Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан, определение при помощи

    Избирательное химическое или электрохимическое растворение отдельных фаз системы может основываться либо на термодинамике, либо на кинетике селективного растворения. Термодинамика селективности обусловлена резко различной термодинамической устойчивостью разделяемых фаз в условиях анализа. В водных растворах электролитов часто резко различаются по своей термодинамической устойчивости матрица из неблагородного металла и включенные в нее частицы неметаллических фаз. На термодинамической селективности основаны, например, методы определения оксида алюминия в алюминии, а также диоксида титана в титане с помощью кислоты или хлора. [c.825]


    Достигнутая чувствительность определения кислорода в тугоплавких и редких металлах известными методами анализа сравнительно невелика. Метод хлорирования и гидрохлорирования, бромно-углеродный метод имеют чувствительность 10" %, метод вакуум-плавления и изотопного разбавления — 10 % [23, 24]. Если чувствительность изотопного разбавления еще может быть несколько повышена, то в методе вакуум-плавления она достигла предела из-за сорбции выделяемого газа на возгонах металла и неполноты экстракции из пробы. Большая сорбционная способность возгонов титана и высокая термическая прочность его окислов приводят к тому, что кислород в металлическом титане с помощью вакуум-плавления определяется лишь с чувствительностью 10 % [25, 26]. [c.40]

    Недавно опубликованы работы японских химиков, посвященные определению Ре2+-ионов и общего содержания железа в железных рудах путем разложения их конденсированной фосфорной кислотой [534], а также определению алюминия, железа, титана в бокситах, осуществляемым принципиально тем же путем [535]. Содержание железа (II) определяли титрованием в присутствии конденсированной фосфорной кислоты бихроматом калия или фотометрическим методом с 1,10-фенантролином после экстракции метилизобутилкетоном титан — с помощью М-бензоил-К-фенил-гидроксиламина алюминий —в виде оксината и т, д. [c.130]

    Р II С. 18, Определение азота в титане прн помощи искрового источника [149]. [c.367]

    Вся подготовка пробы перед анализом сводится к ее заточке. Заточку производят на наждачном круге, иногда на токарном станке или напильником. Необходимо следить, чтобы поверхность пробы не оказалась загрязненной металлом, оставленным на инструменте предыдущей пробой, или самим наждачным кругом. В его состав обычно входят кремний, алюминий, титан и другие элементы. Качественный состав наждачного камня можно легко проверить с помощью спектрального анализа. При определении в анализируемом металле или сплаве примесей элементов, входящих в состав наждачного камня, пользоваться им для заточки электродов нельзя. При заточке образцов напильниками для каждого вида продукции должен быть отдельный напильник. [c.245]

    Принцип метода. Определение основано на реакции образования окрашенного комплексного соединения хрома (П1) с комплексоном П1. Медь удаляют из раствора с помощью электролиза. Определению не мешают титан (IV), а также железо (III) (до 1 мг), никель (II), кобальт (II), марганец (II), алюминий (до 10 мг). [c.65]


    Можно анализировать титан методом просыпки с помощью прибора АВР-2 в дугу переменного тока после перевода в двуокись [455]. Достоинства метода в том, что он позволяет ускорить определение и устраняет возможность загрязнения пробы из электрода. Однако ввиду сложности спектра титана наиболее чувствительные линии можно использовать лишь при работе с прибором с дисперсией — 4 А на 1 мм предлагается для этого спектрограф ДФС-13. Определяемые пределы 0,0001—0,01% Мд. [c.173]

    Образцы пластиков режут на мелкие кусочки, по 100 мг вводят в электрод и там озоляют с помощью ручной газовой горелки. Озоляют не всю навеску сразу, а по частям. Важен при этом постепенный нагрев, чтобы образец не вспучивался и не вспенивался. При соблюдении этих условий заметных потерь определяемых примесей не бывает. Спектры возбуждают дугой постоянного тока силой 19 А, аналитический промежуток 3 мм, экспозиция 120 с без обжига. Анализ проводят в атмосфере 91% аргона-1-9% кислорода при расходе смеси газов 3 л/мин. С увеличением концентрации аргона в смеси чувствительность определения цинка и фосфора повышается, но испарение титана ухудшается. При большей концентрации кислорода титан йена-. ряется лучше, но снижается чувствительность определения цинка и фосфора. Аналитические линии и диапазоны определяемых концентраций приведены в табл. 54. [c.216]

    Весьма часто приходится удалять из промышленных стоков растворенные в них соли металлов. В сточных водах производства вискозного корда, например, содержится большое количество сульфата цинка (до 100 мг л). В стоках химических производств могут содержаться также железо, медь, титан, кобальт и другие тяжелые металлы. Помимо очистки воды важную роль в экономике предприятий играет утилизация этих отходов. В такие стоки вводят реагенты, с помощью которых растворимые соединения металла (соли) переходят в нерастворимые (например, гидроокиси). Затем взвесь сепарируют в отстойниках, осветлителях и фильтрах. Необходимым условием проведения этого процесса является поддержание заданного значения pH, соответствующего наиболее полному переходу металла в нерастворимую форму. Кроме того, поддержание определенных значений pH помогает повысить эффективность процессов коагуляции взвеси. [c.85]

    Мешающие вещества. Определению мешают нитраты в концентрациях, превышающих 20 мг/л, и соли жесткости в количествах, превышающих 2 мэкв/л. Мешающее влияние последних состоит в том, что, будучи малорастворимыми в спирте, они выпадают в осадок. Этот осадок надо отфильтровать перед определением оптической плотности. Определению мешают титан, цирконий, молибден, вольфрам, бериллий и германий, редко встречающиеся в водах. Их можно предварительно отделить с помощью ионитов. [c.173]

    Наконец, титан элюируют 0,05М серной кислотой, содержащей перекись водорода. После этого элюат не содержит примесей, мешающих колориметрическому определению титана с помощью аскорбиновой кислоты. [c.359]

    Титан экстрагируют в виде окрашенного роданидного комплекса трибутилфосфатом [171, 172]. Предложено [173] извлечение титана с помощью бензольного раствора диизоамил-ортофосфор-ной кислоты (АФК). Титан экстрагируется из различных кислот с довольно высоким коэффициентом распределения (2000). В присутствии перекиси водорода образуется окрашенный комплекс Ti (АФК)п и (НаОг) , используемый для количественного определения титана. Метод позволяет отделить титан от Со, Ni, Sn, u, r, Mg, Na, d, Zn, Mn. Однако при анализе некоторых объектов сказывается мешающее влияние железа, алюминия, фосфорной, винной и щавелевой кислот. Необходимость трехкратной промывки экстракта затрудняет широкое применение метода. [c.65]

    Определение компонентов в шлаках и рудах проводят из таблеток с помощью искрового возбуждения. Шлаки сталелитейных заводов анализируют без сплавления. Пробу либо разбавляют в двадцать раз угольным порошком и в качестве внутренних стандартов используют титан и хром [1], либо формуют в брикеты диаметром 6,35 мм и высотой 3 мм с 9-кратным избытком никелевого порошка, а в качестве подставных используют графитовые электроды [2]. Было показано, что для многих металлов и оксидов лучшей добавкой является медный порошок [3]. [c.126]

    Таким образом, для проведения определения необходимо восстановить титан до трехвалентного состояния восстановление проводят с помощью кадмиевого редуктора. Кислород воздуха определению не мешает. [c.270]

    Хавннга [78], погрешность в случае проведенных определений составляет менее 10% (отн.). Продолжительность определения 1,5—2,0 ч. Соломон с сотрудниками указывают [52], что из всех применяемых ими методов анализа для определения активности алюминийалкилов метод восстановления четыреххлористым титаном — наиболее подходящий. Он дает воспроизводимые результаты в узких пределах, проводится быстро и не требует сложной аппаратуры. Авторы при-водят для сравнения результаты определений активности триэтилалюминия по четыреххлористому титану, с помощью потенциометрического титрования изохинолином и определения концентрации алюминийалкилов по общему алюминию. Оба метода определения активности дают сравнимые результаты, но существует большая разница между определением активности растворов триэтилалюминия и концентрации триэтилалюминия, рассчитанной по общему алюминию. [c.140]


    Ниже приводится методика кулонометрического титрования /г-хинондиоксима, пригодная также для определения других диоксимов и органических соединений, восстанавливающихся трехвалентным титаном. Определение проводят на установке, схема которой показана на рис. 9, с использованием описанной выше ячейки (рис. 11). В качестве генераторного катода служит поверхность ртути площадью 7 см , налитой в чашечку диаметром - -3 см генераторный анод — платиновая спираль. Ход кулонометрического титрования контролируют биамперометрически, налагая на индикаторные электроды потенциал порядка 67 мв. В качестве электролита для катодной камеры используют раствор, приготовленный разбавлением 100 жл Ti U до 250 мл дистиллированной водой. Электролитом в анодной камере служит 0,1 н. раствор НС1. В титрационную ячейку вносят 15,0 мл приготовленного указанным образом раствора ( 3,6 М по Ti 4 и 7,4 М по НС1), добавляют туда же 40—50 мл 2,8 н. раствора H2SO4, а затем дистиллированную воду до общего объема 120 мл. После этого продувают раствор током очищенного азота (10— ХЪмин), размешивая электролит с помощью магнитной мешалки, приливают аликвотную порцию спиртового раствора пробы, содержащую 1—3 мг л-хинондиоксима, и титруют электрогенерированным титаном также при энергичном размешивании раствора. Титрование проводят при силе генераторного тока 25—40 или 10 ма. В первом случае титрование ведут с перерывами генерирования через каждые 50—60 сек (вблизи конечной точки чаще), после каждого прекращения генерирования раствор размешивают 1—2 мин, замеряют силу индикаторного тока и продолжают титрование. Во втором случае (малая скорость генерирования титана) титрование ведут непрерывно, контролируя силу индикаторного тока через равные промежутки времени (30 сек). Титрования проводят при комнатной температуре и непрерывном продувании электролита током азота. [c.82]

    Вытеснять данный элемент из его внутрикомплексного соедине ПИЯ способны только те элементы, которые стоят левее в этом ряду [226]. Это свойство было использовано для отделения марганца от сопутствующих элементов при определении его в титане [638], никелевых сплавах [952]. Производят экстракцию ряда элементов в виде диэтилдитиокарбаминатов, и затем марганец вытесняют в водную фазу путем встряхивания экстракта с водным раствором цинка. Использовалась [847] так называемая вытеснительная субстехиометрия для выделения марганца из его диэтилдитиокарбаминатного комплекса с помощью растворов Hg(II), взятой в субстехиометрическом количестве [c.121]

    Железо (111) также образует окрашенное соединение с роданидами, однако в условиях определения ниобия Fe (III) восстанавливают с помощью Sn . Тантал образует бесцветный роданидный комплекс Нг [ТаО (S N)a], ири высоких содержаниях этот элемент иреиятствует развитию окраски ниобиевого комплекса. Титан образует окрашенное соединение с роданид-ионом Нг [TiO (S N) 4], интенсивность окраски которого во много раз слабее интенсивности окраски ниобиевого комплекса. В присутствии высоких содержаний титана его влияние уменьшают снижением концентрации роданид-ионов до 0,3 М (против 0,9 М). [c.150]

    Используя восстановление трехвалентного железа с помощью титрования хлористым титаном, Вагнер, Смит и Петерсобычно получали заниженные значения однако при проведении анализа в токе двуокиси углерода и тщательном вытеснении воздуха результаты анализа были более точными. Кольтгоф и Меда-лпа обнаружили, что при анализе растворов чистых перекисей в отсутствие воздуха результаты, как правило, были заниженными и давали расхождения, хотя данные анализа окисл ных жиров были близки к полученным с помощью рассматривае мого ниже иодометрического метода. Эти исследователи считали, что природа растворителя оказывает большое влияние на точность определения. Применение растворителей, вызывающих индуцированное разложение перекисей, приводит к пониженным значениям, в то время как ацетон, который почти полностью [c.427]

    Быстро развивается и показывает хорошие результаты рентгенофлуоресцентный метод, основанный на том, что падающее первичное излучение создает при взаимодействии с материалом покрытия характеристические электромагнитные волны [25], имеющие кванты определенных длин волн и интенсивности. Спектральный состав излучения зависит от того, какие элементы имеются в материалах контролируемого объекта, а интенсивность — от массы данного элемента. Подбирая фильтры, выделяющие необходимую спектральную линию, характерную для материала покрытия, анализируя интенсивность и энергию квантов вторичного излучения с помощью различных электронных дискриминаторов, можно определить толщину одного или нескольких не очень толстых покрытий. Используемые при рентгенофлуоресцентном методе эффекты более сложны в приборной реализации, поэтому аппаратура на базе этого метода пока не выпускается крупными сериями. Вместе с тем имеются примеры успешного внедрения таких приборов в практику неразрушающего контроля толщин покрытий при разных сочетаниях материалов хром, олово, цинк, алюминий, титан или серебро на стали, медь на алюминии, хром на цинке, кадмий на титане и др. Решающим фактором применимости рентгенофлуоресцентного метода является наличие достаточной интенсивности вторичного излучения в диапазоне, где его регистрация эффективна. Также его ценным качеством является возможность из гpeний толщины многослойных покрытий, причем, когда их толщины соизмеримы, можно проводить в ряде случаев раздельный контроль. Успешно производится измерение толщины серебра на фотобумаге и ферролаковом покрытии. [c.352]

    Экстракция с помощью дитизона применена для фотометрического определения меди в титане и титановых сплавах [257] меди и кобальта после их хроматографического разделения на силикагеле [258] меди, свинца и цинка в природных водах ивы-тяжках из почв [259] цинка и меди в биологических материалах [260] цинка в металлическом кадмии [261] и баббитах [262]. Экстракционное выделение дитизоната цинка использовано для последующего фотометрического определения цинка с помощью ципкона. МетЬд применен для определения цинка в чугуне [263]. Экстракционно-фотометрические методики определения кадмия с помощью дитизона предложены для определения кадмия в алюминии [264], нитрате уранила [2651 и металлическом бериллии [266]. Дитизонат таллия экстрагируют хлороформом. Содержание таллия определяют фотометрированием экстракта [267]. Аналогичным способом определяют таллий в биологических материалах [268]. Индий в виде дитизоната полностью экстрагируется хлороформом при pH 5 [269]. Экстракция комплекса индия с дитизоном применена для фотометрического определения индия в металлическом уране, тории, а также в их солях [270]. Свинец определяют в алюминиевой бронзе [271], теллуровой кислоте [272] и горных породах [273, 274] свинец и висмут — в меди и латуни [275], ртуть —в селене [276] серебро — в почвах, (методом шкалы) [277] ртуть — в рассолах и щелоках (колориметрическим титрованием) [278]. [c.248]

    Специфические свойства четыреххлористого титана создают определенные трудности при конструировании и изготовлении аппаратуры, используемой в этом производстве. Кроме того, ввиду наличия пульпы, образованной, как указывалось выше, вследствие содержания в четыреххлористом титане твердых хлоридов других металлов и жидкого четыреххлористого кремния, необходимо отделить последний от твердых примесей с помощью отстаивания, центрифугирования, фильтрации или ректификации. Удаление же из четырехх го-ристого титана таких примесей, как хлориды ванадия или оставшиеся в жидкости хлориды алюминия, вынуждает применять методы физико-химической очистки путем образования комплексных соединений за счет введения в жидкость медного порошка, влажного активированного угля с последующим отстаиванием и фильтрацией твердой фазы. [c.67]

    К осн. разновидностям А. а. относятся радиоспектральный и радио-хид ический анализы. Радиоспектральный А. а. основан на различии периодов полураспада и энергии радиоактивного излучения радиоизотопов, образующихся при активации. В этом случае величину /j, часто определяют радиоспектрографами. Созданы также ав томатизированные установки и приборы (рис.), с помощью к-рых можно определить в исследуемом образце количество одного какого-либо активированного элемента или одновременно нескольких таких элементов (что часто используется для акспресс-анапиза). Одна из них — автоматизированная установка К-1— предназначена для экспрессного определения количества кислорода в различных материалах (стали, титане, меди, бериллии, твердых сплавах, тугоплавких металлах и др.) по активационной реакции 1 0 (п, р) возбуждаемой нейтронами с энергией 14 М в. Радиохимический А. а, основан на предварительном хим. отделении активированного элемента и последующем определении скорости его радиоактивного распада. А. а. используется прежде всего для определения качественного и количественного состава материалов (веществ) высокой и сверхвысокой степени чистоты, напр, полупроводниковых материалов, материалов атомной энергетики. [c.35]

    II (111)р и направление [1120] , 1[110]р. Возникает в процессе термической обработки (закалки, старения металлов) сплавов титана с переходными элементами, сплавов на основе циркония, гафния и сплавов урана с цирконием и ниобием, а иногда при эксплуатации этих сплавов в условиях повышенных т-р. Образуется в результате резкого охлаждения (когда происходит без-диффузионпое превращение) или изотермического распада (связанного с расслоением на участки различной концентрации легирующего элемента) метастабильной бета-фазы. Устойчива в критической области определенных электронных концентраций при т-ре ниже 400—500° С. В отличие от обычных мартенситных превращений, присущих сталям и сплавам на основе цветных металлов, образование О.-ф. не сопровождается появлением характерного рельефа на поверхности полированного образца. О.-ф. резко снижает пластичность сплавов, что часто исключает возможность их использования, значительно повышает прочность и упругие св-ва. Образование О.-ф. сопровождается отрицательным объемным эффектом. Кроме того, О.-ф. отличается положительным коэфф. электрического сопротивления. Выявляют ее в основном с помощью электронномикроскопического анализа, рентгеновского анализа, методом электросопротивления и дилатометрического анализа. Лит. Носова Г. И. Фазовые превращения в сплавах титана. М., 1968 Г р а -б и н В. Ф. Основы металловедения и термической обработки сварных соединений из титановых сплавов. К., 1975 М а к-квиллэн А. Д., Макквил-л э.н М. К. Титан. Пер. с англ. М., 1958. [c.115]

    В. А. Кочеванов и Р. А. Кузнепов [136] с помощью бетатрона на 25 Иэе с в]1утренней мишенью получили чувствительность определения кислорода в бериллии и алюминии, равную 10 3 % При определении кислорода в титане чувствительность из-за активации самой основы составила 10-2 [c.94]

    Изложенный метод использовался для определения тория в воде [46, 51], монацитовых концентратах [18], бедных рудах [114]. Б. П. Никольский и А. М. Трофимов применили его для концентрированных растворов, в частности для солей уранила [89]. В работе по спектрофотометрическому определению тория [88 ] производилось сравнение описанного катионообменпого метода с анионообменным выделением из концентрированных солянокислых растворов. Было установлено, что анионообменный метод предпочтительнее в тех случаях, когда анализируемые пробы содержат только уран и железо, Если же в пробах присутствуют и другие элементы, например, щелочные, щелочноземельные и редкоземельные металлы, а также анион SO , то катионообменный метод дает лучшие результаты (ср. [7 ]). Этим методом удобно определять микрограммовые количества тория в силикатных породах [59]. Чтобы облегчить элюирование примесей М НС1, перед пропусканием раствора через колонку железо рекомендуется восстановить до двухвалентного состояния. Титан и цирконий элюируют 0,lAf лимонной кислотой. После промывания колонки водой торий удаляют из нее с помощью Ш H2SO4. [c.334]

    Четырехфтористый титан — чрезвычайно гигроскопичное твердое вещество (давление паров равно 1 ат при 184°С). Лучше всего получать его действием фтора на металл при 250 °С или на ДВУОКИСЬ титана при 350 °С можно, однако, приготовить Т1р4 также взаимодействием фтористого водорода и тетрахло-рида. Этот фторид растворяется в водной плавиковой кислоте, образуя раствор, содержащий ион Т из данного раствора легко получить умеренно растворимые соли щелочных металлов. Как и следовало ожидать, все эти соединения оказались диамагнитными, Калиевая соль , кристаллизующаяся из воды при температуре выше 50 °С, имеет ромбоэдрическую структуру, аналогичную КгОеРе каждый ион титана окружен шестью фторид-ионами, находящимися от него на расстоянии 1,917 А и расположенными в вершинах правильного октаэдра. Данная структура, определенная путем рентгеноструктурного анализа, была недавно подтверждена исследованием при помощи метода ядерного магнитного резонанса (ЯМР) , вероятно первым из проведенных с комплексными фторидами поскольку Р обладает ядерным моментом, этот метод приложим к изучению подобных соединений. Фторо-(IV) титанат калия может быть получен нагреванием при 300—350 °С в виде кристаллов, имеющих кубическую и гексагональную структуры , аналогичные соответственно К231Рб и КгМпРе. [c.96]

    Pd на oi ). С исследуемого электрода при помощи осциллографа снимались анодные кривые заряжения (в растворе 10%-ной НС1 20° С), когда палладий анодно растворяется, а основной металл (титан или нержавеющая сталь) находится в пассивном состоЯ Нии. Определение палладия проводилось по величине задержки потенциала , соответствующей количеству электричества, идущего на ра створение палладия. Как видно из рис. 12, величина площадки при потенциале растворения палладия ( + 0,55 в) была примерно пропорциональной времени (5, 10, 20, 30 и 60 мин.) предварительной коррозии сплава Ti — 0,86% Pd в 40%-ной серной кислоте (100° С). Это указы- [c.37]

    Ниже приведено несколько примеров использования маскирования для увеличения избирательности. При экстракционно-фотометрическом определении молибдена с помощью толуол-3,4-ди-тиола мешающее влияние посторонних элементов устраняли тиомочевиной [455]. При экстракции ниобия и урана в виде диэтилдитиокарбаминатов переход циркония в органическую фазу предотвращали добавлением салициловой кислоты [456], Вводя в водную фазу до экстракции перекись водорода и винную кислоту, устраняли мешающее влияние 8п, V, Т1, Мо, при эксграк-ционно- фотометрическом определении железа с бензоилфениллшд-роксиламином [457]. ЭДТА использовали для маскирования Ре, Со, Си, Ш, Сг и других элементов, когда определяли палладий с 2-нитрозо-1-нафтолом [458] фторидом натрия связывали титан при извлечении ванадия с помощью БФГА [197, 459]. [c.158]

    Титан в сухом газообразном и жидком хлоре воспламеняется. Во влажном хлоре при температурах ниже точки росы, а также Б хлорной воде до 100° С титан практически не корродирует. Этим обусловлено его широкое применение для изготовления теплооб-менников, трубопроводов, арматуры, эксплуатируемых в контакте с влажным хлором и хлорной водой. Практика показала, что ти- тан при определенных условиях проявляет склонность к щелевой коррозии. Такой вид разрушения наблюдается в зазорах между трубами и трубными решетками холодильников, в местах соединения хлоропроводов с крышками электролизеров с помощью резиновых пробок и др. [c.17]


Смотреть страницы где упоминается термин Титан, определение при помощи: [c.505]    [c.225]    [c.581]    [c.172]    [c.213]    [c.1426]    [c.126]    [c.59]    [c.581]    [c.465]    [c.669]    [c.738]    [c.73]    [c.108]    [c.356]    [c.112]    [c.469]    [c.273]    [c.18]   
Перекись водорода (1958) -- [ c.498 ]




ПОИСК





Смотрите так же термины и статьи:

Определение молибдена в сплавах титан-молибден с помощью ионообменной хроматографии

Определение при помощи комплексного соединения титана с перекисью водорода



© 2025 chem21.info Реклама на сайте