Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Меркаптаны системам

    Преимущество ТБФ — большая селективность в отношении системы H2S—СО2 и высокая поглотительная способность по отношению к сероводороду, меркаптанам, серооксидам углерода и другим сернистым соединениям. [c.183]

    Технологическая схема щелочной очистки газа от меркаптанов мало отличается от схемы очистки моноэтаноламином, только регенерация раствора щелочи проводится открытым водяным паром или продувкой горячим воздухом, или последовательно тем и другим. В случае очистки газов от диоксида углерода равновесное давление газа над абсорбентом равно нулю, что позволяет осуществлять многократную циркуляцию абсорбента с выводом части его из системы и дозированием свежего. Такая схема щелочной доочистки газов пиролиза, используемая в этиленовом производстве на установке ЭП-300, приведена на рис. ХП1-1. Газ после IV ступени турбокомпрессора (с установки ЭП-300) при давлении [c.115]


    Под химической коррозией подразумевается прямое взаимодействие металла с коррозионной средой, при котором окисление металла и восстановление окислительного компонента среды протекают в одном акте. Такая кор-ро ия протекает по реакциям, подчиняющимся законам химической кинетики гетерогенных реакций. Примерами химической коррозии являются газовая коррозия выпускного тракта двигателей внутреннего сгорания (под действием отработавших газов) и лопаток турбин газотурбинного двигателя, а также коррозия металлов в топливной системе двигателей (за счет взаимодействия с находящимися в топливах сероводородом и меркаптанами). В результате окисления масла в поршневых двигателях могут образовываться агрессивные органические вещества, вызывающие химическую коррозию вкладышей подшипников [291]. Можно привести и другие примеры. Однако доля химической коррозии в общем объеме коррозионного разрушения металлов относительно мала, основную роль играет электрохимическая коррозия, протекающая, как правило, со значительно большей скоростью, чем химическая. [c.279]

    Полагают, что образование геля, имеющее место при длительном хранении топливных фракций, происходит вследствие протекания реакции между меркаптанами нефтепродуктов и медными частями клапанов и другими деталями системы нефтехранилища [95]. [c.81]

    Таким образом, образование отложений на стенках топливопроводов, карбюратора, бензонасоса и других деталей системы питания автомобилей зависит от количества смолистых веществ в бензине и от содержания и строения меркаптанов. [c.247]

    Применяемые в топливной аппаратуре материалы и покрытия при указанных ограничениях устойчивы к воздействию топлив в пределах, установленных для топливной аппаратуры ресурсов. При контакте кадмиевых покрытий с меркаптанами,, присутствующими в топливах, образуются меркаптиды кадмия,, отложения которых в прецизионных парах могут вызывать заедание. В связи с этим применение кадмиевых покрытий в топливной системе запрещено. [c.175]

    Изменение загрузки технологических мощностей может вызвать некоторые экологические проблемы. Так, в Башкирской нефтехимической компании в последнее время в сырье нефтехимического производства начали более широко вовлекаться легкие углеводородные фракции вторичного происхождения. Эти фракции отличаются от легких прямогонных нефтяных фракций существенно более высоким содержанием меркаптанов. Существующие системы подготовки сырья предусматривали только очистку от сероводорода. Сернистые соединения, содержащиеся в данном продукте, при пиролизе и последующей очистке почти полностью превращаются в сульфиды и сбрасываются в стоки. [c.171]


    Использование современных высокоактивных катализаторов сводит к минимуму преимущества двухступенчатой системы очистки. Основная доля меркаптанов удаляется уже в первой ступени. Вторая ступень очистки работает в неблагоприятных условиях, поскольку отсутствие меркаптидов в щелочном растворе при регенерации ведет к ускоренной дезактивации катализатора и насыщению раствора кислородом. Меркаптиды образуют с фталоцианином устойчивый комплекс, ингибирующий деструкцию фталоцианина. При наличии кислорода в щелочном растворе меркаптаны окисляются до дисульфидов на стадии экстракции меркаптанов с последующей реэкстракцией дисульфидов в очищаемые углеводороды. Это резко снижает эффективность процесса, особенно при малых концентрациях меркаптанов. [c.173]

    При независимом использовании обоих ступеней очистки можно увеличить вдвое производительность блока. Имеющаяся технологическая система не позволяет это сделать без установки дополнительного оборудования, но работа в одну ступень была также проверена экспериментально. В ходе опытного пробега технологический режим первой ступени не изменяли, а вторая ступень была исключена из схемы. В период пробега наблюдалось остаточное содержание меркаптанов в пределах 0,00015-0,0004 %. [c.173]

    Коррозия может быть химической, т. е. развиваться вследствие непосредственного химического воздействия компонентов топлива на детали из наиболее активных металлов, например действие некоторых меркаптанов серы на медь, входящую в состав сплавов, кадмий или серебро, из которых выполнены покрытия некоторых деталей топливной аппаратуры [2—4]. Для применения сернистых топлив характерны также коррозионные износы цилиндро-поршневой группы двигателей и выпускной системы коррозионно-агрессивными продуктами сгорания. Агрессивные окислы серы могут непосредственно воздействовать на металлы выпускной системы при высокой температуре газовая коррозия), но значительно более опасна электрохимическая коррозия кислотами (серной кислотой), образующимися при конденсации паров воды в остывающем или непрогретом двигателе (при [c.179]

    Коррозия металлов в неэлектролитах, т. е. в жидких средах, не обладающих электропроводностью (нефть, нефтепродукты и другие органические соединения), представляет опасность для резервуаров, трубопроводов и другого оборудования в системе транспорта и хранения нефти. Входящие в состав нефти и моторных топлив углеводороды в чистом виде и при отсутствии воды неактивны по отнощению к металлам. Опасными в коррозионном отношении они становятся при наличии в них сернистых соединений (меркаптанов, сероводорода, сернистого газа и т. п.). [c.27]

    ЛОВ с образованием меркаптидов аморфной структуры и нарушения работы агрегатов топливной системы. Наиболее чувствительны к коррозионному воздействию меркаптанов детали топливных афегатов из цветных металлов. [c.91]

    К первой системе относятся сочетания дисульфидов или меркаптанов с органическими основаниями (например, с ДФГ), а также сочетания дисульфидов с сульфенамидами. Ко второй [c.141]

    Три больших содержаниях сероводорода его следует определять отдельно, для этого потребуется пропустить меньшее количество газа, чем на определение меркаптанов. В таких случаях поглотители с подкисленным хлористым кадмием отсоединяют от системы раньше, как только появится осадок сернистого кадмия в I поглотителе. Затем продолжают пропускать газ для определения меркаптанов, оставляя П поглотитель с подкисленным [c.34]

    Меркаптаны и тиофенолы очень чувствительны к окислителям и переходят при окислении в дисульфиды. Последнее происходит часто уже при соприкосновении с кислородом воздуха. В связи с этим при получении и последующих превращениях меркаптанов чаще всего работают в атмосфере инертного газа или газа-восстановителя (азота, водорода, см. также разд. Г, 2.5.5). Процесс превращения меркаптана (тиофенола) в дисульфид обратим дисульфиды мягкими восстановителями вновь переводятся в меркаптаны (тиофенолы). (О биологическом значении этой реакции на примере системы цистин — цистеин посмотрите в учебнике.) [c.257]

    Повышенное содержание меркаптанов в топливах приводит также к ухудшению их термической стабильности, способствует увеличению отложений на поверхностях двигателей, с которыми соприкасается топливо в системе двигателя, и усиливает коррозионную агрессивность топлив. Эти обстоятельства Послужили основанием для нормирования содержания меркаптанов, в частности, в реактивных топливах. Концентрация меркаптанов в топливе ТС-1 не должна превышать 0,005%, а для большинства зарубежных реактивных топлив она ограничивается величиной 0,001%. Отсутствие ограничения содержания меркаптанов в бензинах и строгое регламентирование его в реактивных топливах по отечественным стандартам, по-видимому, сложилось исторически [c.82]


    Очистка от серы природного газа. При помощи молекулярных сит можно полностью очистить природный газ от сероводорода и меркаптанов. Этот адсорбент можно многократно полностью регенерировать без образования каких-либо вредных отложений или снижения адсорбционной емкости в результате других нежелательных явлений. Однако для экономичности этого процесса потребуется разработать новые циклы регенерации. Основным условием экономичности эксплуатации было в данном случае предельное снижение расхода продувочного газа, поскольку его приходится в последующем сжигать на факеле или использовать в качестве топлива. Последнее объясняется тем, что сернистые соединения из продувочного газа невозможно выделить простой конденсацией, как из воды в адсорбционных системах осушки природного газа. [c.84]

    ДО —50 °С, в работе [18] данные но растворимости СОа под давлением до 0,49 МПа (50 кгс/см ) и при температурах до 85 °С. Преимуществом ТБФ является большая селективность в отношении системы НаЗ СО3 и высокая поглотительная способность по отношению к сероводороду, меркаптанам, гим соединениям. [c.339]

    Для удаления сероводорода и меркаптанов бензин подвергают защелачиванию 10%-ным раствором щелочи с последующей промывкой водой. Давление в системе защелачивания 0,5 МПа, температура 50°С. [c.191]

    Известно, что надежность и хорошая работа топливной аппаратуры современных двигателей сильно зависит от содержания в топливе меркаптанов. По нормам ГОСТов концентрация меркаптановой серы в топливе ТС-1 не должна превышать 0,005%, в топливе РТ- 0,001%, в дизельном топливе для быстроходных двигателей - 0,01%. Повышенное содержание меркаптанов в топливах приводит к ухудшению их термической стабильности, способствует увеличению отложений на поверхности деталей, с которыми соприкасаются топлива в системе двигателя, усиливает коррозионную агрессивность топлив [12]. [c.9]

    Бензин каталитического крекинга очищают с применением гомогенного катализатора. Бензин из приемной емкости перекачивается в аппарат предварительной промывки, где с раствором едкого натра (с концентрацией 1-6%) удаляют кислоты и сероводород. Предварительно в бензин добавляют нерастворимый в щелочи антиокислитель - ионол - из расчета 0,01-0,06 кг на 1 тонну сырья. После предварительной промывки бензин смешивают с 1,5-2-х кратным количеством воздуха и с 0,12-0,15 объемами раствора едкого натра концентрацией 6-10% и подается в смеситель. Смеситель оборудован 9-ю вертикально расположенными одна над другой расходомерными диафрагмами. За счет турбулентности потока, создаваемого при прохождении бензина, щелочи и воздуха через отверстия диафрагм, обеспечивается хороший контакт между этими тремя составляющими. Меркаптан экстрагируется в щелочную фазу и окисляется до дисульфидов, а дисульфиды переносятся назад в бензиновую фазу. Из смесителя смесь поступает в отстойник, в котором раствор едкого натра отделяется и поступает обратно в смеситель. Раствор едкого натра, циркулирующий через смеситель, содержит 0,01-0,2% катализатора. Катализатор периодически добавляют через специальный бачок. Давление в системе 0,8 - 1,0 МПа. [c.39]

    Технологическая схема получения дифенилолпропана иа суль-фэкатионите изображена на рис. 160. Фенол и ацетон (мольное отношение 5 1) смешивают с меркаптаном и подогревают в паровом подогревателе 1 до 75 С. Смесь поступает в верхнюю часть ре-ainopa 2, представляющего собой колонну, заполненную катиони-ТС М. Реагенты подают с такой скоростью, чтобы время пребывания жидкости в аппарате составляло 1 ч. Полученную массу направля-юг в ректификационную колонну 3, где отгоняется легкая фракция, содержащая кроме промотора непревращенный ацетон, воду и часть фенола. В системе ректификационных колонн 4 (на схеме показана одна) из этой фракции отгоняют ацетон (плюс промотор) и воду, оставляя в кубе фенол. Воду выводят иа очистку, а ацетон и фенол возвращают на реакцию. [c.552]

    Поглощение HjS и Oj из газа обусловливает увеличение удельного расхода циркулирующего в системе раствора и, следовательно, повышение расхода энергии на его регенерацию. Кроме того, увеличение концентрации Naj Og в растворе щелочи ухудшает растворимость меркаптанов, что снижает степень очистки газа от них [2]. [c.36]

    Термически более устойчивы ароматические и циклические сульфиды, которые разлагаются при 400—450°С и выше. В случае арилалкилсульфидов легче разрывается связь между атомами серы и углерода в алкильном заместителе, чем в арильном, вследствие этого, вероятно, в системе накапливается некоторое количество меркаптанов. При нагревании сульфидов до 300—450 °С в присутствии алюмосиликата (катализатора каталитического крекинга) происходит их разложение с образованием сероводорода, меркаптанов и соответствующих углеводородов. При температурах до 350°С из алкилсульфидов образуются в основном меркаптаны при более высоких температурах преобладающим продуктом реакции становится сероводород. Алкилсульфиды нормального строения обладают большей термокаталитической стойкостью, чем сульфиды с разветвленной цепью. Из последних более прочны сульфя- ды с первичными радикалами. [c.196]

    Термохимические превращени я, окисление сульфидов в нефтях. Подавляющая часть современных топлив производится из сернистого сырья. Сераорганические соединения обнаруживаются в осадках на днищах топливных емкостей и баков, на топливных фильтрах и внутренных поверхностях топливных агрегатов. С агрегатами топливной системы сам.олетов (теплообменники, фильтры, насосы) в течение 1 года вступает в контакт до 240 т сераорганических соединений (для кислородных соединений эта цифра меньше в 2—3 раза, для азотистых — приблизительно в 10 раз). Нефтяные сульфиды — термически устойчивые соединения при низких температурах. При повышенных температурах они образуют свободные RS-радикалы, которые, присоединяя протон углеводородов, образуют меркаптан, алкены, а затем сероводород и элементарную серу [189] по схеме  [c.248]

    Встречающиеся в газовых системах продукты окисления весьма разнообразны, и их появление зависит от состава среды, температуры и характера применяемых химических веществ. Чаще всего продуктами окисления в системах газа, а также газа и жидкости являются сера (из Н25), карбоксильные кислоты (из метанола, гликоля и алканоламинов), оксиды железа (из железа), полисульфиды (из меркаптанов), оксиды амина (из аминов), тиосульфат (из Н28 и 5). Эти соединения могут вызывать сильную коррозию. Они образуются в трубопроводах или попадают в них из установок очистки газа. [c.343]

    В табл, 34 приведены примеры реакций бифункциональных соединений, приводящих к образованию линейных макромолекул. Из этой таблицы ясно, что функциональность можно установить только применительно к данной реакции. Так, первичная аминогруппа монофункциональна при образовании амида, но би- и даже трифункциональна в реакции с галоидными соединениями, Этиленоксидная группа реагирует монофункционально с карбоксильными группами, а соответственно замеигенные двойные связи монофункциональны по отношению к меркаптанам, но при полимеризации как двойные связи, так и этиленоксид-ные группы, а также другие способные к полимеризации кольцевые системы реагируют бифункционально. [c.928]

    Сульфинол хорошо растворяет HjS, Og, RSH, OS, Sg и углеводороды он химически и термически стабилен, имеет низкую теплоемкость и давление насыщенных паров, может быть использован для комплексной очистки сухих газов от нежелательных серо- и кислородсодержащих соединений, позволяет производить тонкую очистку газов от меркаптанов и от сероуглерода одновременно (степень извлечения меркаптанов 95%) при взаимодействии с СО2 сульфинол незначительно деградирует с -образованием диизопропанол-оксазолодона, который имеет щелочную реакцию и хорошо растворяет кислые газы (допустимое содержание его в абсорбенте 10%). Наличие в сыром газе СО2 не приводит к большим потерям сульфинола — на промышленных установках разложение сульфинола в 4—8 раз меньше, чем моноэтаноламина [28, 69]. Продукты разложения легко удаляются из системы в результате того, что до 0,05% регенерируемого раствора подвергается специальной очистке. Поглощающая способность сульфинола примерно в 2 раза выше, чем раствора моноэтаноламина [52]. [c.154]

    Реакция хинонов с меркаптанами протекает путем присоединения и обратимого окисления — восстановления с образованием тиозаме-щенных хинонов, причем присоединение происходит во все свободные положения Х1ИН0ИДН0Г0 кольца. Например, при взаимодействии толухинона с тиогликолевой кислотой НЗСНгСООН получается трехзамещен-ное производное. Таким же путем к хинонам легко присоединяется и восстановленная форма глутатиона 05Н. Продукт реакции представляет собой сопряженную редокс-систему, отличающуюся от глутатиона тем, что вместо сульфгидрильно-дисульфидной системы трипептид связан с хиноидной Группировкой, также способной играть роль окислительно-восстановительной системы  [c.423]

    При хорошо работающей системе стабилизации бензиновых дистиллятов, рассчитанной на депропанизацию и частичную дебута-низацию, в них теоретически не должен содержаться сероводород. Однако на практике в бензиновых дистиллятах после стабилизации НаЗ присутствует от следов до нескольких сотых процента . Для удаления остаточного количества сероводорода, органических кислот и частично легких меркаптанов с короткими радикалами до Сд, которые могут содержаться в более заметных количествах (табл. 25), бензиновые дистилляты обрабатывают щелочью или регенерируемыми реагентами. [c.69]

    Регенеративная щелочная очистка. Высаливание. Соли фенолов, тиофенолов и меркаптанов образуют в концентрированных растворах едкого натра или кали отдельную жидкую фазу. Это используется для регенерации очистных растворов в процессе очистки дистиллятных нефтепродуктов двухфазным растворителем [16, 31]. Верхний жидкий слой двухфазной щелочной системы содержит соли органических кислот и щелочных металлов. В этом слое растворены также щелочные соли меркаптанов и сероводорода, неболь-щие количества воды и непрореагировавшая щелочь. В нижнем слое содержатся только вода и щелочь. Соотношения их представлены графически на треугольной диаграмме, изображенной на рис. 5. [c.100]

    Отпарка водяным паром. Системы щелочной очистки с регенерацией отработанных растворов отпаркой водяным паром применяются для удаления меркаптанов из бензиновых и лигроиновых фракций. Процессы, основанные на полном удалении этих примесей, заслуживают предпочтения перед методами, при которых они лишь превращаются в менее вредные дисульфиды, остающиеся, однако, в нефтепродукте. Удаление меркаптанов снижает содержание серы, повышает октановое число, приемистость к ТЭС [86] и стойкость к окислению. [c.102]

    Выбор системы очистки в большой мере определяется типом и распределением меркаптанов в бензине или лигроине. Низкомолекулярные меркаптаны легче экстрагируются щелочными растворами, чем высокомолекулярные [41 ]. Полнота экстракции значительно улучшается добавкой различных веществ, повышающих растворимость, например изомасляной кислоты [87], алкилфенолов [73], метанола [32], крезолов [53] и нафтеновых кислот. Коэффициенты экстракции меркаптанов нормального строения тремя очистными растворами приведены в табл. 4. [c.102]

    Аналогично описанным выше гликозидам со связью между агликоном и гликозильным остатком через атом кислорода (0-гликозидам) могут быть построены еще два класса производных по С-1 так называемые 8-гликозиды и N-гликoзиды, образующиеся из остатков моносахаридов и меркаптанов или аминов. Как и 0-гликозиды, они также могут существовать в виде четырех изомеров. Свойства гликозидов всех трех типов весьма существенно зависят от электроотрицательности и основности гетероатомов гликозидной связи. Наиболее специфичны и непохожи на остальные свойства К-гликозидов, особенно если последние образованы из первичных аминов с достаточно высокой основностью. Такие соединения легко получаются непосредственно из моносахарида и амина (например, при непродолжительном нагревании с кислотой), а в водных растворах испытывают таутомерные превращения, аналогичные мутаротации свободных моносахаридов. Последнее особенно резко отличает такие К-гликозиды от их кислородных и серных аналогов, характеризующихся высокой стабильностью циклической системы. [c.21]

    Образующийся меркаптид натрия (RSNa) разлагается при нагревании раствора на щелочь и меркаптан, который выводят из системы. Одновременно с меркаптанами щелочь извлекает также диоксид углерода в результате протекания следующих реакций  [c.305]

    Не исключена возможность, что буярт ирп уппимп пnu д-нять двухступенчатое защелачивание. На первой ступени при-менеБие трикалий- и тринатрийфосфата для извлечения сероводорода, а на второй — щелочи для извлечения меркаптанов. Тогда оба процесса можно вести по круговым циклам и обеспечивать глубокую очистку дистиллятов и газов из системы канализации в этом случае можно исключить весьма неприятный сток отработанных щелочей. [c.194]


Смотреть страницы где упоминается термин Меркаптаны системам: [c.564]    [c.108]    [c.172]    [c.141]    [c.87]    [c.23]    [c.149]    [c.274]    [c.105]    [c.119]    [c.101]    [c.330]    [c.46]    [c.138]   
Органическая химия (1964) -- [ c.279 ]

Органическая химия (1964) -- [ c.279 ]




ПОИСК





Смотрите так же термины и статьи:

Меркаптаны



© 2025 chem21.info Реклама на сайте