Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление в двигателях внутреннего сгорани

    Под химической коррозией подразумевается прямое взаимодействие металла с коррозионной средой, при котором окисление металла и восстановление окислительного компонента среды протекают в одном акте. Такая кор-ро ия протекает по реакциям, подчиняющимся законам химической кинетики гетерогенных реакций. Примерами химической коррозии являются газовая коррозия выпускного тракта двигателей внутреннего сгорания (под действием отработавших газов) и лопаток турбин газотурбинного двигателя, а также коррозия металлов в топливной системе двигателей (за счет взаимодействия с находящимися в топливах сероводородом и меркаптанами). В результате окисления масла в поршневых двигателях могут образовываться агрессивные органические вещества, вызывающие химическую коррозию вкладышей подшипников [291]. Можно привести и другие примеры. Однако доля химической коррозии в общем объеме коррозионного разрушения металлов относительно мала, основную роль играет электрохимическая коррозия, протекающая, как правило, со значительно большей скоростью, чем химическая. [c.279]


    В процессе работы нефтяные масла под действием кислорода воздуха и повышенных температур окисляются, претерпевая при этом в течение времени более или менее заметные изменения. Окисление масел приводит к появлению в них кислот, способных при известных условиях вызывать коррозию деталей двигателей и механизмов. Помимо кислот в результате окисления образуются растворимые и не растворимые в маслах смолистые вещества и продукты их конденсации и полимеризации, которые, отлагаясь в маслопроводах, нарушают циркуляцию масел и загрязняют двигатели и механизмы либо оказывают отрицательное влияние на другие свойства масел (например, понижают диэлектрическую прочность трансформаторного масла). Многие масла (например, масла для двигателей внутреннего сгорания, для паровых машин) в зоне высоких температур подвергаются дополнительно термическому разложению, что в конечном счете приводит к нагарообразованию. [c.212]

    Окисление — восстановление — один из важнейших процессов природы. Дыхание, усвоение углекислого газа растениями с выделением кислорода, обмен веществ и ряд биологических процессов в основе своей являются окислительно-восстановительными реакциями. Сжигание топлива в топках паровых котлов и двигателях внутреннего сгорания, электролитическое осаждение металлов, процессы, происходящие в гальванических элементах и аккумуляторах, включают реакции окисления — восстановления. Получение простых веществ, например железа, хрома, марганца, никеля, кобальта, вольфрама, меди, серебра, цинка, серы, хлора, иода и т. д., и ценных химических продуктов, например аммиака, щелочей, сернистого газа, азотной, серной и других кислот, основано на окислительно-восстановительных реакциях. Производство строительных материалов, пластических масс, удобрений, медикаментов и т. д. было бы невозможно без использования окислительно-восстановительных процессов. На процессах окисления — восстановления в аналитической химии основаны методы объемного анализа пер-манганатометрия, иодометрия, броматометрия и др., играющие важную роль при контролировании производственных процессов и выполнении научных исследований. [c.51]

    В последнее время большое внимание уделяется созданию так называемых топливных элементов. В топливных элементах энергия химических реакций, выделяющаяся в процессе окисления топлива, непосредственно преобразуется в электричество. Коэффициент полезного действия таких топливных элементов вдвое превышает коэффициент полезного действия паровых турбин и двигателей внутреннего сгорания и достигает 80%. [c.83]


    При взаимодействии металла с сухими газами (воздухом, газообразными продуктами горения топлива и др.) при высоких температурах происходит газовая химическая коррозия. Этот вид коррозии возможен и при низких температурах, если при этом на поверхности металла не конденсируется жидкость, проводящая электрический ток. Газовой коррозии подвергаются детали газовых турбин, двигателей внутреннего сгорания, арматура печей подогрева нефти и другие изделия, работающие при повышенных температурах в среде сухих газов. При проведении многочисленных технологических процессов обработки металлов в условиях высоких температур (нагрев перед ковкой, прокаткой, штамповкой, при термической обработке - закалка, отжиг, сварка) на металлургических и трубопрокатных заводах также возможна газовая коррозия. При взаимодействии металла с кислородом воздуха или содержащимся в других газах происходит его окисление с образованием окисных продуктов коррозии. В отдельных случаях, например при воздействии на металл паров серы или ее соединений, на поверхности металла могут образоваться сернистые соединения. [c.17]

    Высокая температура в работающем двигателе обеспечивает значительную скорость инициирования перекисного окис.пения. Полученные перекиси быстро подвергаются термическому или каталитическому разло жению, образуя, кроме обычных карбонильных соединений и спирта, кислоты, воду и двуокись углерода. Подобное глубокое окисление до кислотных продуктов является основной причиной ухудшения качества смазочных массл в двигателях внутреннего сгорания. [c.307]

    Со всей очевидностью установлено, что спонтанное окисление, которое появляется еще до зажигания, играет немаловажную роль в процессах, которые происходят в двигателях внутреннего сгорания и что предварительно окисленные вещества гораздо больше склонны к самовоспламенению. Кинетически более вероятным представляется ступенчатый характер реакции с наличием ряда промежуточных продуктов. [c.406]

    При высоких рабочих температурах двигателя масло в определенный момент может перестать быть вязким и в дальнейшем уже не сможет предохранять контактирующие металлические поверхности от износа и повреждений. С трудностями можно столкнуться, если одно и то же масло, применяемое в двигателе внутреннего сгорания, должно обеспечить и нормальный запуск в условиях низких температур, и нормальное смазывание в условиях жестких режимов эксплуатации. Если минеральное масло применяется при особенно высоких температурах, то оно может разлагаться (термически или в результате окисления), при этом жидкая [c.499]

    Цепные реакции являются очень распространенными. По цепному механизму, на-Рис. 165. Схема развет- пример, могут совершаться многие реак-вляю щихся цепей. ции окисления углеводородов, в частности — важные в техническом отношении реакции получения альдегидов, спиртов, кислот, кетонов, перекисей и др. Н. Н. Семеновым было показано, что многие особенности процессов сгорания горючего в цилиндрах моторов двигателей внутреннего сгорания обусловлены цепным механизмом процесса. Процессы полимеризации, играющие важную роль в образовании высокомолекулярных соединений, большей частью протекают по типу цепных реакций, (В. А. Каргин, С. С. Медведев и др.) Большую роль цепные реакции играют в биологических процессах. Хорошо известно, что и процессы деления атомных ядер в кинетическом отношении могут протекать по типу цепных реакций. [c.486]

    Известно, что моторные масла при работе двигателя внутреннего сгорания подвергаются действию высоких температур и давления, контакту с кислородом воздуха и с различными металлами в результате углеводороды масла претерпевают процессы окисления, конденсации и разложения. При этом образуются углеродистые осадки, асфальто-смолистые вещества, карбены и карбоиды, кислоты и др. Оседая на деталях двигателя в виде нагара, лака и шлама, они приводят к изменению первоначальных качеств масла и ухудшают условия работы двигателя. Основное назначение моющих и диспергирующих присадок заключается в предотвращении отложения этих веществ, в обеспечении подвижности поршневых колец и нормальной работы двигателя. [c.93]

    Другим примером процесса с разветвленными цепями может служить окисление газообразных углеводородов. Кинетика этого процесса сходна с кинетикой окисления водорода. Для замедления слишком энергичного развития цепей, приводящего к детонации в двигателях внутреннего сгорания, в бензин вводят ингибитор — тетраэтилсвинец, который реагирует с радикалами и вызывает обрыв цепей. [c.286]

    Сплавы, содержащие 4—9 % Сг, широко используются в нефтеперерабатывающей промышленности в качестве стойких к окислению материалов. Сплав 12 % Сг—Ре благодаря высокой стойкости и хорошим физическим свойствам используют для изготовления лопастей паровых турбин. Из сплавов с 9—30 % Сг изготовляют горелки и некоторые элементы печей, а в сочетании с 51, N1, а иногда и другими легирующими добавками, они служат для изготовления клапанов в двигателях внутреннего сгорания. Ниже приведены приблизительные верхние температурные пределы применения сплавов Сг—Ре на воздухе  [c.206]


    Технические условия. Для предотвращения аварий, вызываемых короблением, уменьшения влияния выделяющегося в поршневом двигателе внутреннего сгорания тепла на центровку подшипников, ход поршней и т. д. важно поддерживать температуру двигателя на каком-то определенном уровне. Кроме того, температура должна быть достаточно высокой, чтобы водяные пары в газах, проникающих из цилиндров в картер, не конденсировались, а удалялись через суфлер. В то же время температура не должна быть весьма большой, чтобы смазочное масло не портилось вследствие окисления или в результате крекинга. Для минимизации размеров радиатора желательно, чтобы система охлаждения работала при максимальной возможной температуре, чем обеспечивалась бы практически максимально достижимая разность температур между охлаждающей двигатель жидкостью и охлаждающим радиатор воздухом. С другой стороны, чтобы свести к минимуму потери при испарении охлаждающей жидкости, следует поддерживать температуру системы нил<е точки кипения охлаждающей жидкости. Поэтому в системе должно поддерживаться некоторое давление, не превышающее, однако, значений, допустимых из условий надежности работы простых соединительных резиновых шлангов. Опыт показывает, что оптимальной с точки зрения указанных требований является температура в интервале 82—93° С. [c.217]

    В воздушных компрессорах отложение так называемых нагаров служит причиной взрыва компрессоров. Для ликвидации возможности указанных явлений при окислении масел в двигателях внутреннего сгорания прибегают к помощи специальных так называемых моющих присадок. К числу этих присадок относятся кальциевые, магниевые или бариевые соли жирных кислот или [c.233]

    Газовой коррозии подвергаются детали газовых турбин, двигателей внутреннего сгорания, арматура печей и другие изделия, работающие при повышенных температурах в среде сухих газов. Газовая коррозия имеет место при горячей обработке металла (прокатка, отжиг, ковка, сварка) на металлургических и трубопрокатных заводах. При взаимодействии металла с кислородом,содержащимся в газах, происходит его окисление, продуктами коррозии являются окисные соединения. В отдельных случаях, например при воздействии на металл паров серы или сернистых соединений, на металле возможно образование сернистых соединений. [c.20]

    Часть энергии двигателя внутреннего сгорания клетки используется для ремонта машины . Машина состоит из структурных компоиентов, которые должны ею самовоспроизводиться. Обычно в результате горения (окисления) выделяется только тепло плюс свет и образуются продукты горения. Однако в результате биологического окисления (сгорания) помимо простого выделения тепла большое количество энергии используется для [c.14]

    В отработавших газах двигателей внутреннего сгорания может содержаться более ста разли шых химических соединений-продуктов неполного сгорания, частичного окисления и термического разложения топлива, в той или иной мере вредных для здоровья людей. [c.79]

    Вторым обстоятельством, имевшим такой же результат, нужно считать появление в это время в литературе взглядов о связи детонации в двигателе внутреннего сгорания с низкотемпературным предпламенным (т. е. до его пламенного сгорания) окислением топлива. При этом предполагалось, а впоследствии было и объективно показано, что такое предпламенное изменение топлива происходит по типу холоднопламенного окисления. В таком случае, следовательно, рациональные поиски путей борьбы с детонацией, этим грозным фактором, лимитирующим развитие [c.159]

    На процессах окисления — восстановления основана работа широко распространенных химических источников электрического тока — свинцового и щелочного аккумуляторов. Это также гальванические элементы, но материалы в них подобраны с таким расчетом, чтобы была возможна максимальная обратимость процесса, иными словами, чтобы многократное повторение циклов зарядки и разрядки совершалось без необходимости добавления участвующих в их работе веществ. В настоящее время аккумуляторы получили широкое разнообразное применение в различных областях народного хозяйства. Они являются необходимой принадлежностью всех машин, на которых установлены двигатели внутреннего сгорания. Шахтные электровозы, грузовые электрокары, подводные лодки также работают на использовании свинцовых аккумуляторов. Не менее широкое распространение имеет свинцовый аккумулятор и в повседневной лабораторной практике, так как является дешевым и удобным источником тока. [c.271]

    Химические реакции широко используются во многих производственных процессах. Они (например, процессы окисления, коррозии и др.) протекают при работе многих установок, машин и приборов. Получение электроэнергии, топлива, металлов, различных материалов, продуктов питания и т. п. непосредственно связано с химическими реакциями. Например, в настоящее время электрическую и механическую энергии получают в основном преобразованием химической энергии природного топлива. В процессе этого преобразования происходят сложные химические реакции горения, взаимодействия воды и ее примесей с металлами и т. п. Без понимания этих процессов невозможно обеспечить эффективную работу электростанций и двигателей внутреннего сгорания. Велика роль химических процессов и в атомной энергетике, значение которой непрерывно возрастает. [c.8]

    При сгорании алканов на воздухе они окисляются до диоксида углерода и воды (на практике обычно не достигается полное сгорание, так что одним из продуктов окисления является оксид углерода). Жизнь современного человеческого общества неотделима от этого процесса. Получаемая с его помощью энергия используется для совершения работы (например, в двигателях внутреннего сгорания и дизелях) или для получения тепла (отопление метаном, газовые плиты на пропане и бутане, котельные на нефти). При полном сгорании углеводородов выделяется большое количество энергии, как видно из примера полного окисления метана  [c.119]

    Процесс получения смесей окиси углерода и водорода частичным окислением природного газа (метана), поставляющий исходный продукт для проведения синтеза по Фишеру — Тропшу, в промышленном масштабе, играет в настоящее время очень большую роль з обеспечении двигателей внутреннего сгорания горючим эта роль в будущем может стать решающей. Подробности об этом процессе сообщаются ниже. Реакция протекает по уравнению [c.439]

    Температура масла в системах смазки в ряде случаев остается во время работы относительно невысокой в системе смазки паровых турбин 45—70 °С, в трансформаторах 60—90 °С, в картере двигателей внутреннего сгорания не выше 150 °С [80]. В связи с этим скорость окисления масел в этих системах сравнительно невелика, и соответственно срок бессменной службы масел может быть значительным, достигая, например, в турби- не 15—25 тыс. ч. [c.70]

    В последние годы в связи с широким развитием исследований по точному определению физических свойств углеводородов и по изучению их окисления и поведения в двигателях внутреннего сгорания многие углеводороды были получены в очень чистом виде. Ббльшая часть этой препаративной работы была проведена по Проектам 6 и 44 Американского нефтяного института. Работа, проводившаяся Национальным бюро стандартов, включала получение и исследование углеводородов для Национального консультативного комитета по аэронавтике и Исследовательской лаборатории воздушных двигателей. В Англии во время второй мировой войны ряд углеводородов готовился в лабораториях некоторых университетов и нефтяных компаний при координации этой работы со стороны Технического консультативного комитета Министерства воздушных сил. Впоследствии эта работа была продолжена группой исследования углеводородов Института нефти. [c.398]

    Смазочные масла отбираются обыкновенно в довольно широких пределах температур кипения или уд. весов, а потому говорить об их однородности совершенно невозможно. В смазочных маслах, особенпо в смешанных, могут присутствовать углеводороды разной степени летучести, и при юздействии высоких температур, напр., при действии перегретого пара, масла moi t терять часть своих компонентов, приобретая, вместе с тем, и большую вязкость грубо говоря, вязкость растет с температурой кипения. В некоторых случаях, как, папр., в двигателях внутреннего сгорания, масла могут также подвергаться процессам разложения — подобные крэкинг-процессы тоже могут изменять первоначальную вязкость в обе стороны. Без остатка при пагревапии масел на воздухе ни одно не ис-испаряется совершенно кроме простого испарения возможны и доказаны процессы окисления и осмоления, приводящие к продуктам различной летучести. [c.273]

    Изучение течений с переменным расходом и химическими превращениями представляет большой интерес для развития теории химических реакторов и возможности их расчета. Нами сделана попытка построения приближенной модели аэротермо-химического процесса в контактном аппарате радиального типа, используемого для обезвреживания отработавших газов двигателей внутреннего сгорания каталитическим окислением. [c.80]

    Стойкость масел к воздейстпию кислорода характеризуют следующие показатели общая склонность масел к окислению кор-розиониая активность масел склонность к лакообразованию склонность к образованию осадка в двигателях внутреннего сгорания. Для определения этих показателей предложен комплекс методов лабораторных и моторных испытаний. [c.351]

    С. Крейн и Р. Линштейн [70] отмечают, что в двигателе внутреннего сгорания небольшая часть масла подвергается в зоне поршневых колец глубокому окислению в тонком слое при высокой температуре с образованием продуктов окислительной конденсации, являющихся источником высокотемпературных осадков и первопричиной образования лака. [c.582]

    В 1934 г. Мак-Николь, Уильямс и Ламарк [290] предложили оценивать склонность масел образовывать лаки в зоне поршневых колец двигателей внутреннего сгорания окислением масла в тонком слое в металлической чашке при температуре до 240° и определением прочности пленки по усилию, которое нужно приложить для отрыва кольца (при помощи рыча кного безмена), заложенного в масло перед началом опыта. [c.582]

    Несмотря на В озможность использования указанных присадок к вырабатываемым на нефтезаводах маслам предъявляются специальные требования на стабильность против окисления. Однако это относится далеко не ко всем маслам. Так, например, масла, применяемые в проточных или кольцевых системах смазки, работающие лри невысоких температурах, практически за время пребывания их на смазываемых деталях не подвергаются окислению. Поэтому нецелесообразно к таким (индустриальным) маслам предъявлять требования на стабильность. Наоборот, для масел, применяющихся в циркуляционных системах смазки (паровые турбогенераторы, современные металлообрабатывающие станки), в двигателях внутреннего сгорания, в трансформаторах установлены в спецификациях определенные нормы на стабильность против окисления. Характеристика стабильности выражается обычно в процентах осадка и кислотным числом масла, определяемых после окисления его в специальных лабораторных условиях. [c.234]

    В иностранных спецификациях приняты нормы на стабильность против окисления для всех масел, предназнач енных для работы в двигателях внутреннего сгорания. [c.235]

    Сжигание топлива в топках паровых котлов и двигателях внутреннего сгорания, электролитическое осаждение металлов, процессы, происходящие в гальванических элементах и аккумуляторах, включают реакции окисления - восстановления. Получение простых веществ (железа, хрома, марганца, никеля, кобальта, вольфрама, меди, серебра, цинка, серы, хлора, иода и т. д.) ценных химических продуктов, например аммиака, щелочей, сернистого газа, азотной, серной и других кислот, основано на окислительно-восстановительных реакциях. Производство строительных материалов, пластических масс, удобрений, медикаментов И т. д. было бы невозможно без использования окисли-тельно-восстановительных процессов. На процессах окисления — восстановления в аналитической химии основаны методы объемного анализа перманганатометрия, ио,дометркя, броматометрия и др., играющие важную роль при контролировании производственных процессов и выполнении научных исследований. [c.75]

    Моющие, антипагарные или диспергирующие присадки. Масла для двигателей внутреннего сгорания эксплуатируются в условиях, способствующих их глубокому окислению и термическому разложению, что и конечном итоге приводит к отложениям различного рода осадков, нагаров и образованию лаковых пленок на деталях двигателей. [c.100]

    Между строением углеводородов и их пригодностью в качестве моторного топлива существует определенная зависимость. Наиболее пригодны углеводороды, стойкие по отношению к окислению, т. е. такие, которые в смеси с воздухом (карбюрированная смесь) сгорают равномерно и сравнительно медленно. В двигателе внутреннего сгорания в момент максимального сжатия карбюрированная смесь зажигается от электрозапала, и газы сгорания совершают нужную работу. Часто в случае неподходящего топлива горение бензиновоздушной смеси переходит во взрыв. Это нежелательное явление называется стуком, звоном или детонацией, а топливо, вызывающее его,—детонирующим топливом. Детонация очень вредна для моторов, так как она уменьшает их мощность, дает нагары и неполное сгорание. [c.187]

    Наконец, третьей, также первоочередной задачей, которая в середине 30-х годов встала перед исследованием, являлось выяснение химической и кинетической природы отличий, установленных к этому времени для верхне- и нижнетемпературных процессов окисления углеводородов. Помимо интереса познавательного характера, немаловажной причиной остроты, которую приобрел этот вопрос, явилось уже давно имевшееся в литературе представление о связи детонации в двигателе внутреннего сгорания с процессами медленного окисления, протекающими впереди фронта пламени в еще не сгоревшей части топливо-воздушно смеси. Эта идея, после открытия явления двухстадийного низкотемпературного воснламенения была рядом авторов расширена дополнительным и впоследствии экспериментально подтвержденным предположением о том, что в случае детонационного режима предпламенное окисление топлива в двигателе протекает по механизму нижнетемпературного окисления. Это несомненно придало актуальность задаче изучения сходства и различия в химизме процессов, составляющих содержание верхне- и нижнетемпературного окисления углеводородов. [c.93]

    Одновременно со схемой Пиза в том же 1935 г. появилась еще одна радикально-цепная схема, предложенная для случая низкотемпературного окисления парафиновых углеводородов. Автором ее явился Уббелодэ [43], незадолго до этого исследовавший совместно с Эгертоном и Смитом предпламенные процессы, протекающие в топливо-воздушной смеси в двигателе внутреннего сгорания [60]. В этой работе авторы в согласии со взглядами, развивавшимися Эгертоном с 1928 г. [61], констатируют при работе двигателя на детонационном режиме в последней еще не сгоревшей части тонливо-воздушного заряда в момент, предшествующий прохождению пламени, наличие очень незначительных количеств органических алкильных перекисей, подобных гидроперекиси этила. Эти перекиси и являются по мнению авторов ответственными за возникновение детонации. Предпламенные процессы, протекающие в последней части топливо-воздушного заряда до ее под7кигания подошедшим фронтом пламени, представляют собой медленное окисление углеводородного топлива. Таким образом, полученные результаты, казалось, подтверждали образование в ходе окисления углеводородов, при температурах порядка нескольких сот градусов, гидроперекисей алкилов, которые, естественно, должны рассматриваться, как первичные стабильные продукты окислений [c.112]

    Приведенные выше факты, противоречащие перекисной концепции М. Б. Неймана, не помешали ее широкому распространению в литературе. В известной мере это объясняется тем, что взгляды М. Б. Неймана на химизм холоднопламенного окисления и двухстадийпого низкотелшератур-ного воспламенения были поддержаны исследователями, изучаюиц1ми процессы горения в двигателе внутреннего сгорания. В связи с этим ниже приводится краткое рассмотрение экспериментальных фактов и другой научной аргументации, выдвинутой в литературе по двигателям внутреннего сгорания в пользу концепции, развитой М. Б. Нейманом. [c.178]

    Протекание окислепия углеводородов путем ступенчатого окисления образующихся из них альдегидов не может объяснить происхождения детонации в двигателе внутреннего сгорания, так как альдегиды не оказывают продетонационного эффекта [4]. [c.204]

    Резкое влияние на развитие цепных процессов оказывает добавление (или удаление) примесей, способных химически взаимодействовать с активными частицами. Так, окисление СО или На кислородом по цепному механизму прекращается в результате глубокого высушивания смеси. Добавление тетраэтилсвинца к бензовоздушной смеси препятствует детонации (преждевременному воспламенению смеси в цилиндре двигателей внутреннего сгорания) потому, что образующиеся при термической деструкции тетраэтилсвинца метильные радикалы реагируют с активными частицами в цепном процессе окисления и [c.272]

    Жаростойкость — стойкость по отношению к газовой коррозии при высоких температурах. Жаропрочность — свойства конструкционного материала сохранять высокую механическую прочность при значительном повышении температуры. Основное средство защиты металлов от газовой коррозии — легирование такими компонентами, которые улучшают свойства защитных пленок, образующихся при окислении металла. Для стали такими элементами являются хром, алюминий, кремний. Эти элементы при высоких температурах окисляются энергичнее, чем железо, и образуют при этом плотные защитные пленки оксидов. Хром и кремний улучшают также жаропрочность сталей. Стали, легированные 4—9% хрома, молибденом или кремнием, применяют, например, в парогенераторо- и турбостроении. Сплав, содержащий 9—12% хрома, применяется для изготовления лопаток газовых турбин, деталей реактивных двигателей, в производстве двигателей внутреннего сгорания и т. п. [c.218]

    В заключение отметим, что в настоящее время широкое распространение получают вещества, замедляющие нежелательные для нас процессы (например, коррозию металлов, прогоркание пищевых жиров, окисление каучуков и других полимеров), но в ходе реакции сами претерпевающие известные изменения. Такие вещества получили название ингибиторов (лат. пЫЬеге —удерживать). К числу ингибиторов относится, например, тетраэтилсвинец РЬ(С2Н5)4 — противодействует детонации топлива в двигателях внутреннего сгорания а-нафтол предохраняет крекинг-бензин от окисления и смолообразования, что понизило бы его качество, и т. д. [c.143]


Смотреть страницы где упоминается термин Окисление в двигателях внутреннего сгорани: [c.435]    [c.416]    [c.322]    [c.7]    [c.7]    [c.7]    [c.136]    [c.213]   
Присадки к маслам (1966) -- [ c.195 , c.202 ]

Присадки к маслам (1966) -- [ c.195 , c.202 ]




ПОИСК





Смотрите так же термины и статьи:

Окисление внутреннее



© 2025 chem21.info Реклама на сайте