Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды селективность и кинетика

    Кинетика изомеризации парафиновых углеводородов. Во всех работах, посвященных кинетике изомеризации парафиновых углеводородов на бифункциональных катализаторах [19, 21, 24, 27-36], за исключением [11], стадией, лимитирующей общую скорость реакции изомеризации, считается алкильная перегруппировка карбкатионов. Эта точка зрения подтверждается данными о селективном действии различных промоторов и ядов на металлические и кислотные участки катализатора [19, 30]. Серии опытов по влиянию фтора, натрия, железа и платины на активность алюмоплатиновых катализаторов в реакции изомеризации к-гексана проводились при 400 °С, давлении 4 МПа и изменении объемной скорости подачи и-гексана от 1,0 до 4,0 ч [30]. Опыты на платинированном оксиде алюминия, промотированном различными количествами фтора — от О до 15% (рис. 1.7), показали, что по мере увеличения количества фтора в катализаторе до 5% наблюдался значительный рост его изомеризу-ющей активности поскольку удельная поверхность катализатора не подвергалась заметным изменениям, рост каталитической активности объясняется изменением химических свойств активной поверхности, а именно усилением кислотности. [c.17]


    Необходимо отметить, что процесс, обратный первой стадии (адсорбции углеводорода) приводит к изомеризации (миграции двойной связи), что и наблюдали на опыте, а скорость восстановления катализатора, измеренная в отсутствие кислорода, достаточна для объяснения скорости окислительной дегидрогенизации [81]. Но эти модели не дают ключа к решению вопроса о происхождении различий в селективности у разных окислов, т. е. эти модели не раскрывают причин, заставляющих окислы отдавать предпочтение одному из возможных реакционных путей (через альдегид или диен). Начальный выход первичных продуктов окисления никогда не равен 100%, и всегда присутствует какое-то количество продуктов деструкции. Этот новый тип селективности связан с легкостью десорбции первичных продуктов, которые очень часто адсорбируются сильнее, чем олефин, как показывает их влияние на кинетику реакции. В экстремальных случаях не десорбируется ни одно из промежуточных соединений между олефином и СО или СОг, и единственной реакцией, которую удается наблюдать, является полное сгорание, и притом не только на неселективных катализаторах, но и на селективных, таких, как В1— —Мо—О (например, циклопентен) [83]. По той же причине при работе со всеми этими катализаторами следует избегать микропористости, поскольку из-за медленной диффузии в порах удлиняется время контакта, что приводит к глубокому разрушению желательных продуктов. [c.165]

    Кинетика селективной паровой конверсии этана (в смеси с метаном) на никель-хромовом катализаторе. Для изучения этого процесса мы предложили методику обработки результатов исследования кинетики химического процесса на проточном градиентном реакторе нашей конструкции в неизотермических условиях [36]. Основной особенностью кинетики конверсии этана с водяным паром является то, что скорость данного процесса сначала возрастает, достигает максимума и лишь затем (при значительной степени превращения углеводорода) начинает уменьшаться. В целом процесс имеет выраженный автокаталитический характер. Полученные нами экспериментальные данные удовлетворительно описываются эмпирическим кинетическим уравнением [c.122]

    Желаемые каталитические свойства преимущественно связаны с селективностью и стойкостью к отравлению серой. Первоначально активность не должна иметь первостепенного значения. При первом рассмотрении главная проблема оптимизации селективности в непрерывных процессах связана с необходимостью регулирования распределения продуктов. Как показывают данные, представленные в табл. 19-1, для синтеза углеводородов характерна тенденция к получению широкого группового состава продуктов с отчетливо выраженным пиком для метана. Углеводороды с числом атомов углерода более двух имеют узкий максимум от С4 до Сз или пологий максимум, простирающийся от Сз до С16. Полученные углеводороды, в основном нормальные парафины или а-олефины, мало пригодны в качестве моторного топлива вследствие их низкого октанового числа. Термодинамически возможно получение таких высокооктановых углеводородов как изопарафины или ароматические соединения, но не существует специальной движущей силы для их синтеза. Селективность катализатора зависит от кинетики процесса и является регулирующим фактором при получении специфичных химикатов. [c.268]


    Распределение компонентов в продуктах синтеза на основе Нг и СО почти во всех случаях определяется кинетикой. Большая стабильность метана приводит к значительным его выходам при различных условиях процесса на разнообразных катализаторах,, что вызывает серьезные осложнения, когда необходимо получение жидких углеводородов. Трудности в достижении желаемой селективности вытекают из механизма синтеза углеводородов, а именно — из особенностей процесса полимеризации. Однако опыт проведения каталитических процессов учит, что положение максимума продукционного распределения может быть сдвинуто, а само распределение несколько сужено посредством изменения рабочих параметров или состава катализатора. Желательно для каждого специфичного процесса проводить дальнейшие исследования и разработки катализаторов синтеза. Аналогично, усовершенствование сероустойчивых катализаторов, способных к работе при концентрациях НгЗ 10—1000 млн->, должно очень существенно повысить эффективность процесса синтеза углеводородов. [c.276]

    Кинетика полимеризационного процесса накладывает ограничения на состав возможных продуктов синтеза. Так, со стопроцентной селективностью могут образовываться метан и наиболее тяжелые углеводороды (полиметилен или уах в английской литературе). Доля бензиновой фракции в продуктах синтеза не может превышать 48 %, а доля дизельной фракции — 30 %. [c.13]

    Детальные исследования кинетики процесса гидрирования олефиновых, диеновых и ацетиленовых углеводородов, проведенные в растворах кластеров палладия Ь Р(1п (где Ь — фосфор- и азотсодержащие лиганды) [45], также убеждают в том, что селективность палладиевых катализаторов не связана с гидридным механизмом. Они не взаимодействуют с молекулярным водородом (20—100 °С, 0,1—0,2 МПа), но легко реагируют с различными соединениями, в том числе и с непредельными углеводородами (ип) олефиновыми, диеновыми и ацети-леновыми [46]. [c.44]

    Основные научные работы посвящены адсорбции твердыми телами, особенно цеолитами, кинетике гетерогенных реакций, технологии селективного разделения веществ. Разработал теорию адсорбции на цеолитах, технологию селективной адсорбции нормальных парафиновых углеводородов из газовой фазы. [c.573]

    Когда определяющей является первая стадия, полезно знать, в какой степени переходный комплекс близок к соответствующей структуре Уэланда. При галогенировании молекулярным бромом или хлором кажется вероятным, что в переходном комплексе между молекулой галогена и ароматическим кольцом почти полностью образовалась а-связь. Так, для метилбензолов графическая зависимость между логарифмом скорости хлорирования и логарифмом основности приближенно выражается прямой линией с тангенсом угла наклона немного большим единицы [14]. К тем же выводам приводит изучение кинетики галогенирования ароматических углеводородов [84а, Ь]. Влияние среды на скорость бромирования позволяет предположить, что разрыв связи Вг—Вг происходит на стадии, определяющей скорость реакции [41а, 95Ь]. Нитрование значительно менее селективная реакция [41Ь] и поэтому, вероятно, требует меньшей локализации электронов в переходном состоянии. Когда определяющей стадией является отщепление протона (например, при иодировании), присоединение реагента происходит, вероятно, в первой быстрой равновесной стадии, и строение переходного комплекса должно быть промежуточным между структурой Уэланда и строением исходных еще не реагирующих веществ. Эти выводы иллюстрируются схемой 3. [c.131]

    Результаты исследования реакций, проведенных в эмульсиях гексан — вода, свидетельствуют о сильном влиянии присутствия воды на кинетику и механизм гидрирования непредельных углеводородов (табл. 1, рис. 1—3). Зависимости скорости и селективности гидрирования фенилацетилена, изопрена и смеси фенилацетилен — изопрен от состава эмульсии различны и носят сложный экстремальный характер. [c.7]

    Найдено, что кинетика параллельного окисления углеводородов в продукты полного окисления (гз) подчиняется тем же уравнениям, что и для г. При одинаковых знаменателях всех кинетических уравнений получаем выражение для дифференциальной селективности по целевому продукту  [c.402]

    Для современных исследований процессов жидкофазного окисления характерно углубленное изучение кинетики и механизма каталитических реакций в области умеренных (ниже 140 °С) и повышенных (до 220 "С) температур и давлений. Особую актуальность в последнее время приобретает решение проблемы селективности окисления углеводородов. Это обуслов- [c.7]

    Установление оптимального режима осуществления процесса, возможность регулирования соотношения между продуктами с целью придания процессу необходимой селективности, подавление нежелательного глубокого выгорания углеводорода, рациональный выбор способа стимулирования процесса, управление процессом путем изменения условий по его ходу становятся возможными в результате исследования элементарных и макроскопических стадий, изучения кинетики и химизма реакции. Жидкофазное окисление углеводородов протекает при более низких температурах, более мягко , нежели газофазное окисление тех Же веществ. Современная техника лабораторного эксперимента и аппаратурные возможности химических производств таковы, что, применяя более или менее повышенные давления, можно проводить многие реакции на режимах жидкофазного окисления (при температурах и давлениях, близких к критическим). [c.7]


    Механизм и кинетика окислительного дегидрирования иодом изучались в ряде работ . Влиянию разных факторов на процессы окислительного дегидрирования иодом н-бутана и изопентана посвящены работы Процесс очень чувствителен к температуре и времени контакта, которые должны поддерживаться в узких пределах. Увеличение подачи иода приводит к повышению выхода диена. Кислород благоприятно влияет на выход изопрена до концентрации 1 моль/моль, но с повышением расхода кислорода снижается селективность процесса и усиливается образование продуктов распада и глубокого окисления. Большое влияние на процесс оказывает разбавление инертными разбавителями. С увеличением разбавления снижаются конверсия углеводорода.и выход олефина, но повышаются выход диена и селективность процесса. Особенно эффективным разбавителем являются пары воды .  [c.205]

    B. А. Ройтера, М. Я. Рубаник. Получены значения констант скоростей окисления олефинов и ароматических углеводородов на некоторых катализаторах, исследовано влияние различных параметров на кинетику неполного и глубокого окисления, намечены пути управления селективностью реакций [382—383]. [c.66]

    Осн. работы посвящены адсорбции ТВ. телами, особенно цеолитами, кинетике гетерогенных р-ций, технол. селективного разделения в-в. Исследовал (1945—1952) кинетику р-ций получения азотной к-ты на основе оксидов азота при повышенном давлении. Разработал теорию адсорбции на цеолитах, технологию селективной адсорбции нормальных парафиновых углеводородов из газовой фазы. Под его руководством на комбинате Лейна-Верке созданы модернизированные процессы и установки по произ-ву мочевины (1956), диметилформамида (1957), гидразина (1960), фторида водорода (1962). [c.505]

    Как было указано, эти авторы, исходя, по-видимому, из того, что окисление углеводородов, катализированное как НВг, так и N02, обладает двумя максимумами тепловыделения, пришли к заключению, что действие таких двух различных но природе добавок должно быть идентичным. Однако своеобразный механизм окисления, катализированного НВг, сказывается совсем не только в двух максимумах тепловыделения. Как показали сами авторы, в случае добавки НВг происходит кардинальное изменение не только кинетики, но и всего химизма процесса. Реакция практически направляется по пути селективного образования одного продукта и притом такого, который отсутствует в гамме продуктов некатализироваиного окисления. Ничего подобного не наблюдается при катализе добавками N 2, в присутствии которых происходит некоторое изменение лишь кинетических проявлений реакции и полностью сохраняются ее химические пути. Это, несомненно, противоречит далеко идущему предположению авторов о механизме действия добавок N02. [c.473]

    Снижение селективности при протекании реакции окислительного дегидрирования алкилароматическнх углеводородов во внутрикристаллических каналах фожазитов, обусловленное затрудненностью диффузии молекул продуктов реакции и десорбции их в газовую фазу, подтверждается изучением кинетики реакции на NaY, содержащем палладий [280]. Оказалось, что скорость реакции изменялась во времени по S-образной кривой, чего не наблюдалось на узкопористых цеолитах, на которых стащюиариая активность катализатора достигалась практически сразу же после начала реакции. В случае же фожазитов стационарная активность катализатора достигается через некоторое время после начала реакции, что обусловлено медленной десорбцией образующихся в каналах продуктов реакции. [c.110]

    Из термодинамических наблюдений следует, что при синтезе высших углеводородов предпочтительны низкая температура реакции и повышенное давление. Метан является наиболее вероятным равновесным продуктом синтеза. Однако регулированием кинетики процесса и подбором соответствующей "селективности может быть обеспечено любое желаемое распределение компонентов в продукте. Как правило распределение продуктов, наблюдаемое в реальном процессе синтеза, существенно отличается от распределения, которое соответствует термодинамическому равновесию. Например, прямозвенные нормальные парафины и а-олефины представляют широкую фракцию в получаемых углеводородах. Образуются только некоторые изопарафины и, возможно, нециклические или неароматические вещества. Преимущественно гидрируется оксид углерода благодаря его сильному взаимодействию с поверхностью, а СОг реагирует только после того, как большая часть оксида углерода будет удалена. [c.256]

    Реакция окисления тетралина относится к цепным реакциям окисления углеводородов с вырожденным разветвлением цепи [13]. Ранее были сделаны попытки математического описания окисле -ния углеводородов [9]. Однако такие описания, во-первых, не отражают реальную картину кинетических связей при каталитическом окислении, не учитывают влияния многих факторов, как например, ингибирования продуктами реакции, влияния катализатора на селективность процесса, кинетики взаимодействия фаз и [c.96]

    Заканчивая рассмотрение вопроса о кинетических закономерностях окисления углеводородов, следует подчеркнуть, что, вероятно, повышение селективности процесса невозможно без изменения химических и электронных свойств поверхности катализаторов. Устранение побочных процессов и доокисления образующихся кислородсодержащих продуктов может несколько повысить селективность, но только до определенного предела. Дальнейшее же увеличение селективности связано с характером образующихся на новерхности активных перекисных радикалов и направлением их превращений. Кинетика реакции окисления различных углеводородов относительно проста, и в уравнения скоростей входят концеитрации реагирующих веществ в нулевой или первой степени только в редких случаях наблюдаются дробные показатели. Однако изучение адсорбции углеводородов на различных окислительных катализаторах показало, что поверхность этих контактов неоднородна и характеризуется эксионенциальной функцией распределения по теплотам сорбции. Вероятно, хорошее соответствие теоретически выведенных уравнений (с использованием изотерм Лэнгмюра, справедливых только для однородных поверхностей) и опытных данных указывает, что, хотя процессы протекают в действительности на неоднородных поверхностях, для них возможна имитация однородных поверхностей. Возможно также, что некоторые реакции протекают при относительно большом занолнении иоверхности реагирующими компонептами, и тогда также возможна квазиоднородность . Нами не рассматриваются более сло кные случаи протекапия каталитической реакции на неоднородных поверхностях. [c.177]

    Кинетика и селективность реакции иеиолного окисления углеводородов [c.199]

    В более ранних работах [1—6, 9, 11] при изучении влияния химлческого состава синтетических алюмосиликатов с практически одинаковой величиной доступной поверх-, ности на каталитическую активность были получены интересные данные о природе активных центров этих катализаторов. Применяя метод селективного отравления, было показано, что алюмосиликатные катализаторы обладают активными центрами двух видов кислотные центры, обусловленные наличием водорода в алюмосиликатном комплексе, и окисные центры — их активность обусловлена наличием поверхностных гидроксильных гр пп, связанных с алюминием. С первым видом активных центров связаны реакции углеводородов (крекинг, перераспределение водорода, полимеризация, алкилирование и др.), со вторым видом —реакции дегидратации спиртов и эфиров. Подтверждением этих представлений явились исследования К. В. Топчиевой и К- Юн-пина [7, 8, 10, 12—15]. В результате детального изучения кинетики дегидратации спирта и простого эфира на окиси алюминия и алюмосиликатах, а также адсорбции паров метиловогб спирта ими была выдвинута схема дегидратации на этих катализаторах  [c.301]

    Наряду с методами окисления гомологов бензола, предложенными Сергеевым, изучаются также пути прямого окисления углеводородов до тех или иных ценных кислородсодержащих соединений. Так, Хмура, Суворов и Рафиков [318] нашли, что при окислении п-цимола в жидкой фазе в присутствии толуината марганца образуется до 26,3% п-ацетилтЬлуола и столько же п-толуиловой кислоты. Обнаружены также в продуктах окисления терефталевая кислота и ацетон. Очевидно, при соответствующих знаниях кинетики и механизма реакции в дальнейшем можно процесс направлять более селективно, т. е. получать один и.ч целевых продуктов с лучшими выходами. Аналогичную работу выполнили позже Соломин, Суворов и Рафиков [319], окислявшие этйлбензол на ванадате олова в паровой фазе. В этом же направлении проведено несколько работ по окислению а,(о-дифени-лированных парафинов Эвентовой, Чистяковой и сотрудниками [320, 321]. [c.362]

    Все катализаторы крекинга подвержены деактивации, происходящей тем быстрее, чем выше активность катализатора. Потеря активности сопровождается превращениями, которые не рассматриваются в классической кинетике и катализе. Эти превращения хорошо описываются теорией ВПП с ее помощью удалось объяснить особенности каталитического крекинга, за исключением различий в селективности, при использовании экспериментальных реакторов с неподвижным слоем катализатора и промышленных аппаратов с движущимся или псевдоожиженным слоем. Теория ВПП позволяет установить схему первичных реакций при крекинге индивидуальных углеводородов, а также оцепить поведение свежего незакоксованного катализатора в начальной стадии процесса. Это открывает возможность дл изучения природы активных центров кинетическими методами. [c.116]

    Во всех рассмотренных выше работах гидрогенолиз тиофена изучался на его растворах в ароматических или предельных углеводородах. В связи с тем, что для практики нефтепереработки имеет немаловажное значение вопрос о гидроочистке продуктов крекинга, заслуживает внимания исследование Хаммер [22], в известной мере являющееся теоретическим обоснованием возможности такого процесса. Хаммер изучал кинетику одновре-мепного гидрирования тиофена и олефиновых углеводородов в присутствии кобальто-молибденового катализатора. В качестве исходного сырья был выбран сланцевый бензин, содержащий 1% тиофена, 0,14% сульфидов, следы меркаптанов и 41% олефиновых углеводородов (рис. 17, табл. 38). На основании проведенных опытов авторы пришли к выводу, что реакции гидрирования олефиновых углеводородов и тиофена протекают па различных участках поверхности катализатора, а их скорости описываются различными уравнениями. Этот вывод интересен в том отношении, что он теоретически обосновывает возможность селективного гидрообессеривания таких нефтепродуктов, как крекинг-бензины. Предварительные опыты, проведенные при температурах 275— 550° С и давлении 15 ат показали, что нри гидрировании тиофена на данном катализаторе, кроме следов меркаптанов, никаких промежуточных сераорганических соединений не образуется. Поэтому авторы допустили, что гидрирование тиофена идет но предло /кенному Молдавским и Прокопчуком механизму (см. [c.63]

    В работе [32] подробно исследовалась кинетика дегидрирования смеси МЭЭ и ТМЭ (соотношение 1 3) над алюмохромокалиевым катализатором состава А12О3 88,7, СГ2О3 8,1, К2О 3,2 вес.% при парциальном давлении углеводородов 95 мм рт. ст., что практически достигалось разбавлением сырья азотом в мольном отношении 1 7. Катализатор (удельная поверхность 271 м г, удельный объем пор 0,31 мл/г, средний радиус пор 23 А, размер зерна 2x2 мм) был помещен в изотермический кварцевый реактор диаметром 10 мм. Результаты, подученные при температурах 675, 600 и 625 °С, поме щепы в табл. 19. Конверсия изоамиленов за проход при 625 °С достигает 55% при селективности 83%. Оптимальными условиями, по мнению авторов рассматриваемой работы, является применение более коротких циклов (10—15 мин) при увеличенной скорости подачи (5—10 ч" ). В этих условиях при приемлемой производительности катализатора выход изопрена на превращенные изоамилены составляет 86—88%. Вычисленная по приведенным данным величина энергии активации процесса равна 18,4 ккал/моль при температурном коэффициенте 1,12—1,14. Экспериментально показано, что продукты реакции — водород и изопрен — тормозят процесс дегидрирования. [c.119]

    При окислении антрацен-фенантреиовой фракции на сложном ванадий-калий-сульфатном катализаторе повышается селективность по антрахиноиу, фталевому и малеиновому ангидридам и почти вдвое увеличивается производительность процесса по сравнению с окислением индивидуальных углеводородов [51]- Изучение кинетики окисления отдельных компонентов и смесей антрацена с фенантреном проточно-циркуляционным методом показало [51], что фенантрен не влияет на превращения антрацена, зато антрацен сильно тормозит частные реакции окисления фенантрена в 9,10-фенантренхинон, флуоренон и фталевый ангидрид (считается, что эти соединения образуются из исходного вещества независимыми путями). Порядок суммарной реакции по кислороду одинаков как при раздельном, так и при совместном окислении углеводородов. [c.23]

    Гидроизомеризация углеводородов g. Результаты [70, 78-80] исследований механизма и кинетики изомеризации пентана, гексана и циклогексана на мордените типа PdH показали, что изомеризация может протекать в соответствии с механизмом двухцентровой адсорбции [78-80]. Однако хотя этот механизм и передает физическую картину явления, он, в первую очередь, представляет собой набор математических уравнений [80]. Н-Морденит проявляет высокую гидроизомеризующую активность [70]. При добавлении палладия активность становится более стабильной, а селективность значительно увеличивается. Исходя из этих результатов, в работе [c.132]

    В дальнейшем Б. А. Казанский, О. В. Брагин, А. Л. Либерман, Т. Г. Олферьева и другие показали, что гидрогенолиз циклопентанов происходит и на Ir-, Rh-, Os-, Ru-катализаторах при этом образуется также заметное количество низкомолекулярных алканов. Одновременно на этих катализаторах был обнаружен гидрогенолиз парафиновых и циклогексановых углеводородов. Все эти данные, а также исследование кинетики и селективности реакции позволили заключить, что на указанных выше металлах, Б отличие от платины, гидрогенолиз циклопентанов проходит по реберной дублетной схеме. [c.9]

    Позднее совместно с Булановой [4] была изучена кинетика этой реакции, причем оказалось, что она шла совершешю селективно из циклопентана образовался только н-пентаи без каких-либо продуктов дальнейшего гидрогенолиза последнего. Энергия активации этой реакции на платине оказалась равной 35 ккал/моль. Гидрогенолиз циклопентана идет также и на никеле, но с образованием парафинов, содержащих меньше пяти атомов углерода в молекуле [5] в присутствии палладия реакция не идет почти совсем [6]. Под повышенным давлением водорода (20—50 атм) реакция в присутствии платины и никеля идет значительно медленнее, чем при атмосферном давлении, и требует более высоких температур 17]. Очевидно, водород способен блокировать поверхность катализатора и делать ее менее доступной для гидрируемого углеводорода. [c.29]

    Однако, несмотря на обширные исследоваш1Я, проведенные в области изучения гидрогенолиза сераорганических соединений, до сих нор недостаточно изучены механизмы гидрогенолиза сераорган11ческих соединений и действия катализатора гидроочистки нет достаточно ясного представления о механизме и кинетике селективного гидрирования сераорганических соединений в присутствии олефиновых углеводородов. [c.303]

    Первые же опыты показали необычайную устойчивость в этих условиях н. гептана, который в паровой фазе окисляется легче и ири более низкой температуре, чем ароматические и циклановые углеводороды с тем же числом углеродных атомов [14]. Применение окислительных катализаторов (органические соли марганца, хромовый ангидрид и др.) не дало эффекта. Облучение ультрафиолетовым светом, успешно использованное нами при получении перекисей трудно-окисляющихся алканов изостроения и цикланов, также весьма мало ускорило процесс. При этом концентрация перекисей в реакционной смеси сначала медленно возрастала и, достигнув через 150 час. 0,5—0,6%, оставалась почти постоянной ири дальнейшем окислении (в точение 400 и более часов). Эта особенность кинетики окисления гептана, зависящая, повидимому, от тормозящего действия продуктов частичного распада перекиси (результат длительности опыта 0]<ислепия), а также трудности извлечения перекиси из нродуктов реакции при столь малой ее концентрации и присутствии примесей (разгонкой разделить эту смесь не удалось), 1 райне осложнили выделение ее в чистом виде в количестве, достаточном для исследования. Тем ие менее, использовав установленную нами способность перекиси гептана селективно поглощаться водным раствором щелочи, удалось извлечь ее из окисленного углеводорода, накопить некоторое количество и, после заключител1.1юй вакуумной разгонки, получить в общей сложности около 4,5 г чистой перокиси н. гептана. [c.125]

    Кинетика процесса гидроочистки зависит от молекулярного веса и типа сернистых соединений, содержащихся в сырье. Легче всего удаляются сернистые соединения из прялгогонных бензино-керосиновых фракций, селективная очистка которых проходит с большими скоростями. Труднее очищаются от серы дизельные фракции, особенно фракции это-, ричного происхождения, содержащие тиофоновую серу [29]. Одновременно с основными реакциями гидрирования сернистых и насыщения непредельных соединений нрп гидроочистке протекают также сопутствующие реак-. ции, к которым относятся гидрокрекинг, изомеризация алкановых и нафтеновых углеводородов, гидрирование ароматических углеводородов в нафтены, что проявляется в повышении цетапового числа продукта, п другие. [c.35]

    Характер влияния состава реакционной смеси на селективность каталитического процесса определяется кинетикой происходящих реакций. Повышение содержания углеводорода и снижение содержания киспорода в газовой смеси обычно способствуют улучшению селективности процесса парциального окисления. По этой же причине часто селективность окислительного процесса может быть улучшена путем ступенчатого, ПОСЛОЙНОХЧ5 ввода киспорода в реактор, что имеет место в процессах окислительного дегидрирования олефинов и алкиларома-тических углеводородов. [c.27]


Смотреть страницы где упоминается термин Углеводороды селективность и кинетика: [c.31]    [c.151]    [c.248]    [c.147]    [c.54]    [c.73]    [c.248]    [c.67]    [c.10]    [c.122]    [c.51]   
Гетерогенный катализ (1969) -- [ c.344 , c.345 ]




ПОИСК







© 2024 chem21.info Реклама на сайте