Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азот парафина ими

    A. Окисление твердого парафина нитрозными газами (окислами азота) [c.621]

    Промышленное нитрование низших парафинов проводится двуокисью азота или азотной кислотой в газовой фазе при 250—450 °С под давлением. [c.357]

    Хотя твердый парафин и бесцветный продукт не содержат серы, кислорода и азота, экстракт содержит около 0,9% серы, 0,5% кислорода и 0,1 % азота. [c.31]

    При жидкофазном нитровании парафинов энергия, необходимая для ионного разрыва химических связей, сообщается растворителем, который благодаря своему полярному характеру сольватирует ионы. Как отмечает Бахман с соавторами [2] и Уотерс [62], большинство газовых реакций протекает по радикальным механизмам. Бахман с соавторами 2] в недавно опубликованных статьях привел много экспериментальных данных в пользу свободно радикального механизма реакций, идущих при парофазном нитровании пропана и бутана при 420—425°. Они показали, что прибавление ограниченных количеств кислорода или галоида, которые, как известно, увеличивают концентрации свободных радикалов в паровой фазе, также повышает степень нитрования тетраэтилсвинец, образующий при нагревании этильные радикалы, также благоприятствует нитрованию, Существенно также, что факторы, понижающие концентрацию своб.дных алкильных радикалов в паровой фазе, например присутствие окиси азота или чрезмерные количества кислорода или галоидов, снижают и степень нитрования. [c.81]


    Образующаяся при этом азотистая кислота при температурах нитрования разлагается, давая окись азота, которая, как известно, является ингибитором реакции нитрования, что является одной из причин болео низкой степени нитрования, осуществляемой при помощи N02- Радикал N02, образующийся по уравнению (1), по-видимому, рекомбинируется с алкильным радикалом, образующимся по уравнению (2), давая нитро-парафин при этом происходит обобщение двух электронов  [c.82]

    Двуокись азота образует нитропроизводные с парафинами в паровой фазе при 200—300 °С в присутствии окислов мышьяка или сурьмы. [c.297]

    Углеводороды представляют собой самую многочисленную группу токсичных веществ в отработавших газах. Обнаружены представители всех классов углеводородов парафины, нафтены, олефины, диолефины и ароматические углеводороды, в том числе с несколькими конденсированными бензольными кольцами. По токсическим свойствам углеводороды очень различны. Однако до сего времени вопрос о токсичности углеводородов недостаточно изучен и нормирование их содержания в отработавших газах осуществляют суммарно. Отмечено лишь, что непредельные углеводороды окисляются в воздухе в результате фотохимических реакций в присутствии двуокиси азота, образуя ядовитые кислородсодержащие соединения. Такие вещества активно участвуют в образовании стойких ядовитых туманов в виде дымки, висящей над городом с интенсивным автомобильным движением (смог). Борьба со смогом является актуальнейшей проблемой ряда городов США, Японии, Англии и др. [c.346]

    Аналогично для каждой фракции смеси (и всей смеси) можно рассчитать содержание смол, парафина, азота, металлов. [c.26]

    Описана технология гидрогенизационной переработки испанской сланцевой смолы 50% сырья перегоняется выше 350 °С и содержит 1% асфальтенов, 0,06% серы, 0,7% азота, 1,7% кислорода. Полнота удаления серы, азота и кислорода 95—99%. Выход гидрогенизата 98% из него получают бензин, дизельное топливо, парафин, смазочные масла [c.33]

    Плотность углеводородных жидкостей. Плотность различных нефтей можно найти в стандартных таблицах. Однако, если нефть содержит значительное количество примесей с высокой упругостью паров (метан, этан, азот), то эти таблицы применять нельзя. Молекулы веществ, имеющих высокую упругость паров, обладают значительной кинетической энергией, которая влияет па плотность смеси. Для определения плотности жидких углеводородов с относительной молекулярной массой ниже 33, молярная доля азота, кислорода и изо-парафинов в которых менее 5%, моишо воспользоваться формулой, которая применима в интервале температур —(140+-184,4)° С, [c.37]


    Соединения азота, переходящие в условиях риформинга в аммиак, подавляют кислотные функции катализатора, что приводит к снижению скоростей реакций изомеризации, гидрокрекинга и дегидроциклизации парафинов, дегидроизомеризации нафтенов ряда циклопентана. Конечный результат отравления катализатора соединениями азота — снижение выхода и концентрации ароматических углеводородов, снижение октанового числа бензина риформинга. Отравление азотистыми соединениями обратимо. [c.122]

    Нитрование парафинов было впервые осуществлено М. И. Коноваловым в конце XIX в. В дальнейшем практическое значение получили следующие методы нитрования парафинов 1) в газовой фазе при 350—500 С с помощью 40—70%-ной НЫОз 2) в жидкой фазе при 100—200°С с 50—70%-ной НЫОз 3) в жидкой или газовой фазе четырехоксидом (или диоксидом) азота. [c.345]

    Главной нежелательной реакцией во всех процессах нитрования является окисление парафинов азотной кислотой или диоксидом азота. Вследствие этого выход по азотной кислоте довольно низкий— большей частью 50—80%. В продуктах окисления обнаружены альдегиды и кетоны, карбоновые кислоты, оксид и диоксид [c.346]

    Азотная кислота (реже оксиды азота) служит вторым по масштабам применения окислительным агентом. Ее действие нередко сопровождается побочным нитрованием органического соединения, усиливающимся с повышением концентрации кислоты. По этой причине для окисления используют 40—60%-ную НЫОз. Азотная кислота как окислитель никогда не применяется для реакций с парафинами. Для нес наиболее типичны реакции деструктивного окисления циклических соединений и веществ с ненасыщенными связями, идущие с участием НЫОз с лучшим выходом, чем при окислении кислородом  [c.354]

    При жидкофазном окислении необходимо исключить образование взрывоопасных смесей в местах, где имеется сплошная газовая фаза (г. е. в верхней части барботажных колонн и в пространстве над каждой тарелкой в реакторе типа рнс. 105,г). Это достигается высокой степенью превращения кислорода в совокупности с выбором давления в зависимости от летучести исходного органического вещества. Иногда в пространство над жидкостью предусмотрена подача азота. Тем не менее пожаро- и взрывоопасность рассматриваемых производств (за исключением окисления твердого парафина) достаточно велики, и эти производства должны быть снабжены самыми современными средствами предупреждения, локализации и тушения пожаров. [c.369]

    Парафин, плавящийся при 50—52°, может быть окислен воздухом, содержащим 2% двуокиси азота при температурах в пределах от 110 до 150°. Полное превращение парафина в продук ты окисления возможно во всех случаях, однако продолжительность для такого действия аходится в обратной зависимости от температуры. Продукты не были полностью обесцвечены и содержали смесь уксусной, масляной и высших кислот и около 15% неомыляющегося масла. С чистой двуокисью азота окисление полностью заканчивалось при 140° в значительно более короткий срок, и остаточный газ состоял главньгм образом из окиси азота вместе с малыми К0.иичествам и азота, цианистого водорода и окиси углерода. Так как щелочный раствор окисленного двуокисью азота парафина имел красный цвет, то это было принято за доказательство образования некоторых количеств нитро соединений. [c.1018]

    Нитрование высокомолекулярных парафинов проводят в настоящее время двумя способами. Способ, разработанный Грундманом [27], состоит в том, что нагретый до 170—180° парафиновый углеводород взаимодействует с перегретыми нарамп азотной кислоты. В этих условиях нитрование идет исключительно быстро. Метод применим при условии, чтобы температура начала кипения углеводородной смеси составляла 160—170°. Для углеводородов с 7—12 атомами С газофазное нитрование Хасса не может быть применено из-за возможности пиролиза, способ Грундмана не пригоден вследствие низкой температуры кипения этих углеводородов. Для таких углеводородов Гейзелер разработал изящный способ нитрования в присутствии четырехокиси азота под давлением при 160—170° [28]. [c.126]

    Другая возможность превращения продуктов нитрования высокомолекулярных углеводородов в кетоны состоит в обработке концентрированной серной кислотой псевдонитролов (нитронитрозосоединений) которые расщепляются на кетон и окись азота. Так как продукты нитрования высокомолекулярных парафинов состоят в значительной степени из вторичных нитросоединений, то из них также можно получить этим путем кетоны с хорошими выходами, например  [c.348]

    Недавно в США введена в эксплуатацию в г. Пампа (штат Тексас) новая установка для окисления газообразных парафинов [14]. На ней окисляют воз-духом бутан, полученный из природного газа газовых скважин в Хуготоне, под давлением, которое, как предполагают, выше, чем на установке в г. Бишопе. По-видимому, одновременно применяют также катализатор, что позволяет снизить температуру процесса. Основным продуктом является уксусная кислота, но, смотря по желанию, можно также получать пропионовую и масляную кислоты с несколько большими выходами. Разделение и очистка продуктов реакции происходят, как описано выше. Остающийся после масляной абсорбции азот подают в газовые турбины, где он, теряя давление, отдает при этом энергию. Поразительно то, что на новой установке формальдегид не получается [15]. [c.438]


    А. Окисление твердого парафина нитрозными газами (окислами азота) в присутствии нитрозилсерной кислоты [c.476]

    Хотя для окисления парафиновых углеводородов, кроме воздуха, была использована также хромовая кислота, единственной альтернативой практически является азотная кислота или окислы азота. Этими соединениями фирма Рурхеми А. Г. окисляла твердый синтетический парафин в высшие кислоты. Если в смесь твердого парафина (число-атомов углерода в среднем 40, температура плавления 90—95°) и нит-розилсерной кислоты пропускать при 115—125° и хорошем перемешивании нитрозные газы, полученные окислением аммиака, то через 8— [c.476]

    При прямом нитровании парафиновых углеводородов получаются истинные нитросоединения, в которых имеется связь С — N. При этом можно использовать любые из методов (при помоши азотной кислоты или окислов азота), описанные в главе Нитрование... . Изомерный нитропарафинам эфир азотистой кислоты, который всегда получается в большем или меньшем количестве в качестве побочного продукта при синтезе нитропарафинов по Мейеру, при прямом нитровании парафиновых углеводородов азотной кислотой в продуктах реакции отсутствует. Это легко доказать тем, что если обработать продукты прямого нитрования парафинов разбавленными минеральными кислотами окислы аэота не выделяются, в то время как эфиры азотистой кислоты в этих условиях очень быстро распадаются на спирт и окислы азота. Однако при газофазном нитровании парафиновых углеводородов при 400° могут [c.559]

    Основными компонентами нефтяных масел являются углеводороды смешанного строения, содержащие одновременно структурные элементы нафтено-парафинового, парафино-ароматического или парафино-нафтено-ароматического характера. Углеводородов, содержащих только нафтеновые или ароматические циклы и лишенные боковых алкильных цепей, в маслах практически нет. Отсутствуют в товарных маслах и нормальные парафиновые углеводороды, так как при производстве масел обычно применяется глубокая депарафинизацня. Кроме углеводородов в маслах имеются и разнообразные гетероорганические соединения, содержащие серу, кислород, азот, а также различные металлы. Все это вносит большую сложность в изучение зависимости эксплуатационных свойств масел (в том числе и стабильности против окисления) от их химического состава. [c.65]

    Пенсильванская нефть представляет собой классический тип парафи-нистой нефти. Так как этой нефти добывалось больше всего, то она и была выбрана в качестве основы для сравнения [6, 18]. Эта нефть не содержит или почти не содержит асфальтовых компонентов, сера и азот содержатся только в виде следов, цвет со светлый, она обладает приятным запахом и малым удельным весом — около 0,810. Общий выход бензиновых и керосиновых фракций достигает 60%. Из нефти получаются более высококипящие фракции, а также парафин, выделяемый из остатка, петролатум и смазочные масла, обладающие относительно пологой температурной кривой зшзкости и высокой температурой кипения при данной вязкости. Переработка этой нефти сравнительно проста ввиду отсутствия в ней нежелательных примесей. Несмотря на то, что в настоящее время добыча ее незначительна (составляет 1% от общей добычи в США), эта нефть имеет весьма большое значение как сырье для высококачественных масел. [c.53]

    Бон и Коуард [6] произвели крекинг этана при 800° С в присутствии водорода и получили выход метана 41%. В тех же самых условиях при использовании в качестве разбавителя азота выход метана снизился до 18%. Это дало повод Бону и Коуарду заключить, что метан образуется в результате гидрирования радикалов метила. Аналогично этану ведет себя этилен. Гарднер [27] установил, что разложение этана Ьодобно крекингу других углеводородов, так как в результате расщепления получаются олефин и парафин  [c.84]

    Четырехокись азота NgO . Этот реактив легко взаимодействует с парафинами при умереппом нагревании, давая главным образом первичные нитропарафпны R HgNOa [90]. Циклогексан при температурах 100— [c.99]

    Нитрование ароматических соединений азотной кислотой каталитически ускоряется ионом Н504, доставляемым серной кислотой. Силикагель катализирует процесс нитрования бензола N0 в паровой фазе. Низшие окислы азота являются катализаторами процесса нитрования производных бензола четырехокисью азота. Для проведения процесса нитрования парафинов катализатора не требуется. [c.330]

    Для промышленных адсорбентов, за исключением нескольких разновидностей угля, порядок адсорбируемости из жидких растворов при переходе от слабо адсорбируемых к сильно адсорбируемым веществам приблизительно следующий парафины плюс цик-лопарафипы, олефины, моноциклическая ароматика, полицикли-ческая ароматика и органические соединения, содержащие кислород, серу или азот. Имеются, однако, существенные различия между адсорбентами, причины которых не совсем понятны они могут быть обусловлены, в частности, относительными размерами [c.263]

    Боксит. Этот адсорбент состоит в основном из окиси алюминия с примесью окисей железа. Он приготовляется путем термической активации природного боксита, измельченного и просеянного до частиц определенного размера. В основном он применяется для очистки смазочных масел, нетролатумов, парафина, трансформаторных масел, медицинских масел, керосина и для удаления сернистых соединений из бензина (Перко-процесс). Боксит регенерируется путем выжига окрашенных адсорбированных веществ нри 538—649° С, и его адсорбционные свойства несколько утрачивают свою силу после ряда первых регенераций. Затем он может регенерироваться почти неограниченно. Потери составляют около 1,5% за регенерацию. Его можно применять только для перколяции [28].1 По расчету на объем боксита требуется 3 — 4 объема фуллеровой земли для удаления окрашенных веществ из парафина, петролатумов и ярко окрашенных масел. Площадь поверхности, определенная по азоту, составляет около 180— 350 м г. [c.264]

    Нужно вспомнить, что общепринятая сернокислотная очистка всегда причиняла значительные неудобства. Смолистые и асфальтовые вещества, некоторые реакционноспособные соединения серы и азота и углеводороды не могут быть выделены в чистом виде. Кроме того, сброс продуктов реакции и извлечение отработанной кислоты затруднителен и дорог. При сольвептной экстракции, однако, продукты с высоким содержанием парафинов противостоят окислению и сравнительно свободны от коксообразующих веществ, которые извлекаются в виде экстракта, пригодного для дальнейших превращений, например в асфальт или котельное топливо. Экстракция используется в таких процессах, как обработка газойлей и керосиновых дистиллятов для получения высококачественных реактивных и дизельных топлив и для повышения качества исходного сырья каталитического крекинга [61]. Выделение ароматических углеводородов высокой концентрации этим методом применяется в больших масштабах. Он стал особенно важным в военных условиях 1940—1945 гг. для производства нитротолуола и для других химических производств [62, 63]. [c.275]

    В случае нитрования парафинов углеводородов двуокисью азота выход нитропарафинов изменяется от 30 до 80% в зависимости от условий нитрования [145]. При нитровании пропана выход нитронроизводных составляет 70% от теории. [c.130]

    Большое значение придавалось отбору и подготовке проб. Для предотвращения потерь легких фракций был сконструирован специальный пробоотборник. В случае отдельных пластов, горизонтов и сортов пробы отбирались с учетом дебита скважин и привлечением промысловых геологических управлений. При высоком содержании влаги (1 %) нефть предварительно подвергалась деэмульсации нли дегидратации. Определялись плотность, вязкость,, молекулярная масса всех нефтей и нефтепродуктов, рефракция нефтепродуктов и узких фракций, температура вспышки и истинная температура кипения нефтей и отдельных фракций, кислотность нефтей, температура застывания мапутов, упругость насыщенных наров бензинов, октановые числа и приемистость к ТЭС бензинов. Изучался потенциальный выход бензина, лигроина, керосина в нефтях. Останавливалось содержание смол, твердого парафина, нафтеновых кислот, кокса в нефтях и фракциях, общей серы и азота в нефтях, тяжелых нефтепродуктах и бензинах. Фактический материал был получен классическими в то время методами, применявшимися для исследования нефтей и нефтепродуктов во всем мире, на основе стандартов и официальных руководств, действовавших в Советском Союзе, и с использованием многолетнего опыта АзНИИ НП в области нефтяного анализа. [c.7]

    В круглодонпую колбу емкостью 1 л, снабженную трубка.чн для ввода хлора и вывода хлористого водорода и термометро.м, опущенным в реакционную смесь, вносят 400 г парафина (т. пл. 52° С). Колбу устаиавлнвают иа водяной баие. В расплавленный в колбе парафин при 60—70° С пропускают струю газообразного хлора до тех пор, пока привес не составит 16%. После этого через распл авленный парафин продувают струю азота илп углекислоты для удалепия следов свободного хлора и хлористого водо1)ода. [c.378]

    Из всех компонентов, входящих в состав масляных фракций, наибольшей адсорбируемостью на силикагеле обладают смолисто-асфальтеновые вещества, что объясняется их высокой полярностью, обусловленной несимметричностью строения молекул и наличием в них конденсированных ароматических колец и гетероатомов серы, кислорода и азота. Ароматические углеводороды адсорбируются на силикагеле в результате того, что под влиянием электростатического поля адсорбента в их молекулах индуцируется дипольный момент. По сравнению с углеводородами других гомологических рядов а1роматичеокие структуры обладают наибольшей молекулярной поляризуемостью. Следовательно, чем меньше экранированы ароматические кольца нафтеновыми кольцами или парафиновыми цепями, тем легче индуцируется дипольный момент в молекулах этих углеводородов, а значит, эффективнее их адсорбция на полярных адсорбентах. По мере уменьшения адсорбируемости на силикагеле компоненты масляных фракций могут быгь расположены в следующий убывающий ряд смолисто-асфальтеновые ещества> ароматические углеводороды и серосодержащие соединения>парафино-нафтеновые углеводороды. [c.259]

    Назначение экстракционных процессов — деасфальтизации, селективной очистки, депарафинизации — выделение из перерабатываемого сырья асфальтов, экстрактов, парафинов и церезинов. Сырье (смесь углеводородов и с лементорганических соединений, содержащих серу, азот, кислород, металлы) разделяется на группы компонентов при помощи растворителя- растворимая часть образует фазу экстрактного раствора, нерастворимая — фазу рафинатного раствора. Целевой продукт может переходить как Б рафинатную (селективная очистка), так и в экстрактную (деасфальтизация, депарафинизация) фазы. В производстве масел применяются различные типы экстракционных процессов- экстракция неполярными (деасфальтизация) и полярными (селективная очистка) растворителями, экстрактивная кристаллизация с использованием полярных и неполярных растворителей (депарафинизация). [c.199]

    Одна из схем этого процесса (Па рекс-метод) изображена на рио. 3. Исходную нефтяную фракцию смешивают с газом-носителем (азот) и в его токе подогревают и испаряют в подогревателе /. Полученная парогазовая смесь поступает в один из трех адсорбционных аппаратов 2, заполненных цеолитом, где происходит адсорбция н-парафинов. Выходящую из адсорбера смесь охлаждают в холодильнике 5, а в сепараторе 4 отделяют обеспара-финенный конденсат от газа-носителя, который возвращают на смешение с исходной фракцией. Когда адсорбент полностью насыщается парафином, смесь газа-носителя с исходной фракцией напразляют во второй адсорбер, в котором уже проведена ста- [c.29]


Библиография для Азот парафина ими: [c.136]   
Смотреть страницы где упоминается термин Азот парафина ими: [c.26]    [c.80]    [c.295]    [c.13]    [c.40]    [c.53]    [c.175]    [c.150]    [c.104]    [c.88]    [c.197]    [c.282]    [c.29]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.1019 , c.1032 ]




ПОИСК





Смотрите так же термины и статьи:

Азот анализ и парафина

Азот жидкий, охлаждение посредством парафина в восковые кислоты

Азот получение их при окислении парафина двуокисью азота

Азот четырехокись, окисление ею парафина под давлением



© 2025 chem21.info Реклама на сайте