Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод ионизации

    Как видно из приведенных данных, а также рис. 12, углерод существенно отличается от других р-элементов группы высоким значением энергии ионизации. Углерод — типичный неметаллический элемент. В ряду С — 5 — Ое — 5п — РЬ энергия ионизации уменьшается, а следовательно, неметаллические признаки элементов ослабевают, металлические усиливаются. В изменении свойств атомов и соединений в этом ряду проявляется вторичная периодичность (см. рис. 18 и 131). [c.390]


    Первая энергия ионизации для В меньше, чем для Ве, потому что самый внешний электрон бора находится на менее стабильной (энергетически более высокой) орбитали. В атоме углерода. С, на двух из трех 2р-орбиталей находится по одному электрону. В согласии с правилом Гунда, в атоме азота. К, три р-электрона расселены по трем 2р-орбиталям, вместо того чтобы два из них оказались спарены на одной орбитали. Четвертый 2р-электрон в атоме кислорода, О, удерживается менее прочно, чем первые три, из-за отталкивания с другим электроном, спаренным с ним на 2р-ор-битали. Поэтому первая энергия ионизации О сравнительно мала. [c.393]

    С—с. Это и не удивительно, если учесть больший размер атомов Si. Связывающие электроны находятся дальше от каждого из ядер, и поэтому связь оказывается менее прочной. По той же причине Si имеет меньшую энергию ионизации, чем С, и меньшую электроотрицательность (см. табл. 9-1). Но еще более важной причиной различия в свойствах углерода и кремния является аномально высокая прочность связи Si—О. В атоме углерода пустые З -орбитали имеют гораздо более высокую энергию по сравнению с 2р-орбиталями кислорода, занятыми неподеленными электронными парами, поэтому между ними не возникает взаимодейст- [c.279]

    При плавке сталей на свойства столба дуги влияют материалы испаряющихся электродов и состав газовой печной среды (СОа, СО, N2, Аг, На). Наименьшие потенциалы ионизации некоторых элементов характеризуются следующими величинами (в В) углерод — [c.62]

    Поскольку, как показано в предыдущем разделе, важнейшими этапами реакции гидрирования бензольного кольца являются стадии образования я-комплекса, а также образования и разрушения связи атома углерода с металлом, присутствие в бензольном кольце заместителей, оказывающих влияние на распределение электронной плотности или, другими словами, на потенциал ионизации, обязательно должно сказываться на скорости гидрирования. [c.138]

    ДО 24 000° К и захватывает область первой и второй ступеней ионизации атомов углерода и кислорода. Рис. 33, б показывает, что при повышении температуры сначала молекулы СОг диссоциируют на СО и О2, далее молекулы О2 разлагаются на свободные атомы. При данном давлении уже к 3 000° К в равновесной системе почти не остается молекул СО2 и О2 и она состоит практически, полностью из молекул СО и атомов кислорода. Примерно с 4 000° К начинается разложение молекул СО. Дальнейшее повышение температуры приводит к отделению от атомов углерода, а затем и от атомов кислорода сначала одного электрона, а при более высоких температурах и другого электрона. Образование плазмы в этой системе при указанном давлении начинается примерно с 5000° К. Процессы термической ионизации атомов, как и процессы термической диссоциации молекул, являются обратимыми термодинамическими процессами. Для них могут быть определены соответст-вуюш,ие тепловой эффект процесса и константа равновесия, а также зависимость их от температуры и пр. [c.120]


    Ниже приведены некоторые параметры процессов ионизации молекул водорода, кислорода, азота и двуокиси углерода  [c.554]

    С одной стороны, логично допустить, что в процессе ионизации отрывается гидрид-ион у третичного атома углерода и сразу образуется третичный ион карбония [30]. Однако в ряде работ [ 28, 29] было показано, что изомеризация под влиянием дейтеро-серной кислоты протекает с последовательным Н—О-обменом всех атомов водорода, кроме атома при третичном углероде, причем в первую очередь обмениваются атомы водорода, находящие- [c.155]

    Поэтому надо всегда учитывать возможность ионизации (за счет гидридного сдвига) всех атомов углерода, находящихся по соседству с третичным атомом углерода — потенциальным местом образования в молекуле дефицита электронов. [c.156]

    Пользуясь представлением о проникновении электронов к ядру, рассмотрим характер изменения радиуса атомов элементов в подгруппе углерода. В ряду С — 51—Ое — 5п — РЬ проявляется общая тенденция увеличения радиуса атома (см. рис. 15, 16). Однако это увеличение имеет немонотонный характер. При переходе от 51 к Ое внешние р-электроны проникают через экран из десяти З -электро-нов и тем самым упрочняют связь с ядром и сжимают электронную оболочку атома. Уменьшение размера 6р-орбитали РЬ по сравнению с 5р-орбиталью 5п обусловлено проникновением бр-электронов под двойной экран десяти -электронов и четырнадцати 4/-электронов. Этим же объясняется немонотонность в изменении энергии ионизаций атомов в ряду С — РЬ и большее значение ее для РЬ по сравнению с атомом 5п (см. рис. 12). [c.37]

    Переход органического вещества торфов, бурых углей в раствор в виде гуматов при обработке щелочами резко возрастает при pH > 13 за счет не только ионизации кислых групп, но и окислительно-гидролитического расщепления углерод-углеродных связей, разрыва внутримолекулярных водородных связей, перевода поливалентных катионов в гидроксокомплексы. В сильно щелочной среде по данным электронной микроскопии изменяется структура гуминовых кислот из глобулярной она переходит в фибриллярную. [c.25]

    Точная форма кривой в значительной степени зависит от природы иона. Для молекулярных и осколочных ионов, образующихся при простом механизме ионизации, начальный участок кривой меньше и угол линейного участка больше, чем для ионов, образующихся по сравнительно сложному механизму. Если сравнивать ионы одного типа, то различия в форме их ионизационных кривых невелики. Так ионизационные кривые для молекулярных ионов криптона, аргона, двуокиси углерода, метана, ацетилена, этилена, водорода и воды обычно располагаются параллельно, особенно в области низких энергий [130], если в масс-спектрометр они вводятся [c.175]

    Статическое электричество. Возникновение статического электричества при трении диэлектриков — хорошо известный процесс, с проявлениями которого приходится сталкиваться как при переработке, так и при эксплуатации эластомеров. Возникновение статического электричества может служить источником пожароопасности на производствах, а также приводит к попаданию в резиновые изделия нежелательных примесей. Опасность возникновения статического электричества сохраняется при эксплуатации резиновых изделий вследствие низкой электропроводности. Основной способ уменьшения количества электричества, образующегося при трении, — увеличение электропроводности трущегося материала. Применительно к резиновым и резинотканевым изделиям это означает необходимость использования электропроводящих резин, т. е. резин, наполненных специальными электропроводящими типами технического углерода. Другой способ снижения количества электрических зарядов, скапливающихся на поверхности изделий, — увеличение электропроводности воздуха за счет его ионизации источниками ионизирующего излучения (например радиоактивного у-излучения малой [c.74]

    Вымывание адсорбированных газов занимает 15 мин и идет в такой последовательности водород, азот, метан, окись углерода. В конце столбика находится ионизационный детектор со слабым источником радия Д, который ионизирует часть газа-носителя (аргона). Возникающий ионизационный ток подается на усилитель и далее на самописец. Примесь газов, выделенных из металла, изменяет степень ионизации аргона, в результате чего на самописце наблюдается ряд пиков. Результаты записи анализа одной пробы показаны на рис. 11. При строго постоянных условиях вымывания адсорбированных газов аргоном высота пиков пропорциональна содержанию отдельных компонентов. На основании анализа образцов металла с известным содержанием газов (или соответствующих искусственных смесей) можно установить соотношение между высотой пика и процентным содержанием газа в металле. [c.70]

    Для большинства углеводородных соединений вероятность ионизации пропорциональна количеству углерода в анализируемом соединении. Поэтому относительная чувствительность детектора к различным углеводородным соединениям приближенно характеризуется множителем [c.178]


    Аргоновый детектор Ловелока. В качестве газа-носителя применяется аргон. Для ионизации молекул аргона применяется радиоактивное излучение. Принцип действия детектора сводится к следующему. При электронной бомбардировке аргона возникают возбужденные метастабильные атомы энергия возбуждения их достигает 11,6 эв. Они в свою очередь ионизируют анализируемые молекулы. Ионизация молекул происходит в том случае,если их потенциал ниже энергии возбуждения атомов аргона. Вследствие этого детектор не пригоден для определения азота, кислорода, метана, двуокиси углерода, паров воды. Он пригоден для определения большинства органических веществ, обладающих низким ионизационным потенциалом.. [c.249]

    Практически все известные для этиленовых соединений реакции электрофильного присоединения можно провести и с ацетиленовыми углеводородами и их производными. Однако вследствие большей электроотрицательности 5 г7-гибридных атомов углерода ацетилена я-электроны тройной связи более жестко связаны с ядрами, чем в этилене. На это, в частности, указывают значения потенциалов ионизации двойной (10,50 эВ) и тройной (11,40 эВ) связей. Электро-нодонорные свойства тройной связи ниже, чем у двойной, поэтому ацетиленовые соединения вступают в реакции с электрофилами примерно в 10 раз труднее, чем близкие нм по строению этиленовые. Для ускорения этих реакций рекомендуется применение катализаторов. Наиболее часто используются апротонные кислоты (галоге-ниды алюминия, бора, меди н ртути)  [c.118]

    Кремний 81(15 2 2р 35 Зр ) по числу валентных электронов является аналогом углерода. Однако у кремния больший размер атома, меньшая энергия ионизации, большее сродство к электрону и большая поляризуемость атома. Поэтому кремний — элемент 3-го периода — по структуре и свойствам однотипных соединений существенно отличается от углерода — элемента 2-го периода. Максимальное координационное число кремния равно итести, а наиболее характерное — четырем. Как п для других элементов 3-го периода, рл — ря-связывание для кремния не характерно и потому в отличие от углерода р- и зр -гибридные состояния для него неустойчивы. Кремний в соединениях имеет степени окисления +4 и —4. [c.410]

    Электрохимическая коррозия — это взаимодействие металла с коррозионной средой (электролитом), при котором ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от величины электродного потенциала. Электрохимическая коррозия протекает только при контакте поверхности металла с электролитом, т. е. с токопроводящей средой (водными растворами солей, кислот, щелочей). Практически поверхность любого металла в ат осфе-ре покрывается тонкой водной пленкой различной толщины в зависимости от температуры и влажности воздуха, а также от температуры металлической поверхности. В этой пленке растворяются содержащиеся в воздухе газы (диоксид углерода, оксиды азота и серы, сероводород и др.) и мелкие частицы (пыль) различных солей, что приводит к образованию электролита. [c.279]

    Для атома углерода значения последовательных потенциалов ионизации составляют (н В) /1 = = П,3, 2 = 24,4, /з = 47,9, l = 64, /5 = 392. Объяснить а) ход изменения потенциалов нонизации  [c.45]

    Известно, что энергия связи двух углеродных атомов в молекуле (62,8 ккал моль) значительно ниже энергии связи атома углерода с атомом водорода (85,6 ккал/моль). Исходя из этого, многие авторы (Цезарь и Френсис [4], Мак-Алистер с сотр. [5], Горин с сотр. [6] и др.) постулируют, что при контакте изопарафино-вого углеводорода с катализатором (или его комплексом с олефинами) происходит преимущественно ионизация молекулы этого углеводорода с разрывом связи между углеродными атомами. [c.10]

    Для обнаружения течи используют также радиоактивные пзотопы, например, изотоп С, содержащийся в оксиде углерода. Применение изотопов позволяет судить о разгерметизации системы по изменению степени ионизации воздуха вблизи нее. [c.87]

    Газообразные углеводороды обнаруживаются и анализируются у1ибо с помощью модифицированного газового хроматографа, либо методом пламенной ионизации. Оксид углерода (СО) определяют нерассеивающими ИК-анализаторами с длинными кюветами. Оксид азота N0 (0—1,0 млн ) и оксид азота ЫОг (0—1,0 млн- )- определяют автоматизированным методом мокрого химического анализа с использованием реакции диазосочетания. Пробу воздуха разделяют на два потока N0, проходя через раствор перманганата калия, окисляется до оксида (IV). Затем оба потока проходят противоточные скрубберы, где они поглощаются растворами суль- фаниловой кислоты, Н-(1мнафТ Ил) —этилвндиамиидигидрохлорида и уксусной кислоты. Цвета растворов, измеряемые с помощью автоматических колориметров, указывают концентрацию оксида азота (IV) и смеси (НО + КОз). Степень конверсии составляет от 70 до 90% в зависимости от конструкции барботера. Детали метода описаны Катцем [426].  [c.100]

    Активирующее действие отрицательных заместителей, в частности нитрогруппы, объясняется тем, что онн вызывают понижение электрон [ой гглотности у атомов углерода бензольного кольца, в оспбенностн в о- и л-положениях. Вследствие этого связь между заместителем и С-атомом, сама по себе полярная, поляризуется еще сильнее (в предельном случае до ионизации), что облегчает вытеснение заместителя другой нуклеофильной группой  [c.514]

    При реакциях, протекающих по механизму 5л 1, аксиальные электроотрицательные заместителн отщепляются быстрее, чем экваториальные. Стадией, определяющей скорость таких реакций, является ионизация, при которой атом углерода переходит из тетрагонального состояния в тригональное. При ионизации аксиальной группы происходит большее уменьшение напряжения, что и приводит к ускорению реакции. [c.807]

    Из данных, полученных при анализе смесей воды и спиртов [66, 70], следовало, что на ослабление памяти в наибольшей степени влияло уменьшение участка, расположенного между натекателем и ионным источником. Благоприятной для снижения эффектов сорбции оказалась промывка системы напуска исследуемым веществом в течение 2 лшн с последующей откачкой системы в течение I мин. Применение обогреваемой системы иапуска значительно расширило возможности масс-спектрометрического метода и в отношении диапазона молекулярных весов исследуемых соединений. Были исследованы [71] масс-спектры спиртов с 9 атомами углерода в молекуле при температуре системы напуска и камеры ионизации, равной 240° С, и проведен количественный анализ смесей спиртов с 6 и 7 атомами углерода в молекуле [72]. Относительная погрешность метода при температуре источника 250° С, проверенная на искусственных смесях, которые составлены из геп-танолов-2, -3 и -4, а также гексанола-1 и 2-этилбутанола-1, составляла около 5%, Максимальное отклонение от заданного значения составляло 19,3% а среднее — 8,27о- [c.45]

    Аналогичные выводы следуют и из работы Наталис [121] который показал, что при электронной бомбардировке этиле новых углеводородов типа К—СН = СН—К, где К и К — ме тильный, этильный, втор-пропильпый и трег-бутильный ради калы, отношение интенсивностей пиков молекулярнь(х ионов транс- и цыс-изомеров по мере увеличения радикала возрастает. Наблюдаемый эо[)фект связан с освобождением при ионизации цис-изомера с большим алкильным радикалом избыточной энергии, что способствует более быстрому распаду образующегося иона. Авторами на масс-спектрометре МХ-1304 было проведено исследование масс-спектров цис- и гранс-изомеров пентена-2. Оказалось, что при энергии электронов 70 эв кривые распределения обоих изомеров практически идентичны, но при 20 эв количество ионов, содержащих 5 атомов углерода для транс-пентена-2 примерно на 20% больше, чем для цис-пентена-2, что позволяет идентифицировать эти изомеры. [c.60]

    При диссоциативной ионизации галогенопроизводных ароматических углеводородов наблюдаются некоторые закономерности, свойственные распаду углеводородов. Так, например, в случае нахождения галогена в боковой цепи возможен разрыв любой связи С—С, находящейся в р-положении к кольцу. Для полиметилзамещенных соединений возможен отрыв СНз, характерный и в случае отсутствия галогена. Однако, если атом галогена непосредственно связан с кольцом, с большой вероятностью образуются ионы (М—Х)+, где X — галоген. Рассмотрение особенностей масс-спектров фторза-мещенных циклических соединений показывает, что число атомов углерода в осколочных ионах, отвечающих интенсивным пикам, монотонно возрастает с увеличением ненасыщенности. [c.111]

    Авторы исследовали па модифицированном масс-спектрометре МС-1 кривые эффективности ионизации а-метил-, а-этил-, а-пропил- и а-гексилтиофана [198, 199]. Вероятности образования их молекулярных ионов характеризуется весьма близкими величинами в области энергий электронов 12— 30 эв. Это позволяет предположить, что обн1еи основой для образования молекулярных ионов ос-алкилтиофаиов является удаление электрона из неподеленнои пары атома S. Отсутствие двойных связей и я-электронов в молекуле тиофанов исключает возможность образования сопряженной системы с неподеленнои парой, что делает молекулу недостаточно устойчивой к электронному удару и обусловливает ее преимущественный распад по -углерод-углеродной связи по отношению к атому серы с образованием ионов ( 4H7S)+. Аналогичная форма кривых появления этих ионов (рис. 45) является наглядным подтверждением обш,ности механизма их образования при диссоциативной ионизации а-алкилтио-фанов. [c.185]

    Потенциалы ионизации метановых и этиленовых углеводородов С5—Сю мало зависят от молекулярного веса для пентана потенциал ионизации равен 10,55 а, а ундекана— 10,19 в, пентена-1 — 9,66 в, а децена-1—9,51 в. Потенциалы ионизации ароматических и этиленовых углеводородов по меньшей мере на 1 в ниже, чем потенциалы иоиизации метановых углеводородов с тем же числом атомов углерода в молекуле [229]. [c.186]

    Сопоставьте строение и радиусы атомов кремния и углерода, значения их энергии ионизации, проявляемые ими степени ёкисления, устойчивые для них координационные числа. [c.80]

    Если одному из элементов произвольно приписать определенное значение электроотрицательности (для атома углерода С х = 2,5), то можно рассчитать эти значения для других элементов (табл. А.13, рис. А.42). Чем объясняются различия вэлект роотрицательности элементов, явно имеющие периодический характер (рис. А.42) Возьмем первый период периодической системы от до Р д регулярно увеличивается на 0,5 единицы для каждого последующего элемента очевидно, это объясняется увеличением зарядового числа ядра и вследствие этого усилением электростатического притяжения 2 - и 2р-валентных электронов. При переходе от Р (1Ые)- Ыа это притяжение резко падает, так как валентные электроны этих элементов находятся на более удаленных от ядра уровнях 3 (соответственно Зр). Действительно, электроотрицательность проявляет такую же периодичность, как и энергия ионизации элементов. Согласно Малликену, мерой притяжения валентного электрона в нейтральном атоме, иначе говоря, электроотрицательностью, является среднее арифметическое между энергией ионизации (за- [c.102]

    Затем рассчитывают относительную чувствительность по Онг-кихонгу. Для большинства углеводородных соединений вероятность ионизации пропорциональна количеству углерода в анализируемом соединении. Поэтому относительная чувствительность детектора к различным углеводородным соединениям приближенно характеризуется множителем Онгкихонга  [c.69]

    Гелиевый детектор. Разработан для ультрамикроанализа газов. Под воздействием тритиевого источника р-излучения и высокого градиента электрического поля (более 2000 В/см) гелий, используемый в качестве газа-носителя, переходит в метастабильное состояние с определенным ионизационным потенциалом. Все соединения с более низким потенциалом ионизации при этом ионизируются и дают положительный сигнал. Гелиевый детектор дает отклик на все газы, исключая неон. Этот детектор удобен для анализа следовых примесей в высоко очищенных этилене, кислороде, аргоне, водороде, диоксиде углерода и т. д. [c.233]

    Для углерода этот путь затруднен. Связь С — Н должна быть предварительно ионизирована, прежде чем осуществится обмен. В таком случае заместители, облегчающие ионизацию, будут способствовать дейтерообмену. К числу таких заместителей относятся электроноакцеиторные группы со, СООН, N02, N, Hlg. Их действие объясняется эс ек-том гиперконьюгации [c.231]

    Четвертая группа. Если для элементов подгруппы бора основной степенью окисления была +3 и лишь в единичных случаях - -1 (в связи с чем окислительно-восстановительные процессы перехода от одного из этих состояний в другое были не типичны), то для элементов подгруппы углерода (С, 8], Ое, 8п, РЬ) в соответствии со строением внешнего электронного слоя характерны две степени окисления (4-2 и -]-4). Первая отвечает восстановительным свойствам, вторая — окислительным свойствам. При переходе от С к РЬ степень окисления - -2 становится все более характерной, в связи с чем растет и устойчиг вость веществ, содержащих Ддя с и 8( степень окисления +2 проявляется в очень небольшом количестве соединений (например, СО, 810) для них характерна степень окисления +4. 0е(0Н)а, 8п(0Н)2 и рЬ(0Н)2 — амфотерные соединения их основные свойства усиливаются от Ое к РЬ у 0е(0Н)2 преобладает кислотная ионизация, у РЬ(0Н)г — основная. Вещества, содержащие ионы являются сильными восстановителями, соединения РЬ" — сильными окислителями. [c.93]

    Выбор модели (б) был основан, в частности, на том, что расстояние между карбоксилат-ионом и проацильным углеродом (около 2,5—3,0 к [1081) близко к предполагаемому расстоянию между карбоксилат-ионом Asp 52 и атомом (i) субстрата в активном центре лизоцима. Тем не менее ионизация карбоксильной группы ускоряет гидролиз соединения (б), катализируемый ацетатным буфером, лишь в 2,3 раза и гидроксониевым ионом — в 37 раз. [c.175]


Смотреть страницы где упоминается термин Углерод ионизации: [c.476]    [c.434]    [c.59]    [c.77]    [c.22]    [c.157]    [c.300]    [c.26]    [c.62]    [c.80]    [c.89]    [c.135]    [c.182]    [c.147]   
Курс теоретических основ органической химии издание 2 (1962) -- [ c.255 ]

Лекции по общему курсу химии (1964) -- [ c.8 , c.10 , c.12 ]




ПОИСК







© 2025 chem21.info Реклама на сайте