Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фракционирования процессы разделения

    На рис. У1-7 приведена схема теплообмена а установке фракционирования нестабильного газового конденсата, являющаяся типичной для установок стабилизации и ГФУ, использующих высокотемпературные процессы разделения [9]. Для повышения эффек- [c.317]

    В настоящее время 75% всего этилена получают фракционированием при низкой температуре и высоком давлении этот процесс очень эффективен, потребует слишком больших затрат и производственных мощностей, чтобы быть экономически выгодным. Поэтому можно считать химические процессы разделения перспективными, если улучшить их экономические показатели, особенно при выделении больших объемов мало концентрированного этилена из газов крекинга, фракционирование которых при низкой температуре требует значительного расхода холода , газообразных олефинов известной реакции  [c.68]


    Процессы без регенерации катализатора. Процессы этой группы проводятся на неподвижном катализаторе. Для них характерно высокое парциальное давление водорода и тщательное разделение сырья при помощи фракционирования. Процессы осуществляются при общем давлении 50 ати. [c.152]

    Все рассмотренные выше аппараты первоначально предназначались и использовались для опреснения морских и солоноватых вод. В настоящее время область применения этих аппаратов значительно расширена они используются для очистки промышленных и коммунальных сточных вод, получения особо чистой воды, концентрирования фруктовых соков и сиропов, фракционирования ВМС и т. п. Несомненно, что эти аппараты найдут широкое применение для осуществления самых разнообразных процессов разделения, концентрирования и очистки растворов в различных отраслях промышленности и других областях народного хозяйства. [c.166]

    Монография охватывает практически все промышленные процессы разделения и представляет поэтому большой интерес для научных и инженерно-технических работников химической, газовой и других отраслей промышленности, в которых применяется фракционирование многокомпонентных смесей. Книга может быть полезна для преподавателей, аспирантов и студентов. [c.4]

    К первичным методам переработки относят процессы разделения нефти на фракции, используя ее потенциальные возможности по ассортименту, количеству и качеству получаемых нефтепродуктов. Основным первичным процессом является атмосферная перегонка, в основе которой лежат физические процессы нафев и испарение нефти в нагревательных трубчатых печах с последующим фракционированием в ректификационных колоннах на бензиновые, керосиновые, дизельные фракции и остаток — мазут. [c.58]

    НОМ порошке, порошке поливинилхлорида и т. д., и главным образом на целлюлозе. Электрофоретический метод разделения имеет особое значение для разделения коллоидов и аминокислот, так как заряд частиц этих соединений зависит от значения pH среды. Поэтому значение pH раствора (изо-электрическая точка) оказывает большое влияние на направление движения ионов в растворе. Процесс электрофореза проводят часто в присутствии буферных растворов. Согласно уравнению (7.1.29), состав раствора оказывает большое влияние на скорость движения частиц в растворе. Движению частиц в электрическом поле препятствует явление диффузии. Влияние диффузии обратно пропорционально размерам частиц и силе поля. Для разделения ионов больших размеров можно применять электрофорез при низком напряжении, для разделения частиц небольших размеров следует работать при более высоких напряжениях. Электрофорез на носителе по технике выполнения проще, чем обычный электрофорез. При этом вещества в соответствии со скоростями их движения в электрическом поле фракционно осаждаются на носителе. Используя сорбционное действие носителя, можно замедлить движение частиц, что приведет к расширению зон фракционирования. Под действием выделяемого током тепла, особенно при работе с высокими напряжениями, происходит испарение растворителя, что затрудняет процесс разделения. Важным фактором является удаление перед разделением больших количеств электролитов, например, в процессе диализа. [c.387]


    За последние годы применение адсорбции на молекулярных ситах в области нефтепереработки шло по пути разработки запатентованных процессов разделения многочисленными фирмами. Назначение этих процессов в основном сводится к двум операциям фракционирования а) для удаления или извлечения н-алканов —С20 и б) для очистки водорода, содержащегося в различных нефтезаводских фракциях, с получением продукта чистотой 90—99,9% и выше. Это связано с неуклонным ростом потребности в новых источниках водорода и новых методах очистки имеющегося водорода для современных процессов нефтепереработки. [c.213]

    Ультрафильтрация — это процесс разделения, фракционирования и концентрирования растворов с помощью полупроницаемых мембран. При этом жидкость непрерывно подается в пространство над мембраной под давлением 0,1... 1,0 МПа. Процессы ультрафильтрации выполняют на мембранах со средним диаметром пор от 0,01 до 0,1 мкм, называемых ультрафильтрационными мембранами. В процессах ультрафильтрации из исходной смеси отделяют самые мелкие бактерии и сферические вирусы, крупные белковые молекулы и т. п. Эти процессы используют для стерилизации жидких сред. [c.518]

    Ультра- и микрофильтрация. Ультрафильтрация - процесс разделения растворов высокомолекулярных и низкомолекулярных соединений, а также фракционирования и концентрирования высокомолекулярных соединений. Он протекает под действием разности давлений до и после мембраны. [c.327]

    Фракционированием полимеров, представляюш,их собой, как правило, полимергомологические смеси, называется обычно процесс разделения их на более однородные по молекулярной массе части или фракции. [c.547]

    В более старой литературе по перегонке. Некоторые описания этого способа фракционированного разделения настолько устарели, что лишь подчеркивают, насколько новым является развитие эффективных лабораторных ректификационных приборов. Перегонка через колонну по принципу действия схожа с очисткой жидкой смеси действием противотока другой соответственно выбранной жидкости (непрерывная экстракция растворителем). Весьма тесно связана с этим процессом очистка газообразных смесей действием противотока жидкого растворителя (обычный скрубберный процесс). Последние три процесса разделения обладают той особенностью, что многократно повторяемые стадии могут быть совмещены воедино с помощью противотока жидкости, стекающей под действием силы тяжести и восходящего пара. Таким образом удается полностью избежать трудоемкой работы по фракционированию с помощью простых стадий однократного разделения. С помощью одной насадочной колонны можно достичь того же результата разделения, что и при стократном повторении операции простой разгонки. [c.13]

    По достижении определенной толщины кристаллического слоя на тенлообменных поверхностях циркуляцию маточника прекращают. Оставшийся маточник М перекачивают в приемник 5, а кристаллическую фазу расплавляют и спускают в приемник 6. Далее процесс фракционирования повторяется. В результате получают высокоплавкую П и низкоплавкую М фракции. Такой процесс разделения может быть полностью автоматизирован. [c.164]

    Для того чтобы создать многократно повторяющиеся вдоль колонки акты осаждения—растворения, используют градиент температуры. Колонка помещается в водяную рубашку, в верхней части прибора находится нагреватель, а в нижней — термостатированный сосуд с температурой, слегка выше комнатной (27—30°). Перепад температуры вдоль колонки составляет обычно 20—25°, градиент оказывается линейным. В верхней части элюирующая жидкость извлекает какую-то часть полимера из пленки, покрывающей насадку. Жидкость извлекает легче низкомолекулярную часть, но захватывает, как указывалось выше, и часть тяжелых фракций. Попадая дальше в более холодные области колонки, жидкость оказывается пересыщенной полимером, в первую очередь его наиболее высокомолекулярными компонентами. Они выпадают из раствора и покрывают пленкой насадку, бывшую до начала опыта пустой. По мере продвижения жидкости вниз этот процесс продолжается — тяжелые компоненты стремятся осесть на насадке, легкие — вымываются и устремляются к выходу. Не останавливаясь детально на теории хроматографического разделения (она описана во многих руководствах), подчеркнем главное значение этого процесса — разделение смеси на исключительно четкие фракции вследствие осуществления многоступенчатого процесса растворения — осаждения. В этом отношении хроматографическая колонка напоминает ректификационную, в которой четкое разделение смеси достигается благодаря многократному повторению актов испарения и конденсации. После фракционирования полимера на колонке получается ряд узких фракций. Для каждой из них тем или иным методом (чаще всего по вязкости) измеряется средний молекулярный вес [c.120]

    В последние годы проводятся большие работы по усовершенствованию старых и разработке новых процессов разделения углеводородов. В частности, все более и более широко применяется сверхчеткое фракционирование углеводородного сырья. В качестве примера можно привести процесс, имеющий самостоятельное значение — выделение из газовых бензинов чистого циклогексана суперфракционированием. [c.18]


    В процессе разделения м- и п-к резола с помощью фракционированной экстракции метанолом и лигроином п-крезол и лигроин разделяются обработкой водным раствором NaOH а л1-кре- [c.422]

    Большую роль в повышении эффективности фракционирования слоншых смесей сыграло создание жидкостной хроматографии высокого давления (ЖХВД). Высокая скорость разделения, возмож ность реализации любого из отмеченных выше механизмов сорбции, применимость для разделения любых растворимых в элюенте соединений, независимо от их молекулярной массы, возможность непрерывного контроля элюирования с помош ью высокочувствительных детекторов, управления процессом разделения путем программирования температуры, скорости потока и состава элю-ента, автоматическая регистрация результатов обеспетали широчайшее распространение ШХВД для решения препаративных задач, количественного анализа и идентификации компонентов анализируемых смесей [109, 111, 122 и др.]. [c.17]

    Основные исследования газовых смесей, содержащих наряду с газами жидкие низшие углеводороды, проведены Подбильня-ком [94]. Он разработал колонну для точного фракционирования с насадкой из проволочных спиралей, навитых с малым шагом (так называемая насадка Хэли-грид , которую применяют при обычной перегонке, см. разд. 7.3,4). В обзоре способов низкотемпературной ректификации Гроссе-Ётрингхауз [951 рассмотрел технику проведения этих процессов, использовав экспериментальные данные Вустрова [96 ]. В этом обзоре также указано, что пробы дистиллята и кубовой жидкости следует отбирать очень тщательно с использованием полуавтоматических и автоматических устройств для моментального и непрерывного отбора. Процесс разделения следует проводить следующим образом. Сначала с помощью жидкого азота (—195,8° С) отделяют несконденсировавшуюся часть паров и анализируют её на аппарате Орса. Конденсирующуюся часть исходной смеси необходимо освободить от СО2, На и NH3 в промывном аппарате и сконденсировать. Для ректификации применяют насадочную колонну с посеребренным высоко вакууми-рованным кожухом колонна снабжена спиралью, компенсирующей температурные напряжения. Дефлегматор с конической трубой припаивают (рис. 173) или присоединяют с помощью шлифов. [c.250]

    Методика работы такая же, как и итри получении тетрабо-рана (см. стр. 286). Сконденсированный при охлаждении жид-кн1 1 воздухом продукт подвергают фракционированной перегонке, контролируя процесс, разделения методом измерения давления паров отдельных фракций. [c.277]

    Книга состоит из четырех основных разделов 1) экономика и направление дальнейшего развития нефтяной, нефтеперерабатывающей и нефтехимической промышленности 2) современные технологические процессы (разделение и очистка методом кристаллизации, сверхчеткое фракционирование и т. д.) и проектирование Производства 3) процессы нефтепереработки 4) нефтехимические процессы и продукты. [c.4]

    Метод гель-фильтрации в топком слое (ТСГФ) имеет ряд преимуществ перед колоночной хроматографией. Во-первых, на стартовую линию пластинки шириной, например, 20 см можно нанести 10—15 препаратов в виде пятен диаметром 3—5 мм, что позволяет сопоставлять результаты фракционирования многих препаратов в одном опыте, в идентичных условиях. Во-вторых, благодаря малой толщине слоя геля (0,4—1 мм) объем препарата может быть уменьшен до 5—20 мкл. Соответственно можно сильно уменьшить и количество фракционируемого материала, тем более что для его детектирования в этом случае можно использовать высокочувствительные методы окраски (см. ниже). Нет проблем и с обеспечением ровного слоя препарата — он мигрирует в виде пятна, как обычно при ТСХ. Наконец, нет необходимости ожидать, пока все компоненты фракционируемой смеси один за другим достигнут конца пластинки. Процесс разделения прекращают, как только наиболее быстрый компонент приблизится к нижнему краю геля. В этот момент регистрируют [c.162]

    Можно было бы процитировать множество вариантов метода очпстки гибридных молекул от однонитевых исходных партнеров на колонках оксиапатита, однако с хроматографической точки аренпя они не представляют болыпого интереса. По существу, это всегда не истинно хроматографическое фракционирование, а простейший процесс разделения двух компонентов (однонитевых и двунитевых молекул НК), весьма существенно различающихся по прочности их сорбции на оксиапатите. [c.244]

    Диализом называют метод фракционирования веществ, основанный на избирательной диффузии некоторых компонентов смеси через мембрану из более концентрированного раствора в более разбавленный. Метод ультрафильтрования основан на том же самом принципе, однако при этом жидкость помещают только с одной стороны мембраны и раствор продавливается через последнюю. Электродиализ представляет собой диализ, при котором прохождение низкомолекулярных ионов через мембрану ускоряется под действием электрического поля. В некоторых случаях для ускорения процесса разделения используют электроультрафильтрование — сочетание электродиализа и ультрафильтрования. К вышеуказанным методам примыкает также метод электродекантации однако последний применяют в основном не для отделения низкомолекулярных веществ от высокомолекулярных, а для фракционирования высокомолекулярных соединений (см. стр. 533). [c.194]

    На первом этапе исследований по интенсификации работы колонны К-5 было проведено обследование фактической работы установки 22-4 и выполнен расчетный анализ процесса разделения в ректификационной колонне К-5. В результате исследования разделительная способность ректификационных тарелок укрепляющей части колонш К-5 была оценена семью теоретическими тарелками (т.т.), а отгонной части -четырьмя т.т. Вследствие невысокой паровой нагрузки зафиксирована низкая эффективность клапанных-прямоточных тарелок укрепляющей части (тепломассообменный КПД - 0,45). Обследование показало, что низкая четкость фракционирования в колонне К-5 и ограничение производительности аппарата по сырью были обусловлены также и перегрузкой ректификационных тарелок отгонной части по жидкости (тепломассообменный КПД тарелок отгонной части - 0,35). [c.10]

    В случае смесей из нескольких компонентов для получения спектров чистых составных частей (при отсутствии предварительной информации об их числе или составе) можно применять частичное фракционирование в совокупности с вычитанием спектров индивидуальных веществ [125]. В этом способе используется отношение спектров частично разделенных компонентов. Процесс разделения может состоять из частичного испарения смеси, пропускания ее через твердый адсорбент либо из частичной экстракции или осаждения одного компонента. Нет необходимости в высокой степени разделения и в знании поведения отдельных веществ. Первое, что нужно сделать в этом случае,- записать спектр смеси (рис. 5.22, а), позволить ей частично испариться и вновь записать спектр, с помощью ЭВМ получить отношение двух спектров, определить число плоских областей различной высоты, равное числу компонентов (рис. 5.22, б), и, наконец, математически установить спектр каждой из составных частей. Результат такого анализа смеси толуола, циклогексана и гексана показан на рис. 5.23. Эту процедуру удобнее всего проводить на интерференционном спектрофотометре с ЭВМ. Общий метод определения спектров чистых компонентов из спектров смесей бьш описан и использован для анализа полимеров Кёнигом и др. [158]. [c.195]

    Использование ступенчатых градиентов. Как отмечено в разд. 1.2.3 и на рис. 1.3, препаративную ЖХ можно использовать как быстрое средство выделения или обогащения классов соединений в условиях ступенчатого градиента. Иногда для простых смесей на этом может быть закончена необходимая очистка (см. пример на рис. 1.27). В других случаях для разделения сложного образца с компонентами, сильно отличающимися по полярности, может быть необходимо использовать многоступенчатую последовательность. Если оставить в стороне вопросы, связанные с растворимостью образца (см. разд. 1.6.2.2.6), то в адсорбционной ЖХ с помощью комбинации только четырех растворителей можно создать последовательность восьми градиентных ступеней и быстро разделить образец на фракции, которые затем можно индивидуально очистить в изократическом режиме. В каждой фракции спектр компонентов будет перекрывать диапазон к примерно только на 5—10 единиц. При скорости 1 мертвый объем в минуту процесс разделения, показанный в табл. 1.8, потенциально может быть закончен менее чем за 20 мин. Размер колонки может быть выбран в соответствии с имеющимся в наличии образцом. Для быстрого фракционирования образца можно аналогичным образом достаточно эффективно использовать градиентные схемы и в других методах разделения (ионный обмен, аффинная хроматография, распределение и т.д.). Классическая колоночная хроматография на открытых колонках часто выполнялась с использованием ступенчатого градиента, создаваемого элюотроп-ным рядом, подходящим для используемой неподвижной фазы. Однако, поскольку приготовление хорошей препаративной ЖХ-колонки требовало искусства и длительного времени. [c.100]

    Наряду с указанными методами сравнительно небольшое распространение получили физические процессы выделения водорода из отходящих газов низкотемпературное фракционирование, адсорбционное разделение на молекулярных ситах, диффузионное разделение и др. Эти процессы находят в основном применение при выделении водорода из газов каталитического риформинга, метано-водородной фракции, получаемой при пиролизе различных видов сырья, отдувоч-ных газов гидрогенизационных и других каталитических процессов. [c.12]

    Для концентрирования и выделения водорода из разбавленных газов применяют низкотемпературную конденсацию и фракционирование, адсорбционное разделение, абсорбционную промывку и разделение с помощью диффузии. В качестве сырья для указанных процессов используют газы риформинга, богатые водородом метано-водородную фракцию, получающуюся при пиролизе газы, получающиеся при дегидрировании углеводородов отдувочные газы процессов гидрирования, гидроочистки и гидродеаглкилирования газы коксования угля и др. [c.56]

    Для большинства методов этой группы характерно отсутствие четкой границы в приложении к разделению гомогенных и гетерогенных смесей веществ. Например, электрофорез возник и до сих пор иногда рассматривается только как метод разделения коллоидных частмп. Более того, по сути своей — это метод разделения заряженных частиц за счет их различных подвижностей в электрическом поле. В общем случае размеры частиц не оговариваются, и область применения метода охватывает и простые ионы, и макроионы аминокислот, и заряженные частицы коллоидов и взвесей. Аналогично обстоит дело с ультра-центрифугированием и ППФ-методами. Даже в тех случаях, когда метод имеет достаточно четкие границы применимости по размерам или массам разделяемых частиц, их положение на условной щкале дисперсности частиц различной природы не пршязано к принятой границе гомогенности, Существование верхней границы чаще всего определяется принципом целесообразности если задача легко рещается более простым методом, нет необходимости использовать более сложный. Наличие нижней границы может быть связано как с объективными факторами, определяемыми природой явления, используемого для разделения, так и с техническими возможностями практической реализации условий, необходимых для осуществления процесса разделения. Наиболее наглядный пример — ультрацентрифугирование. Очевидно, что с помошью ультрацентрифуги можно выделить взвешенные частицы из раствора, но в этом нет необходимости. А при переходе к разделению частиц на молекулярном уровне в случае жидких фаз возможности метода ограничены фракционированием макромолекул. Добиться, фракционирования простых молекул удается только в газовой фазе, но при ус ювии ра зряжения и чрезвычайно высоких скоростей вращения, реализуемых только при магнитной подвеске ротора центрифуги. [c.242]

    Изучение состава нефти начинаегся с разделения этой сложной смеси на более простые или индивидуальные компоненты, процесс этот называется фракционированием. Методы разделения базируются на различных физических, поверхностных и химических свойствах разделяемых компонентов. При исследовании нефти и газа используют следующие методы разделения физическая стабилизация (дегазация), перегонка и ректификация, адсорбция, применение молекулярных сит (цеолитов), экстракция, кристаллизация из растворов, комплексообразование (карбамидом, тиокарбамидом) и др. Ис- [c.14]

    Термин фракционирование применяют очень часто, понимая под этим фракционированную перегонку или ректификацию. В действительности же перегонка является лишь одним из способов, при пойощи которого может быть достигнуто фракционирование смеси. В этом широком смысле фракционирование включает любой процесс систематического разделения смеси на относительно чистые фракции. Смешение близких по составу фракций и повторение основного процесса разделения обычно также включаются в понятие фракционирования. Наиболее широко известным примером фракционирования при помощи способа разделения, отличного от перегонки, является так называемая дробная кристаллизация. Она часто применяется, например, при выделении некоторых редкоземельных элементов [17]. Более современным примером фракционирования является разделение фторидов урана с помощью диффузионных мембран [18]. С этой целью была сконструирована весьма остроумная система для объединения определенных фракций и повторного их разделения с минимальной затратой ручного труда. Систематическое фракционированное осаждение высокополимерных соединений из растворов представляет общий интерес как метод, позволяющий находить функцию распределения молекул по размерам. Отмывка загрязнений от твердых тел является также часто применяемым способом разделения, а экстракция из одной жидкости в другую неоднократно обсуждалась в литературе и применяется как способ разделения и фракционирования .  [c.12]

    Основной метод выделения иммуноглобулинов является их фракционированное оса едение этшолом (по Е. Дж. Кону, 1945— 1946) на холоду при строгом контроле pH и ионной силы раствора. На процесс разделения белков сыворотки крови влияют следую- щие основные факторы концентрация белка, диэлектрическая постоянная раствора, концентрация этанола, изоэлектрическая. точка, pH, ионная хила раствфа, гешгератур . [c.588]

    Рассматриваемый метод довольно универсален. Его можно применять как для фракционирования различных расплавов, так и для очистки веществ перекристаллизацией их из раствора. В одной и той же установке можно осуществлять однократный и многостуненчатый процесс разделения смесей с различными температурами кристаллизации. При этом, варьируя число ступеней, можно добиваться высоких коэффициентов извлечения целевых компонентов, а также высокой степени их очистки от примесей. Так как установка состоит в основном из теплообменных аппаратов, емкостного оборудования и насосов, то она обладает высокой надежностью и безопасностью. Все операцип могут быть полностью автоматизированы. Управление процесса осуществляют по заранее заданной программе с использованием миникомпьютера. Подобные установки требуют относительно низких капитальных затрат [195, 210, 211]. [c.172]

    Почти во всех промышленных установках фракционирования пйрогаза и газов нефтепереработки, работающих как по абсорбционной, так и по ректификационной схемам, процесс разделения исходной смеси сводится к извлечению из нее этан-этиленовой фракции, которая затем подвергается ректификации в отдельной колонне. Таким образом, процесс разделения этан-этиленовой смеси является общим для различных схем и поэтому может быть рассмотрен самостоятельно. Аналогично пропилен получают путем ректификации пропан-пропиленовой [c.337]

    Существует целый ряд гибридных аналитических методов анализа, сочетающих процессы разделения и анализа смесей в одном приборе. В такого рода аппаратуре на первом этапе для фракционирования смесей используют высокоэффективные газовые или жидкостные хроматографы, после выхода из которых разделенные компоненты через интерфейсные узлы направляются для регистрации и идентификации в устройства, обладающие большим идентификационным потенциалом масс-спектрометры, сиектрофлуориметры, спектрофотометры оптического диапазона и т. п. Непременной принадлежностью таких приборов является достаточно мощная ЭВМ для сбора экспериментальной информации. [c.5]

    Известно несколько способов, при помощи которых выделяют отдельные компоненты или фракции из адсорбента. Один из периодических процессов такого выделения заключается в нагреве или отпарке адсорбента, через который была пропущена газовая смесь. Можно проводить таким путем и фракционированную десорбцию. Выделение отдельных компонентов или фракций при помощи подогрева и отнарки применяют и при непрерывном процессе разделения на движущемся слое адсорбента. [c.125]

    Вопросам фракционирования белков, в частности ферментов, а также методам приготовления геля фосфата кальция на целлюлозе посвящен обзор [27]. Механизм разделения на ГА еще не выяснен до конца, что связано, по-видимому, со сложным поли-функцнональным характером взаимодействия белка с амфотер-ным носителем, а также недостатком данных относительно влияния молекулярного веса белка на процесс разделения. Возможно, этим объясняется тот факт, что хроматография на ГА еще не получила должного признания. [c.451]


Смотреть страницы где упоминается термин Фракционирования процессы разделения: [c.72]    [c.157]    [c.38]    [c.347]    [c.112]    [c.223]    [c.168]    [c.69]    [c.25]    [c.213]    [c.126]   
Углеводороды нефти (1957) -- [ c.18 , c.19 ]




ПОИСК





Смотрите так же термины и статьи:

Разделение или фракционирование



© 2025 chem21.info Реклама на сайте