Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серебро окислительные состояния

    Первые три металла — медь, серебро и золото — образуют 16 группу периодической таблицы. Все эти металлы в своем окислительном состоянии 1+ дают 1 акие же соединения, как и соединения щелочных металлов, однако во всех других отношениях они очень мало похожи на щелочные металлы. Если щелочные металлы очень мягки и легки, а в химическом отношении очень активны, то металлы группы меди обладают значительно большей твердостью и плотностью и настолько инертны в химическом отношении, что встречаются в природе в свободном состоянии и их легко можно получить восстановлением из соединений иногда простым нагреванием. [c.444]


    Окислительные состояния меди, серебра и золота [c.445]

    Окислительные состояния меди, серебра и золота в их наиболее важных [c.445]

    Если перл, полученный как в окислительном, так и в восстановительном пламени газовой горелки, прозрачен и бесцветен в нагретом и охлажденном состоянии, то это указывает на отсутствие в исходном анализируемом образце катионов меди, серебра, сурьмы, висмута, титана, ванадия, хрома, молибдена, вольфрама, урана, марганца, железа, кобальта, никеля. Возможно, однако, присутствие катионов щелочных металлов, кальция, магния, цинка, кадмия, алюминия, свинца, олова. Если охлажденные перлы — белые (имеют вид белой эмали), то возможно присутствие в исходном анализируемом образце небольших количеств стронция или бария. [c.506]

    Примером окислительно-восстановительных реакций могут быть таюке реакции восстановления золота и серебра солью Мора в присутствии комплексообразующих веществ (для понижения потенциала пары же-лезо(П1) / железо(П)) до элементного состояния с образованием окрашенных пятен на бумаге синего цвета в присутствии золота, коричневого — в присутствии серебра. Содержание элементов определяют по диаметру пятна, пропорциональному содержанию золота (4-24 мкг) или серебра (2-12 мкг). [c.213]

    Ковалентная составляющая в связях соединений меди, серебра и золота с электроотрицательными элементами выше, чем у щелочных металлов. Склонность соединяться с водородом и образовывать гидриды ионного типа невелика и такие соединения очень непрочны. Элементы подгруппы 1В образуют значительно больше труднорастворимых соединений, чем щелочные металлы. Высокая ковалентная составляющая обусловливает низкую растворимость оксидов, гидроксидов, сульфидов и невысокие растворимости хлор-, бром- и иодпроизводных однозарядных катионов элементов подгруппы 1В. Высокое значение ионизационного потенциала и меньшее, чем у щелочных металлов, различие между радиусами ионов и атомов указывает на более положительное значение их окислительно-восстановительных потенциалов. Сверху вниз по подгруппе окислительно-восстановительный потенциал растет. В водных растворах нормальный потенциал у всех элементов положительнее водорода. По отношению к кислороду потенциал у Си и Ag — отрицательный, а у Аи — положительный. Поэтому элементы этой подгруппы не вытесняют водород из растворов его нонов и выделяются при электролизе водных растворов солей в отсутствие перенапряжения водорода. Из-за того, что окислительно-восстановительный потенциал у Си и Ag отрицательнее кислорода, а у Аи — положительнее, металлы встречаются в природе в самородном состоянии, а Си и Ag еще и в виде соединений. [c.282]


    Впервые бомбардировка окиси урана дейтронами с энергией 16 Мэв была произведена 14 декабря 1940 г., после чего на протяжении последующих недель в химически выделенной фракции элемента 93 наблюдалось возрастание а-р а д и о а кт и в н о ст и (процесс радиоактивного распада, при котором испускается а-частица, ядро атома гелия 2Не , и образуется новый дочерний атом, имеющий порядковый номер на две единицы меньший и массовое число, меньшее на четыре единицы). Фракция, испускающая а-частицы, была химически отделена от соседних элементов, особенно от элементов с 2 от 90 до 93 включительно, в опытах, проводившихся в течение двух следующих месяцев. Эти исследования, вполне определенно свидетельствовавшие об идентификации элемента 94, показали, что этот элемент имеет по меньшей мере две степени окисления, различаемые по реакциям осаждения, и что более сильные окислительные реагенты требуются для окисления элемента 94 до высшего состояния, чем в случае элемента 93—нептуния. В ночь на 23 февраля 1941 г. при действии персульфат-иона н иона серебра, взятого в качестве катализатора, впервые удалось окислить элемент 94, что, возможно, послужило ключом к его открытию. [c.20]

    Металлы с отрицательными (или слабо положительными) окислительными потенциалами имеют резко выраженную склонность образовываться из своих ионов и устойчивы в металлическом состоянии (благородные металлы — серебро, золото, платина и др.). Металлы с большими положительными потенциалами образуются с трудом и способны превращаться в ионы (щелочные, [c.596]

    Другой фактор, меняющий положение металла в ряду напряжений, — склонность некоторых металлов, особенно в окислительных средах, образовывать поверхностные пленки. Эти пленки сдвигают измеряемый потенциал в положительном направлении. О металле, находящемся в таком состоянии, говорят, что он пассивен. Поэтому хром, хотя в ряду напряжений расположен рядом с цинком, во многих водных растворах, насыщенных воздухом, по своему электрохимическому поведению из-за образования на его поверхности пассивной пленки ближе к серебру. [c.37]

    Одновалентный ион серебра Ag" устойчив и дает много солей. Получено очень небольшое число соединений, содержащ,их двухвалентное и четырехвалентное серебро. Эти соединения обладают весьма сильными окислительными свойствами. Окислительное состояние серебра 1- - устойчиво, как и следовало ожидать, судя по электронной структуре атома. Серебро имеет атомный номер 47, и ион Ag" содержит как раз такое число электронов, которое необходимо для полного укомплектования К-, Ь- и М-оболочек. Внешняя оболочка этого иона имеет, таким образом, восемнадцать электронов. Установлено, что эта восемнадцатиэлектронная структура ионов устойчива и в случае других переходных металлов Ъп ", С(1 , Оа " и т. д.) такой устойчивостью и объясняется существование основных окислительных состояний элементов данной группы. Вызывает удивление, что соединения двухвалентной меди имеют большее значение, чем соединения одновалентной меди. [c.445]

    Из кислых растворов технеция(VII) он выделяется в осадок сероводородом, тиоацетамидом или тиосульфатом натрия в виде T 2S7. Носителями могут служить рений, марганец, медь и платина, но одновременно осаждается и ряд других элементов. Технеций в низших окислительных состояниях в отличие от рения не осаждается из концентрированной НС1 сероводородом. С носителями типа ЭХГ (ReOr, СЮГ, ЮГ, ВРГ) технеций(VII) осаждается ионами таллия, серебра и цезия, тетрафениларсонием и нитроном. Технеций лучше всего отделяется от рутения последними двумя реагентами с рением в качестве носителя. [c.274]

    Медь, серебро и золото мало напоминают щелочные металлы, с которыми их можно было бы сопоставить на основании рассмотрения короткопериодной формы периодической таблицы Менделеева (см. рис. 7-1). Медь обнаруживает в растворах главным образом состояние окисления + 2 и в меньшей степени -Н 1. Серебро, наоборот, чаще имеет в растворе состояние окисления -Ь 1, а состояния окисления -1-2 и -Ь 3 могут возникать только в предельно окислительных условиях. Для золота в растворе характерна степень окисления -I- 3 и реже + 1. Все три металла имеют небольшие отрицательные окислительные потенциалы, обусловливающие их инертность и сопротивляемость к окисленияю  [c.447]

    Комплексные галогенпроизводные двухва- Строение лентных золота и серебра не описаны. Соедине- Сз АигС ния же двухвалентной меди нестойки не в смысле твердом диссоциации внутренней сферы на центральный состоянии ион и адденд, а вследствие окислительно-восстановительного взаимодействия Си (П) с галогенид-ионами. [c.189]

    Образование смеси макроциклических комплексов при синтезе их из свободных лигандов является частым осложнением Наряду с уже упомянутыми 10H0- и гюлиядерными комплексами могут образоваться соединения, отличающиеся конформацией координированного лиганда, распределением анионов во внутренней и внешней координационной сфере, а также спиновым состоянием центрального атома Окисление или восстановление координированного иона металла можно достигнуть как химическими, так и электрохимическими методами. В качестве окислителей наиболее часто используют кислород и азотную кислоту. Для окисления комплексов металлов VHI группы часто применяют также NO IO4 и галогены Окисление может происходить также в результате реакции диспропорционирования, обычно сопровождающейся выделением металла Такие процессы особенно характерны для комплексов серебра [90] Восстановление проводят с помощью водорода, многочисленных органических восстановителей, а также тех металлов, которые не способны заместить в исходном соединении центральный атом Следует отметить, что окислительно-восстановительные реакции комплексов могут сопровождаться изменением структуры лиганда. [c.35]


    Связь между окислительно-восстановительными свойствами ряда ионов и их хромофорным действием несомненна. Способность иона быть акцеттором электронов симбатна его способности быть окислителем. В связи с этим можно сформулировать общее положение если элемент не способен легко изменять свое валентное состояние в растворе, то он не имеет хромофорных свойств. Это положение объясняет, в частности, почему отсутствуют хромофорные свойства у скандия (П1), а также у циркония (IV) и подобных ему элементов. Необходимо иметь в виду, что обратное правило не имеет силы. Так, ионы серебра, ртути, олова, сурьмы и ряда других легко изменяют свое валентное состояние в растворах, однако они не имеют хромофорных свойств их комплексы с полифенолами, роданид-ионами и другими бесцветны. [c.77]

    Интересное практическое использование находят цианидные комплексы при извлечении золота и серебра из руд цианидным методом. Золото является благородным металлом с таким окислительно-восстановительным потенциалом, что оно нерастворимо ни в каких кислотах, кроме царской водки (см. сл. раздел). Обычно оно встречается в виде самородного золота — элементарного вещества, распределенного в мелких зернах кварца или других горных пород. Растворения золота можно достигнуть благодаря использованию высокой устойчивости циапидного комплекса золота [Au( N)"]. Измельченную в порошок руду обрабатывают раствором цианида натрия на воздухе, после чего золото переходит в раствор в виде Au( N), причем атмосферный кислород окисляет золото до трехвалентного состояния [c.386]

    Ag(I) требует специального пояснения. Основным фактором является устойчивость состояния окисления Au(III) и неустойчивость состоянии окисления u(III) и Ag(III). Медь, однако, имеет устойчивое состояние окисления 2Ч>, которого нет у серебра. Это приводит к особому механизму для комплексов меди(1) в реакциях окислительного присоединения. Примером является реакция Кори—Познера, полезная для образования углерод-углеродных связей [100]. Реагентом является алкилкупрат лития Li uRj. Он реагирует с алкилгалогенидами или /г-толуолсульфонатами с образованием продуктов спаривания, например [c.453]

    На присутствие меди укажет уже окраска. Если у сплава красный или желтый оттенок, вероятно, в нем имеется медь. Правда, например, сплавы меди с серебром даже при высоком содержании меди имеют серебристый цвет. Старые, так называемые серебряные монеты содержат от 10 до 75% меди Предварительную пробу проведем, капнув на металл азотной кислотой. На присутствие меди укажет появляющаяся чаще всего после высыхания зеленая кромка нитрата меди (похожую реакцию дает никель). Исследуем полученное соединение с помощью перла буры. Для этого нагреем палочку магнезии в несветящемся пламени и горячей погрузим ее в буру. Прилипнувщая соль сплавится, в результате получится стекловидный щарик. Этот щарик в горячем состоянии положим на след соединения меди, например, на кромку нитрата, образовавшегося в предыдущем опыте. После нагревания в окислительном пламени перл буры окрасится в зеленый цвет, который при охлаждении изменится на голубой. Соединение никеля в этом случае окрасит буру в коричневый цвет. [c.77]

    Ионы серебра более охотно присоединяют электроны (восстанавливаются), чем ионы двухвалентного олова, которые, наоборот, теряют электроны и окисляются до четырехвалентного состояния (8п +). Окислительно-восстановительные реакции можно описать следующими уравнсннями  [c.8]

    К стр. 3. О растворимом серебре Кэри Ли см. доб. 4t. В Основах химии (изд. 8, 1906, стр. 392—393) говорится по поводу некоторых окислительных реакций азотнокислого серебра Исследуя в 1889 г. ближе реакции этого рода, Кэри Ли ( arey Lea) в Америке показал, что при этом происходит растворимое серебро, называемое им аллотропическим . Далее следует описание способа его получения и его свойств. Не подлежит сомнению,— продолжает автор,—что видоизменения серебра, полученные Кэри Ли, представляют такое же отношение к обычному серебру, совершенно не растворимому в воде, какое существует между кварцем и растворимым кремнеземом, между uS или Аз ЗЗ в их обычной нерастворимой форме и в коллоидальных растворах их гидрозолей.. . Здесь, однако, сделан важный шаг вперед в том отношении, что дело идет о растворе простого тела и притом металла, т. е. особо характерного состояния вещества. . . можно надеяться что дальнейшее изучение растворимых коллоидальных соединений, представляющих, по-видимому, разные переходы к эмульсиям, внесет новое освещение в сложный вопрос [393] о растворах, составляющий одну из задач современной эпохи химических сведений. Заметим при этогл, что Прннг (1890) при диализе чрез перепонку явно показал коллоидальное состояние растворимого серебра, потому что оно чрез перепонку не проходит . В доп. [625j (сгр. 780—781) автор подробнее осветил этот вопрос и закончил его следующими словами А так как коллоидальное состояние преимущественно отвечает очень сложным частицам, то причину перехода серебра и др. простых тел в гидрозоли, быть может, можно уяснить ассоциациею частиц. Во- [c.534]

    Вероятно, во многих случаях фотопроцессы протекают через триплетное состояние молекул хлорофилла, как это было показано с помощью импульсной спектроскопии [743—745]. В исследованиях ряда Красителей, включая хлорофиллин а [232, 248], обнаружено, что фотохимическая активность может возрасти при связывании красителя в полимерах. Интересно отметить, что существует возможность инициирования сенсибилизируемых хлорофиллом окислительно-восстановительных реакций в процессе фотосинтеза. Среди них, например, фотовосстановление цитохрома с [746], фотоокисление восстановленного цитохрома с убихиноном [743, 747] или фотовосстановление пиридиннуклеотида в водной среде [748—750]. Сравнительно недавно сенсибилизируемый хлорофиллом окислительно-восстановительный фотолиз кристаллов хлористого серебра [c.464]

    Для дифференциации ионов большое значение в химическом анализе имеют окислительно-восстановительные реакции. Например, в третьей группе катионов для элементов хрома и марганца характерна реакция окисления их в окрашенные анионы— хромат и перманганат. В результате очень удобной реакции окисления персульфатом аммония в присутствии катализатора (иона серебра) трехвалентный хром и двухвалентный марганец окисляются в указанные высшие формы соединений этих элементов. Но если оба элемента присутствуют одновременно, то один мешает открытию другого, так как окраски их смешиваются. Однако из периодической закономерности следует, что для марганца состояние высшей валентности является менее устой-чивым, нежели для хрома, так как в последовательном ряду переходных элементов 4-го периода происходит постепенное сжатие атолюв. Количество непарных ii-электронов у марганца больше, и высшая валентность его поэтому также больше валентности хрома, но устойчивость этой высшей валентности меньше. В качественном анализе это свойство используют таким образом, что к раствору, содержащему перманганат и бихромат, прибав.- [c.67]

    Разделение америция и кюрия осуществили благодаря использованию того факта, что америций в отличие от кюрия может быть окислен до состояния, в котором он имеет растворимый фторид. Окисление Ат до АтО проводили персульфатом аммония с ионом серебра в качестве катализатора в разбавленной азотной кислоте при температуре 90° С (см. гл. VIII, раздел 6.6). При осаждении из этого раствора фторида лантана кюрий захватывался осадком, тогда как америций оставался в маточном растворе. После этого фторид лантана можно растворить в смеси азотной и борной кислот и повторить окислительно-восстановительный цикл столько раз, сколько требуется для достижения желаемой степени разделения америция и кюрия. Окисление америция можно провести описанным способом или анодным окислением в разбавленных азотной или хлорной кислотах при 0° С на платиновом аноде в условиях, когда активный раствор находится в изолированном анодном отделении. Такое окисление было ранее осуществлено Стефеноу и Пеннеменом [12]. Другой метод разделения америция и кюрия, основанный на окислении америция, использовался Томпсоном, Морганом, Джеймсом и Перлменом [13], Яковлевым и Горбенко-Германовым [14]. Америций окислялся до пятивалентного состояния в 50%-ном карбонатном растворе озоном, гипохлоритом или персульфатом. Америций осаждался в виде нерастворимого двойного карбоната, а кюрий оставался в маточном карбонатном растворе. [c.423]

    Висмут (свойства см. на стр. 397) — блестящий металл белого цвета с красноватым оттенком (й = 9,80). Он хрупок и поэтому легко измельчается. Висмут имеет такую же кристаллическую решетку, как сурьма и мышьяк, которым он изоморфен (каждый атом решетки имеет три ближайших соседних атома на расстоянии 3,10 Л и три более удаленных соседних атома на расстоянии 3,47 А). Он проводит электрический ток, но хуже, чем истинные металлы (1,4% по отношению к электропроводности серебра). При комнатной температуре висмут не реагирует с кислородом воздуха. При температуре красного каления горит, образуя окись В120з. В тонкоизмельченном состоянии висмут взаимодействует с хлором, как сурьма и мышьяк,— накаливается добела и образует хлорид В1С1з. При нагревании он реагирует также с бромом, иодом и серой. Висмут не растворяется в разбавленных соляной, бромистоводородной и серной кислотах (так же как и сурьма), поскольку имеет более низкий, чем водород, окислительный потенциал (см. стр. 229). При растворении в концентрированной серной кислоте он окисляется при этом происходит образование ЗОз- [c.454]

    Следует отметить, что хотя реакция солей платины и иридия с желатиной протекает крайне медленно, продолжительность сенсибилизации липмановской эмульсии купан1гем сравнительно мала [31]. Здесь, во-первых, сказывается катализирующее действие кристаллографических дефектов, а также тот факт, что реакция Ме Gel в состоянии адсорбции, возможно, протекает энергичнее, чем в гомогенной среде. Во-вторых, поскольку липманов-ская эмульсия все же должна иметь в незначительном количестве простейшие серебряные центры, то, по всей вероятности, при ее сенсибилизации имеет место дополнительное образование частиц инертных металлов в результате восстановительно-окислительной реакции между серебром и ионами этих металлов. [c.267]

    Следующим естественным этаном исследования была задача полного уничтожения фотографической чувствительности как на новерхности, так и внутри эмульсионных зерен. В работах [33—37] было показано, что бромная вода разрушает как поверхностное, так и внутреннее скрытое изображение. Поэтому для разрушения примесных центров во всем объеме микрокристаллов была применена окислительная обработка эмульсионных слоев бромной водой. Действительно, такое бромирование полностью уничтожало поверхностную и глубинную светочувствительность в пределах фотографической широты исходной эмульсии. В другой серии опытов после окисления проводили дополнительную обработку растворами триэтаноламина, триэтиламина и этилендиаминхлорида. Во всех случаях наблюдалась [38] регенерация до определенного уровня не только поверхностной, но и глубинной светочувствительности (рис. VIII.9), причем характерным является одинаковый эффект при действии всех трех веществ. Поскольку амины могут быть донорами электронов, то следовало ожидать, что они будут проявлять двоякое действие — восстанавливать во время обработки междуузельные ионы серебра, а при экспонировании фотолитический бром. Но так как даже при химическом созревании подавляющая часть сенсибилизаторов (гидразин, производные тиомочевины) остается в адсорбированном состоянии, то, по всей вероятности, в данном случае эффект возобновления светочувствительности вызван главным образом связыванием положительных дырок . Этот вывод находится в согласии с количественно одинаковым влиянием всех трех применявшихся аминов. [c.323]

    Каталитические свойства серебряного катализатора в значительной степени определяются взаимодействием серебра с кислородом, которое оказывает вхгаяние как на формирование катализатора, так и на состояние его поверхности в процессе эксплуатации. По-видимому, именно поэтому во многих патентах значительное внимание уделяется содержанию кислорода в газовой среде, в которой находится катализатор во время его приготовлехгая и окислительного процесса. [c.29]


Смотреть страницы где упоминается термин Серебро окислительные состояния: [c.405]    [c.223]    [c.223]    [c.279]    [c.74]    [c.38]    [c.65]    [c.686]    [c.644]    [c.247]    [c.644]    [c.66]    [c.304]    [c.277]    [c.275]    [c.275]    [c.70]    [c.385]    [c.129]    [c.218]   
Общая химия (1964) -- [ c.445 ]




ПОИСК







© 2025 chem21.info Реклама на сайте