Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Циглера Натта катализаторы полимеризации промышленные

    Координационные соединения имеют большое значение в химической промышленности и в быту. В 1963 г. Нобелевская премия по химии была присуждена доктору Циглеру в Институте Планка в Германии и профессору Миланского университета Натта в Италии. Их исследования внесли существенный вклад в развитие метода полимеризации этилена при низком давлении, при помощи которого в настоящее время делают тысячи предметов домашнего обихода. Катализатор Циглера — Натта для полимеризации этилена представляет собой комплексное соединение алюминия и титана. Важность комплексов в жизни становится очевидной, если учесть, что хлорофилл, ответственный за фотосинтез в растениях, является комплексом магния, а гемоглобин, снабжающий кислородом клетки животных,— комплексом железа. [c.9]


    После открытия катализаторов Циглера — Натта для полимеризации олефиновых соединений многие исследователи независимо друг от друга использовали эти катализаторы для полимеризации изопрена. Под влиянием каталитической системы, состоящей из тетрахлорида титана и триалкилалюминия, в 1955—1957 гг. в нашей стране и за рубежом был получен полимер изопрена, содержащий до 95% 1,4-ц с-звеньев. В 1957—1958 гг. в СССР был разработан процесс получения такого полимера, промышленное производство которого было начато в 1964 г. (каучук СКИ-3). Большинство зарубежных производств также базируется на использовании титановой системы, и лишь фирма Шелл (Нидерланды) полимеризует изопрен на литийорганических катализаторах. [c.297]

    Этилен полимеризуется по радикальному и ионному механизму. Промышленное значение имеет полимеризация этилена в присутствии инициаторов, (кислорода, органических перекисей) под давлением 120—300 МПа (1200—3000 кгс/см2) и температуре 200—280°С (метод высокого давления), а также полимеризация этилена в присутствии катализаторов Циглера — Натта под давлением 0,2— 0,5 МПа (2—5 кгс/см ) и температуре ниже 80 °С (метод низкого давления) или под давлением 3,5— [c.5]

    В промышленности применяют полунепрерывные и непрерывные методы полимеризации этилена в присутствии катализаторов Циглера— Натта. [c.7]

    Как мы уже видели, на эффективность катализаторов Циглера— Натта сильно влияют способ полимеризации и его параметры. Однако сам катализатор играет важнейшую роль в определении активности и показателя стереорегулярности. Когда началось промышленное применение этих катализаторов, для улучшения экономических показателей процесса потребовалось создать катализатор, обеспечивающий 1) достаточно высокую активность, чтобы исключить стадию обеззоливания, и 2) достаточный показатель стереорегулярности, чтобы исключить стадию экстракции атактического полимера. Для большинства [c.204]

    Металлоорганические я-комплексы играют важную роль как катализаторы химических процессов, многие из которых реализованы в промышленности (окисление пропилена в акролеин, полимеризация олефинов по Циглеру—Натта, окисление олефинов в карбонильные соединения, оксосинтез, гидратация ацетилена по Кучерову и Др.). [c.351]

    Широкое промышленное внедрение процессов полимеризации с использованием катализаторов Циглера — Натта выдвинуло проблему управления реакцией полимеризации а-олефинов с целью получения полимеров заданной плотности, молекулярной массы и молекулярно-массового распределения (ММР). [c.15]


    Интерес к алюминийорганическим соединениям особенно возрос за последние 12—15 лет в связи с использованием алюминийтриалкилов в качестве компонентов каталитической системы при реакциях полимеризации (катализаторы Циглера — Натта). Однако практическое применение алюминийтриалкилов не исчерпывается только каталитическими системами. За последнее время алюминийтриалкилы широко используют для промышленного синтеза высших жирных спиртов. В этом случае смесь алюминийтриалкилов с оле-финами окисляют воздухом в результате образуются алкоголяты алюминия, которые при взаимодействии с воДой разрушаются с образованием окиси алюминия и первичных жирных спиртов. При тщательном контроле можно обеспечить условия для преимущественного образования какого-либо одного продукта, в связи с этим процесс приобретает особую важность для промышленного производства моющих средств. [c.378]

    Скорости ионной полимеризации слабо зависят от температуры, поскольку энергии активации стадий инициирования и роста цепи малы (существуют исключения из этого положения, например при инициировании на катализаторах Циглера—Натта). Поэтому в отличие от радикальной полимеризации ионная полимеризация протекает с высокими скоростями при низких температурах. Так, полиизобутилен в промышленности получают в присутствии трехфтористого бора при —100 °С в жидком пропане (см. опыт 3-23). Однако температура полимеризации оказывает решающее значение на структуру образующегося полимера. [c.138]

    Во многих обзорах и статьях делались попытки объяснить химизм образования кристаллического полипропилена на катализаторах Циглера — Натта. Цель этой главы — дать исторический обзор разработки промышленных катализаторов Циглера — Натта и процесса получения полипропилена. Для более глубокого ознакомления с литературой и теоретическими аспектами полимеризации по Циглеру — Натта рекомендуем книгу Бура [4]. [c.191]

    Окиснометаллические катализаторы. К эффективным катализаторам К,-и, п. а-олефинов, диеновых углеводородов и нек-рых других мономеров относятся также окислы переходных металлов, среди к-рых наибольшее распространение получили термически активированные окислы хрома и молибдена (см, Окиснометаллические катализаторы). Эти катализаторы впервые применены для полимеризации этилена вслед за катализаторами Циглера — Натта. В США и ряде других стран катализаторы на основе окиси хрома получили промышленное использование в производстве линейного полиэтилена высокой плотности, аналогичного по свойствам полиэтилену, синтезируемому с помощью металлоорганич. комплексных катализаторов. [c.546]

    Гетерогенные комплексные катализаторы характеризуются большим набором активных центров различного типа. При полимеризации на таких катализаторах обычно получаются полимеры с довольно широким (Му /Мп 10) унимодальным М.-м. р. Так, для промышленных образцов полиэтилена и полипропилена, полученных на катализаторах Циглера — Натта, [c.147]

    Открытие Циглером [83] в 1954 г. у алюминийорганических соединений в смеси с четыреххлористым титаном способности вызывать полимеризацию этилена получило блестящее развитие в работах Натта и его школы. В 1955 г. была открыта Натта [85] стереоспецифическая полимеризация, позволяющая получать изотактические и синдиотактические полимеры с использованием в качестве катализаторов алюминийорганических соединений в смеси с хлоридами титана (катализаторы Циглера — Натта). Эти же катализаторы позволили решить задачу синтеза каучуков, не уступающих по своим свойствам натуральному [88]. В настоящее время эта область усиленно разрабатывается учеными всех стран, а результаты этих исследований нашли применение в промышленности. [c.7]

    Полиэтилен низкого давления (НД) получают полимеризацией этилена под давлением 0,2— 0,5 МПа (2—5 кгс/см ) и температуре 50—80°С в присутствии комплексных металлоорганических катализаторов. Наиболее широкое распространение в промышленности получили катализаторы Циглера — Натта, состоящие из четыреххлористого титана и алкилов алюминия (триэтилалюминия, диэтил-алюминийхлорида и триизобутилалюминия). Полимеризация этилена в присутствии таких катализаторов протекает по ионному механизму и относится к анионно-координационному типу. [c.7]

    Растворитель играет существенную роль при суспензионной полимеризации, так как растворимость пропилена и атактического полимера в разных растворителях не одинакова. Однако столь же важна и концентрация примесей в растворителе и пропилене. Известно, что ядами катализатора Циглера — Натта являются вода, кислород, монооксид и диоксид углерода, ал-лен, ацетилен, оксисульфпд углерода и серусодержащие органические соединения. Для достижения максимальной эффективности катализатора важно поддерживать концентрацию этих ядов на как можно более низком уровне — обычно менее нескольких частей на миллион. Между тем не всегда можно предсказать действие каждого яда. Например, в табл. 5 показано влияние содержания воды в гептане на промышленный катализатор Т1С1з. Хотя активность снижается с ростом концентра- [c.200]


    Эти процессы приводят к образованию рацемических смесей. Однако считается, что при спонтанной кристаллизации происходило разделение смесн. Наиболее вероятно, что разделение проходило случайным образом. Видимо, определяющую роль в разделении оптически активных соединений путем селективного комплексоебразования одного определенного стереоизомера играли минералы, как, например, природные асимметричные кристаллы кварца, и ионы металлов. В конце К01Щ0В, стереоселективная полимеризация олефинов на поверхности металлов (катализаторы Циглера — Натта) представляет собой хорощо изученный промышленный процесс для получения изотактических полимеров. Известно также, что связывание ионов металлов весьма важно для многих биохимических превращений. Такое связывание существенно для поддержания нативной структуры нуклеиновых кислот и многих белков и ферментов. Процесс отбора оптических изомеров мог происходить вследствие других физических явлений, например взаимодействие с радиоактивными элементами, радиация или космические лучи. Недавно проведенные эксперименты с стронцием-90 показывают, что D-ти-роэин быстрее разрушается, чем природный L-изомер. Весьма заманчиво привлечь эти факторы для объяснения происхождения диссимметричности в процессах жизнедеятельности. [c.186]

    Нельзя себе представить развитие современной науки, промышленности и сельского хозяйства без применения координационных соединений. Важной областью использования координационных соединений является металлокомилекспый катализ. В качестве примера можно привести реакцию полимеризации этилена и его аналогов с участием катализатора Циглера — Натта (координационного соединения алюминия и титана). [c.243]

    Регулярность структуры. Кристаллизоваться могут только такие полимеры, молекулы которых построены регулярно. Б гомополимерах может возникнуть нерегулярность за счет разного пространственного расположения заместителей. Поэтому к кристаллизации способны только стереорегулярные полимеры. Чем больше нарушений регулярности в полимере, тем меньше содержание его кристаллической части. В таких промышленных полимерах, как полистирол или полиметилметакрилат, заместители расположены нерегулярно, эти полимеры аморфны и не содержат кристаллической части. Поливинилхлорид содержит сильно полярные атомы хлора, которые взаимно отталкиваются и поэтому значительная часть макромолекул поливинилхлорида построена относительно регулярно даже при получении полимера методом эмульсионноГ полимеризации. Поэтому поливинилхлорид частично кристаллизуется. В полиэтилене нет заместителей, поэтому полиэтилен мог Оы быть идеально кристаллическим. Однако в условиях синтеза в макромолекулах его возникают разветвления, которые нарушают регулярность, и это приводит к снижению степени кpи тaJrличнo ти в тем большей степени, чем больше разветвлений. Так, полиэтилен, полученный путем разложения диазометапа (так называемый полиметилен), является полностью линейным. Степень кристалличности достигает в нем 95%. Полиэтилен высокой плотности, полученный на катализаторах Циглера — Натта, разветвлен в большей степе- [c.182]

    В последние десятилетия широкое распространение получила анионно-координационная полимеризация в присутствии комплексных катализаторов Циглера — Натта. Этот метод используется в промышленном синтезе стереорегулярных полимеров. Кроме того, этот метод является единственным для полимеризации а-олефинов (пропилена, бутена-1 и др.). В состав катализаторов Циглера — Натта входят металлоорганические соединения I—П1 групп и хлориды IV—VH групп с переходной валентностью. Наиболее часто используются металлоорганические соединения алюминия и хлориды титана. Так как алкильные производные алюминия обладают электроноакцепторными свойствами (алюминий на четыре валентные орбиты имеет три электрона), а металлы переходной валентности являются электронодонорами (имея на -орбитах неспаренный электрон), они легко образуют координационные связи. Такие комплексные катализаторы нерастворимы, и их строение точно не установлено, но па основании данных, полученных при изучении строения растворимых комплексных катализаторов, предполагается, что они представляют собой биметаллический комплекс с координационными связями. При изучении структуры растворимого комплексного катализатора, полученного из дициклопентадиенилхлорида титана и диэтилалюмииийхлорида методом рептгеноструктурного анализа, было установлено, что он имеет следующее строение  [c.89]

    Высокие физико-механические показатели ПЭ, относительная простота аппаратурного оформления и другие преимущества процесса полимеризации этилена в присутствии катализаторов Циглера — Натта обеспечили промышленную реализацию нового процесса в исключительно короткие сроки. Первые производства ПЭ по методу низкого давления были созданы фирмами Хехст , Хиберния (ФРГ). Вслед за этим в США, в Западной Европе, в Японии и других странах стали быстро возникать новые заводы. Так в 1957—1958 гг. в США было введено в эксплуатацию три завода, производивших ПЭНД по методу Циглера, общей мощностью 40800 т/год. [c.15]

    До середины XX века полимеры получали в основном радикальной полимеризацией. После открытия катализаторов Циглера— Натта началось быстрое внедрение в промышленность ионных и ионно-координационпых процессов, характеризующихся высокими производительностью и стереоселективностью, возможрюстью направленного регулирования состаяа полимера. [c.108]

    Сходны с катализаторами Циглера — Натта окиснометаллические, которые получают нанесением дисперсии окисей переходных металлов (СгОз, МоОз, УаОз, НЮз и др.) на носители (окись алюминия, силикагель, алюмосиликаты и др.) с последующим восстановлением (активацией) водородом, окисью углерода, МаН, НаА1Н4 или другими восстановителями среди них наиболее эффективны окисно-хромовые катализаторы (21]. Так же как в случае обычных комплексных катализаторов, переходный металл проявляет наибольшую активность, когда он находится в промежуточной степени окисления. Полимеризация протекает при сравнительно высоких температурах порядка 100—200°С. Несмотря иа низкую стереоспецифичпость окиснометаллических катализаторов, они представляют промышленный интерес для получения полиэтилена линейного строения. [c.187]

    Получ. взаимод. диенов (или полиенов) с солями, карбониламв или др. производными переходных металлов из я-комплексов др. типов (аллильных, алленовых) соконденсация паров металла и диена. Примен. кат. илн промежут. продукты в промышленно важных процессах (полимеризация олефинов и диенов на катализаторах Циглера — Натта, гидроформилированне, окисление непредельных углеводородов). [c.270]

    При димеризации и содимеризации низкомолекулярных олефинов и диенов, получающихся в больших количествах при переработке нефти (например, при крекинге), образуется большое число интересных соединений. Димеры олефинов и диолефинов могут найти промышленное применекие в весьма важных реакциях, например для полимеризации, оксосинтеза, алкилирова-ния и т. д. Новым перспективным путем к достижению высокой селективности при димеризации олефинов является использование комплексных катализаторов, что уже доказано широким применением катализаторов Циглера — Натта. [c.158]

    Разработка непрерывных методов полимеризации изопрена до но-лиизопренового каучука нри помощи стереоспецифичного катализатора Циглера-Натта, и результаты исследований на пилотных установках вызвали интерес к исследованию промышленного метода производства изопрена путем дегидрирования изопентана. [c.92]

    В 1953 г. Карл Циглер и сотр. [1, 2] обнаружили, что переходные металлы и металлоорганические соединения, взятые в определенной комбинации, катализируют процесс превращения этилена в линейный полимер высокой молекулярной массы. Это положило начало целому потоку исследований полимеризации а-олефинов при низких давлениях, который не иссяк и сегодня. В 1954 г. Натта [3] распространил эту реакцию на пропилен, применив в качестве катализаторов получения кристаллического полипропилена трихлорид титана и алкилалюминий. Почти одновременно подобные открытия были сделаны Ванденбергом (компания Геркулес ), Бэкстером (компания Дюпон ), Злет-цем (компания Стандарт ойл оф Индиана ) и Хогэном (компания Филлипс петролеум ). В 1963 г. Циглеру и Натта за их работу была присуждена Нобелевская премия по химии. Промышленное значение этого процесса полимеризации подтверждается производством более 1 млн. т полиолефинов в год многочисленные вариации каталитической системы Циглера — Натта отражены в тысячах патентов и статей. Однако основное количество полипропилена производится по-прежнему с использованием в качестве катализатора галогенида титана (обычно Т1С1з) в комбинации с сокатализатором — триалкил-алюминием или диэтилалюминийхлоридом. [c.191]

    В результате работ Натта по полимеризации пропилена стало возможным промышленное производство сополимеров этилена с пропиленом (в соотношении приблизительно 50 50) с использованием катализаторов Циглера. Этиленпропиленовые каучуки (СКЭП) обладают значительным сопротивлением истиранию и высокой озоно- и кислородостойкостью кроме того, они потенциально дешевле других эластомеров. Поскольку этиленпропиленовые каучуки не содержат двойных связей, их можно вулканизовать только перекисягаи, что имеет ряд серьезных недостатков. Для преодоления этого затруднения с целью придания этилен-пропиленовым каучукам способности вулканизоваться серой в [c.109]

    Значительно более важную роль П. в р. играет при осуществлении ионных и координационно-ионных процессов. Это важнейший и практически единственный промышленный способ проведения полимеризации на гетерогенных каталитич. системах (в частности, на катализаторах типа Циглера—Натта). При гомогенном катализе полимеризации высокая активность латалитич. систем позволяет осуществлять промышленные процессы с достаточно высокой скоростью и в разб. р-рах мономеров. Возможность эффективного контроля параметров процесса обеспечивает способу П. в р. п в этом случае преимущества по сравнению с полимеризацией в массе и неводных дисперсиях (синтез бутилкаучука и бутадиен-стирольных каучуков на литийорганич. катализаторах, полимеризация этилена и пропилена на растворимых каталитич. системах, полимеризация изо-бутилена и др.). Полимеризация в массе технически целесообразна при низких значениях теплового эффекта (напр., при получении полимера из триоксана, капролактама и др. малонапряженных гетероциклов). [c.452]

    Натта получил широкую известность благодаря своим схемам полимеризации [ 18]. Он был осведомлен о том, что Циглер пытался полимеризовать пропилен, но считал его решения неудачными. В 1953-54 гг. Циглер продавал свой катализатор различным промышленным фирмам. Среди тех, кто получил катализатор, была компания Monte atini, Милан, Италия. Monte atini договорилась с профессором Джулио Наттой и его сотрудниками о применении этих катализаторов для полимеризации широкого круга мономеров. Натта, получив катализаторы, немедленно обратил свое внимание на полипропилен. [c.18]

    Книга, написанная выдающимся химиком-металлоорга-ником Э. Фишером и его учеником Г. Вернером, представляет собой подробный обзор методов получения, свойств и строения комплексных соединений переходных металлов с диенами и нолиенами. Металлоорганические я-комплексы играют первостепенную роль как катализаторы или промежуточные продукты в промышленно важных процессах (полимеризация олёфинов и диенов по Циглеру — Натта, оксосинтез, окислв ние непредельных углеводородов и др,). [c.567]

    Полимеризация этилена на окислах металлов на носителе представляет промышленный интерес, так как образующийся полиэтилен, полученный полимеризацией на катализаторах Циглера — Натта, имеет линейное строение. То, что указанные типы катализаторов одинаково влияют на строение образующихся полимеров, является, очевидно, следствием идентичности механизмов их полимеризации и природы активных центров. Активация путем восстановления окиси металла на носителе очень близка к алкилированию (восстановлению) соединения переходного металла, одного из компонентов катализатора Циглера — Натта. Собственно, если не обращать внимания на носитель, то большинство таких систем, состоящих из катализатора (окисла металла) и восстановителя, попадает под определение катализатора Циглера — Натта. От последних они отличаются лишь меньшей активностью. Полимеризацию на окисных катализаторах проводят при сравнительно высоких температурах (100—200 °С). Многие мономеры (например, стирол), полимеризующиеся на катализаторах Циглера — Натта, неактивны в присутствии окислов металлов па носителе. Такие катализаторы отличаются также очень низкой стереорегулирующей сиособпостью. Если частично кристаллический полипропилен еще можно получить на таких катализаторах, то при полимеризации большинства других а-олефинов образуются только аморфные или очень слабо кристаллические полимеры. [c.535]

    Каталптич. методы используются не только для получения мономеров для произ-ва синтетич. каучуков, синтетич. волокон и других высоконолимерных материалов, но и для ос ществления самого процесса полимеризации. В последнее время применение специальных катализаторов (см. Катализаторы Циглера — Натта) позволило решить проблему стереоспецифич. полимеризации. Этим положено начало развития повой области иримеиения К., когда подбор специфически действующего катализатора дает возможность не только ускорять реакцию и направлять ее в сторону получения продукта требуемого состава, но и регулировать детальное строение этого продукта. Катализатор как бы выполняет роль программирующего устройства, матрицы, определяющей сложное строение получаемого вещества. Новым направлением использования К. является каталитич. очистка технологич. газов путем превращения вредных загрязнений в безвредные или легко удаляемые (см. Газов очистка). Таким путем производят очистку технологич. газов от серусодержащих органич. соединений, Оз, СО и СОз, С2Н3 и др. В случае очистки водорода каталитич. методы позволяют снизить содержание нек-рых примесей до одной десятимиллиардной. К. может быть использован для обезвреживания отходящих газов промышленности и транспорта (в том числе и автомобильного), а также для очистки сточных вод, загрязненных органическими веществами. [c.231]

    Подробный обзор методов получения, свойств и строения комплексных соединений переходных металлов с диенами и по-лиенами. Металлоорганические я-комплексы играют первостепенную роль как катализаторы или промежуточные продукты в промышленно важных процессах (полимеризация олефинов я диенов по Циглеру—Натта, оксосинтез, окисление непредельных углеводородов и др.). [c.4]


Смотреть страницы где упоминается термин Циглера Натта катализаторы полимеризации промышленные: [c.199]    [c.305]    [c.102]    [c.855]    [c.858]    [c.189]    [c.12]    [c.300]    [c.23]    [c.232]   
Катализ в промышленности Том 1 (1986) -- [ c.204 , c.218 ]




ПОИСК





Смотрите так же термины и статьи:

Катализаторы полимеризации

Натта

Полимеризация по Циглеру

Полимеризация пропилена на катализаторе Циглера Натта методы промышленные

Циглера Натта катализаторы

Циглера катализатор

Циглера-Натта



© 2025 chem21.info Реклама на сайте