, но значительные количества могут употребляться и в других целях, например, для использования в качестве сжиженного топливного газа или переработки путем изомеризации или дегидрирования. Углеводороды С4, образующиеся при крекинге из-за близких температур их кипения, должны разделяться при помощи несколько иных средств. [c.106]

    Разделение газа производится примерно следующим образом (рис. 40). После компримирования и отделения водорода абсорбционным способом фракция С4 стабилизируется. При этом отгоняются кипящие при —23° метилацетилен и пропан, образующие азеотропную смесь. Смесь углеводородов С4 затем ректифицируется в колонне, имеющей 100 тарелок. Здесь отделяется смесь из бутена-1 и бутадиена с некоторым количеством изобутана, изобутена и к-бутана (бутадиеновый концентрат), причем к-бутан частично уходит с дистиллятом, а частью остается в остатке. В остатке остаются оба бутена-2, часть к-бутана и гомологи ацетилена (С4). В этой связи интересно сопоставить температуры кипения отдельных изомеров в нормальных условиях (см. стр. 11 и 36) с летучестью в условиях экстрактивной перегонки (см. стр. 78). Остаток поступает в депента-низатор, где от него отделяются высшие углеводороды, а головной продукт, состоящий из бутена-2, [c.81]

    При выборе основных параметров разделения (Р и ) исходят в первую очередь из экономичных условий разделения давление и температура колонн вверху должны быть такими, чтобы верхний продукт можно было сконденсировать водой, воздухом или имеющимся на установке недорогим хладоагентом (обычно пропаном). В то же время температура должна быть достаточно низкой с тем, что нижний продукт можно было испарять с помощью имеющихся средств подогрева. При перегонке нефти и мазута необходимо также следить за тем, чтобы максимальная температура нагрева была не выше температуры термического разложения продуктов и чтобы она была не выше критической температуры нижнего продукта. Прн разделсник нефти и широких нефтяных фракций лучше поддерживать как можно меньшее давление, близкое к атмосферному, с тем, чтобы обеспечить наиболее высокую эффективность разделения смеси. При разделении легких углеводородных газов, обладающих высокой летучестью, часто используют пониженное давление, охлаждая верх колонны специальными хладоагентами. [c.78]

    При разделен ии смеси этилен — этан состава 50—80% (об.) легкого компонента получают высококонцентрированный этилен чистой выше 99,95% (об.). Близкие летучести компонентов смеси и жесткие требования к чистоте этилена требуют значительных внергетических затрат, на производство холода, которые составляют порядка 38% общих затрат яа этиленовой устаиовке. Высокими энергетическими затратами ха рактеризуется также процесс разделения близкокипящей смеси процилен— пропан. В связи с этим для таких смесей все большее применение в промышленности находят новые технологические схемы со связанными материальными и тепловыми потоками и с тепловым насосом. Некоторые примеры применения таких схем рассматриваются ниже. [c.301]

    Существенным преимуществом схем с тепловым насосом при разделении смеси пропилен — пропан является значительное увеличение их относительных летучестей при пониженном давлении процесса, что и приводит в итоге к снижению не только эяе1ргети-ческих, но и капитальных затрат, требуемых для получения заданных высоких показателей разделения этой смеси. [c.304]

    Нестабильный авиабензин, полученный в результате каталитической очистки, не может быть применен для смешения и не является конечным товарным продуктом. Бензин содержит газовые углеводороды—пропан, бутан и др., что вследствие летучести легких фракций делает его физически нестабильным при хранении и применении. Кроме того, присутствие газовых углеводородов ведет к образованию газовых пробок в топливоподводящих линиях мотора во время эксплуатации последнего. [c.34]

    Бутан-пропановая смесь (жидкий пропан) по стандарту должна иметь упругость паров пе выше упругости паров пропана при 37,8° С. Температура испарения 95% (но объему) этой смеси должна быть такой же, как у бутана. В основном бутан-пропановая смесь применяется для бытовых нунед или используется для вторичного извлечения нефти. Состав смеси, применяемой для бытового отопления, изменяется в зависимости от времени года для обеспечения необходимой летучести, однако упругость паров коммерческого продукта редко превышает 8,792 кгс/см нри 37,8° С. [c.77]

    В ректификационной колоине, отделяющей смесь этана, пропана и бутана от пентана, в качестве НК компонента принимается бутан, а ВК компонента — пентан и т. д. Этн условно принятые НКК и ВКК называют также ключевыми комнопентами. Подобного рода допущение исходит из положения, что если запроектирована колонна, л оторая обеспечит разделение с необходимой четкостью пропан от бутана, то тем более такая колонна обеспечит разделение смеси этана и пропана от смеси бутана и пентана, так как этап и пентап (в рассматриваемом примере) в значительно большей степени различаются по летучести, а следовательно, их легче отделить друг от друга, чем смесь ключевых компонептов. [c.191]

    Некоторые смежные компоненты разделшть угольпой адсорбцией пе удается. Например, трудно разделить нропан-пропиленовую фракцию, а разделить этан и этилен примерно так же трудно, как и при ректификации. Это объясняется неионогенным характером угольного адсорбента, избирательность которого определяется в основном летучестью компонента смеси и возрастает с повышением температуры кипения этого компонента. Хорошие результаты были получены при разделении пропан-пропиленовых смесей с использованием силикагеля. [c.319]

    Метод испытания на летучесть, разработанный Ассоциацией потребителей природного газа (А5ТМ 01837), используется при максимальной температуре —38,3°С для испарения 95% пропана и 2,2 °С для испарения того же количества бутанов. Работы по уточнению метода показывают, что температура —38,3°С может быть принята в том случае, если объемная доля С4 и выше в анализируемой пробе не превышает 2,5%. Если содержание бутанов в пропане находится на уровне, например, 10% (В54250), температуру испарения необходимо повысить до —23,9 °С. Температурный предел 2,2 °С установлен для всех бутанов, в которых массовая доля пентанов и выше не превышает 2%, т.е. состава, типичного для коммерческих бутанов. [c.85]

    Приведем в качестве примера следующие данные по разделению смеси пропилена с пропаном [141]. Исходные данные мольная доля пропилена в сырье ад = 0,6 в дистилляте ул = = 0,95 в остатке Хл = 0,1. Рабочее давление в колонне 20,6 бар. Относительная летучесть т=1,12 принята постоянной по высоте колонны. Расчет проведен графически по диаграмме у—х. Найдено (g /D) ,= 12,05. При увеличении кратности орошения по сравнению с минимальным на 30% для реальной колонны имеем g/D= 15,66. Число теоретических тарелок в обеих секциях колонны Л/ = 86,2. По уравнению Фенске (11.104) получается /Vmhh. = 45,5. Удвоение этой величины дает jV = 91, т. е. результат достаЮчно точный для предварительных расчетов. [c.362]

    Отделение Сз-углеводородов ректификацией от j- и С4-углеводородов происходит легко и практически не представляет никаких затруднений. Поэтому в одинаковой степени легко выделить пропан-пропиленовый концентрат из отходящих газов колонн стабилизации или из крекинг-газов, полученных любым методом. Такой концентрат пригоден для получения основного продукта химической переработки пропилена — изопропилового спирта [гидратация пропилена в изопропиловый спирт описана в гл. 8, стр. 148]. Однако для производства целого ряда других продуктов, число которых все время возрастает, требуется чистый пропилен, в связи с чем возникает задача отделения его от пропана. С помощью простой ректификации этого достигнуть нелегко, так как относительная летучесть пропилена из смесей с пропаном составляет при 3 ата и —20 всего лишь 1,15. С повышением давления это отношение несколько уменьшается чтобы избежать низких температур и использовать для конденсации газов водяное охлаждение, пропан-пропиленовую фракцию необходимо разгонять под давлением не менее 15 ата. Несмотря на все это, можно без особых затруднений осуществить в большом масштабе получение 98%-ного пропилена [13, 32]. Разделение пропилена и пропана происходит пегче, если применить азеотропную перегонку в присутствии чммиака [32] аммиак изменяет отношение давлений паров пропилена и пропана, увеличивая относительную летучесть пропана. [c.126]

    В табл. 4 сопоставлены свойства гомологов метана с нормальной цепью. Из приведенных данных видно, что метан, этан, пропан и бутан при обычных условиях представляют собой газы они почти не имеют запаха. Пентан и следующие за ним углеводороды (вплоть до С16Н34) — жидкости с характерным бензиновым запахом и различной, постепенно снижающейся летучестью. Высшие предельные углеводороды — твердые нелетучие вещества, не имеющие запаха. Эта закономерность в изменении свойств по мере усложнения количественного состава в гомологических рядах углеводородов была открыта К- Шорлеммером. Ф. Энгельс отметил ее как один из наиболее ярких примеров проявления закона диалектики о переходе количественных изменений в качественные. [c.50]

    Перспективны также физические методы разделения, использующие не только и пе столько разницу в летучести, сколько различие в химхгческой природе обоих углеводородов. Так, например, пропилеи 92—99%-ной чистоты получен из пропан-пропиленовой фракции непрерывной адсорбцией мелкопористым силикагелем [16, стр. 231]. [c.163]

    Сочетание фракционированной конденсации с низкотемпературной ректификацией. Для фракционировки природного газа, чаще более тощего,, применяется третий тип установок, в которых большие количества метана начала отделяются от этана и вышекипящих простым методом однократного частичного ожижения с расширительным или внешним охлаждением. При нормальном давлении метан и этап далеко отстоят друг от друга по температурам кипения ( — 161,4° и —88,3°), но ири повышенных давлениях и низких температурах разделение их сильно затрудняется вследствие ретроградного увеличения констант равновесия этана и вышекипящих углеводородов в этих условиях. Это приводит к резкому падению относительной летучести метана и малому извлечению этана при однократной конденсации. По такой схеме работает завод в Габе (США, штат Кентукки), выделяющий из тощего природного газа этан, пропан, бутан и более тяжелые углеводороды [20), (рис. IV. 13). Производительность завода по сырью 21 млн. газа в суткн. Природный газ под давлением 40 ата обезвоживается и затем охлаждается до температуры — 65- --75°, при этом конденсируется значительное количество этана и более тяжелых компонентов. Сконденсированная жидкость-отделяется в сепараторе 4, а остаточный газ после теплообмена с входящим сырьем компримируется и возвращается в газопровод. Ожиженные компоненты дважды испаряются в 5 и б ири последовательно снижающемся давлении и затем ректифицируются для выделения фракций этана и вышекипящих углеводородов. Холодные продуктовые потоки доводятся до обычной температуры теплообменом с конденсирующимися хладагентами этано-пропановой каскадной системы, которая покрывает недостачу холода в процессе. [c.174]

Рис. 6. Зависимость между относительнов летучестью, равновесным давлением и составом для системы пропилен — пропан. Рис. 6. <a href="/info/25969">Зависимость между</a> <a href="/info/13571">относительнов летучестью</a>, <a href="/info/73477">равновесным давлением</a> и составом для <a href="/info/25884">системы пропилен</a> — пропан.
    Это объясняется тем, что разделяемые компоненты смеси (изопентан и н -пентан) имеют очень близкие температуры кипения и, следовательно, мало отличаются по относительной летучести. Поэтому, если в изопентановой колонне температура куба ниже, то изопентан уходит с кубовым продуктом и в дистилляте его содержание незначительно, то есть отбор изопентана от потенциала, а, следовательно, и выход изопентановой фракции малы. В случае же завышения температуры куба происходит повышение содержания н-пентана в дистилляте и уменьшается чистота целевой изопентановой фракции. Таким же образом, если в дебутанизаторе температура низа ниже, то в кубовый продукт, являющийся сырьем изопентановой колонны попадает большое количество бутанов, которые затем оказываются в изопентановой фракции и понижают ее чистоту. Если температура в кубе дебутанизатора выше, то значительные количества изопентана уходят с пропан - бутановой фракцией и его содержание в целевой изопентановой фракции уменьшается. В работе [13] изучено влияние температуры куба предтоварной колонны на качество и энергоемкость ректификации действующей установки разделения алкилата в производстве изопропилбензола и найдено, что повышение температуры куба от 164 до 165 °С приводит к 2 - х кратному росту энергозатрат в кипятильнике и сокращению потока ИПБ - сырца от 6000 до 3500 кг/ч. [c.211]

    Согласно уравнению (111. 101), равновесное фазовое отношение ki определяется лишь по давлению и температуре и совершенно не зависит от природы и числа других компонентов -системы. Однако так дело обстоит только для идеальных и практически идеальных растворов. Для растворов же реальных, отклоняющихся в своем поведении от закона Рауля, равновесное фазовое отношение зависит еще и от состава, и в этом приближенность и ограниченная точность определения летучестей неидеальных растворов по уравнению (III. 100). Есть еще и другая причина, известным образом ограничивающая применение правила летучести. При определенной температуре любое чистое вещество, находящееся под давлением, отличающимся от упругости его паров, может существовать лишь в однофазном состоянии. Если, например, давление системы больше упругости паров рассматриваемого компонента, то в чистом виде этот компонент может существовать лишь в конденсированной фазе если же давление системы меньше его упругости паров при данной температуре, то чистый компонент этих -условиях ож и-си.пествовать лишь в паровой фазе. Однако то же самое вещество, рассматриваемое как компонент раствора, может вести себя совершенно по-другому. Так, компонент раствора может находиться в паровой фазе, когда упругость его паров меньше общего давления системы, и, наоборот, присутствовать в конденсированной фазе, когда упругость его насыщенных паров при данной температуре выше общего давления системы. Между тем использование правила летучести предполагает определение летучести или чистого рассматриваемого компонента при Тир раствора обязательно в том же фазовом состоянии, что и сам раствор. При этом может оказаться (и часто так и бывает), что данный компонент в чистом виде не может устойчиво существовать при температуре II давлении раствора в том же агрегатном состоянии, в котором он находится в растворе. Так, например, если давление системы р = 0 ama, температура / = 70° и требуется определить летучесть / пропана в жидкой фазе, то это определение приходится вести в таких условиях, при которых чистый пропан как жидкость не может устойчиво существовать, ибо его упругость паров при этой температуре равна 28 ama. Решение этой задачи состоит в экстраполяции изотермических кривых, дающих коэффициент активности в функции приведенного давления, в неустойчивую область. [c.125]

    Разделение пропан-пропиленовой смеси осуществляют либо методом хемосорбции, например при помощи растворов хлорида и нитрата меди в моноэтаноламине о-фенетидине, либо методом адсорбции (гиперсорбции) с применением силикагеля или активной окиси алюминия, либо, наконец, методом ректификации. В промышленности в настоящее время в основном применяют последний метод. В случае ректификации пропан-пропиленовой смеси вследствие малой относительной летучести компонентов (1,1 —1,2) необходимо иметь высокую колонну, работающую при больших флегмовых числах. В связи с этим [c.342]

    В общем случае для расчета бинарной ректификации вычис- лительиые машины пс требуются. Одн. .ко при значении коэффициента относительной летучести, близком к единице, расчет числа тарелок при разделении бинарной смеси вызывает определенные технические трудности. Вследствие этого целесообразно анализ ректификации пропан-пропиленовой смеси выполнять на вычислительной машине. Расчеты проводились при следующих условиях  [c.344]


Смотреть страницы где упоминается термин Пропан, летучесть: [c.281]    [c.68]    [c.69]    [c.166]   
Термодинамика многокомпонентных систем (1969) -- [ c.181 ]




ПОИСК





Смотрите так же термины и статьи:

Летучесть

Пропан

Пропанои



© 2024 chem21.info Реклама на сайте