Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сульфирование каталитическое

    Эта реакция, обратная сульфированию, обычно проходит легко и с хорошим выходом особенно в присутствии минеральной кислоты (серной, фосфорной, хлористоводородной, бромистоводородной), каталитически ускоряющей реакцию. [c.522]

    Изомеризации олефинов посвящено огромное число работ, вероятно, большее, чем какой-либо другой реакции. Это объясняется тем, что изомеризация является эффективной модельной реакцией для изучения механизма теплового, фото- и радиационнохимического воздействия на вещество. Она активируется огромным числом гомогенных и гетерогенных катализаторов, поэтому на ее примере удобно изучать механизм катализа и кинетические закономерности химических процессов. Наконец, эта реакция оказывается целевой или сопутствующей во многих технических процессах изомеризации олефинов и парафинов, окислении олефинов, их полимеризации и др. В таких процессах, как сорбционное выделение олефинов, каталитический крекинг, гидроформилирование, алкилирование, сульфирование и др., она существенно влияет на выход и свойства продуктов, и возникает необходимость как ее подавления, так и активирования. [c.5]


    Некоторые процессы имеют исключительно качественное значение, например различные формы очистки нефтепродуктов, синтез присадок и катализаторов, каталитический крекинг легких дистиллятов, пиролиз нефтяных фракций, ароматизация, обессеривание, окисление, сульфирование нефтепродуктов и т. п., которые, как правило, в конечном итоге снижают глубину отбора товарной продукции. [c.102]

    Специфика реакций сульфирования и фосфорилирования сополимеров состоит в локализации реакционной зоны в области границы раздела твердых фаз исходного вещества (сополимера) и готового продукта (ионита). Такая локализация обусловлена повышенной реакционной способностью твердого реагента в области реакционной зоны. Физические причины этого явления связаны с различными факторами, в частности с анизотропией свойств твердых фаз, каталитическим действием твердого реагента и т. п. [c.333]

    Каталитическое окисление, как правило, осуществляют при абсолютных давлениях 1,2—1,5 атм. Повышение давления благоприятно и с кинетической, и с термодинамической точек зрения. Однако технические и экономические трудности строительства установок повышенного давления и управления ими столь велики, что до настоящего времени построена лишь одна крупная установка такого типа [1]. Несколько небольших каталитических установок для получения газообразного ЗОз, используемого для сульфирования и в других целях, работало при давлениях 4—5 атм и выше. [c.240]

    Большой ряд соединений оказывает каталитическое действие на реакцию сульфирования бензолсульфокислоты. В условиях, при которых 100%-ная серная кислота без катализатора дает лишь [c.13]

    В одной работе указывается [242], что иод оказывает каталитическое действие на реакцию сульфирования бензойной кислоты, но другие исследователи [243] доказали ошибочность этого вывода — продукт, полученный с олеумом или с серной кислотой в присутствии иода и без него, оказался одним и тем же. Путем иревращения в фенолсульфофталеин установлено, что в продукте реакции содержалось небольшое количество орто-изомера. 1 [c.39]

    Механизм этого типа рассматривался выше при разборе каталитического действия ртути на другие реакции сульфирования. [c.117]

    Однако впоследствии доказано [788], что такая перегруппировка не имеет места при 180°, т. е. при более высокой температуре, чем та, при которой из антрахинона образуется 2-сульфокислота, Если же нагреть 1-сульфокислоту с 80—90%-пой серной кислотой [789] выше 200° в присутствии сульфата ртути, то некоторое количество 2-сульфокислоты действительно образуется, но, повидимому, в результате регенерации антрахинона из 1-сульфокислоты и последующего вторичного сульфирования. Сл льфат ртути оказывает каталитическое действие на реакцию сульфирования только в присутствии серного ангидрида, но связано ли это каталитическое действие с ускорением процесса гидролиза, пока не вполне ясно.  [c.119]


    Основные работы по химическому использованию различных продуктов каталитического гидрирования окиси углерода, проведенные в Германии, были обусловлены нехваткой определенных видов сырья в военное время. Например, вследствие дефицита натуральных жиров три фракции продуктов каталитического гидрирования окиси углерода перерабатывали в различного рода заменители. Фракцию дизельного топлива (насыщенные Сю—С а-углеводороды) использовали для получения синтетических моющих веществ с помощью сульфохлорирования (гл. 6, стр. 98) или хлорирования, за которым следовали конденсация с бензолом и сульфирование (гл. 5, стр. 87). Твердый синтетический парафин окисляли в высшие жирные кислоты, необходимые для производства различных сортов мыла (гл. 4, стр. 74). Из синтетического парафина можно получить жирные кислоты с большим молекулярным весом, чем у кислот, производимых окислением нефтяного парафина. Олефины с 10—18 атомами углерода превращали с помощью каталитической гидроконденсации с окисью углерода и водородом (оксо-синтез) в альдегиды и первичные спирты (гл. 11,стр. 195). Последние затем переводили обработкой серной кислотой в первичные алкилсуль-фаты с длинной цепью углеродных атомов. Пропилен и бутилены гидратировали в соответствующие спирты, которые затем дегидрировали в кетоны (гл. 8, стр. 149, и гл. 17, стр. 314 и 329). Из других областей применения продуктов каталитического гидрирования окиси углерода в Германии следует назвать производство синтетических смазочных масел, описание которого выходит за пределы данной книги. [c.63]

    На направление реакции влияют также катализаторы, особенно соли Hg +. При сульфировании антрахинона в присутствии каталитических количеств Н 804 сульфогруппа вступает в а-положение, а в отсутствие катализатора — в -положение. [c.366]

    Несомненно, большой оныт, накопившийся в нефтеперерабатывающей промышленности США в области производства компонентов высокооктановых бензинов, и наличие необходимого углеводородного сырья позволили быстро организовать и развить производство тетрамеров пропилена и использовать бензол риформинг-бензина для получения додецилбензола методом каталитического алкилирования. Процесс сульфирования додецилбензолов также был быстро разработан на основе богатого опыта сернокислотной очистки и сульфирования нефтепродуктов. [c.396]

    Наиболее давно известно каталитическое влияние, оказываемое на реакцию сульфирования ртутью и ртутными солями, которые не только увеличивают скорость реакции, но и определяют направление замещения вследствие промежуточного образования мета лло органических соединений [ 139 ]. Так, без катализ агора нз [c.569]

    Метаниловую кислоту получают восстановлением л1-нитробензол-сульфокислоты, действием хлористого олова в присутствии соляной кислоты электролитическим восстановлением , каталитическим восстановлением под давлением (см. работу 199, стр. 534) или непосредственным аминированием и сульфированием бензола (см. работу 61, стр. 284). [c.261]

    Влияние катализаторов на течение реакции сульфирования. Сульфирование в присутствии ртути. М. А. Ильинский в 1891 г. открыл, что ртуть оказывает каталитическое действие при сульфировании антрахинона. [c.103]

    Продукт сульфирования толуола (1 моль серной кислоты) подвергли каталитическому монохлорированию. Что при этом получится  [c.140]

    Некоторые установки работали на отработанной (от процесса алкилирования) 80-85%-ной серной кислоте, что удешевляло производство НЧК и способствовало экономии свежей серной кислоты. В качестве сырья для сульфирования некоторые заводы использовали также газойль каталитического крекинга (рис.1.). [c.18]

    В настоящее время сульфирование газообразным 50з применяется при получении контакта Петровя сульфированием керосиновых и газойлевых дистиллятов, а также синтетического моющего вещества ДС-РАС (детергент советский, рафинированные алкиларилсульфонаты). ДС-РАС получается сульфированием каталитического газойля, содержащего 40—48% ароматических углеводородов, 4—5% непредельных, 12—14% нафтеновых и 35—42% парафиновых углеводородов. Сульфокислоты [c.299]

    В настоящей главе рассматриваются то химические свойства парафинов и циклопарафинов, которые пс вошли в предыдущие главы. В фи-зиологич( ском отношении парафины и циклопарафины, как правило, инертны и не оказывают раздражающего действия. Циклопропан применялся как анестезирующее вещество, концентрация же пропана, необходимая для оказания анестезирующего действия, слишком велика, чтобы его можно было использовать [9]. У рабочих, имеющих дело с парафином в процессе его получения, иногда развивается определенная форма рака, которая рассматривалась как профессиональное заболевание, одпако в настоящее время известно, что прямогонные и особенно крекинговые смазочные масла содержат небольшие количества веществ, которые раздражают кожу и являются канцерогенными [3]. Это справедливо также и в отношении высококипящих масел, получающихся в качестве побочного, продукта при каталитическом крекинге. Канцерогенное действие приписывается некоторым ароматическим углеводородам, содержащимся в этих маслах [23а]. Мягкий парафин, плавящийся приблизительно около 45°, широко применяется как защитное покрытие при лечении тяжелых ожогов [81]. На отсутствие токсического и раздражающего действия тщательно очищенного американского белого медицинского масла указывает широкое применение его в качестве механического слабительного средства. При производстве белого медицинского масла содержащие ароматические кольца углеводороды удаляются путем сульфирования крепкой дымящей серной кислотой. Непредельность таких масел также практически равна нулю (йодные числа, определенные по методу Хэнаса, меньше 1,0). [c.88]


    Серная кислота как реагент для очистки нефтяных фракций применялась непрерывно с 1852 г, В этом процессе образуются органические сульфонаты они были выделены, но получили промышленное нрименение лишь спустя много лет благодаря двум обстоятельствам. Во-первых, пробудился интерес к возможности полезного применения органических сульфонатов вообш,о, а затем введение в употребление сульфированного касторового масла ( турецкое красное масло ) в тек стильной промышленности в 1875 г. и открытое Твитчелом в 1900 г. каталитическое действие сульфокислот нри гидролизе ншров с образованием жирных кислот и глицерина. Во-вторых, развитие в России производства минеральных белых масел, потребовавшего применения более жесткой кислотной обработки, чем практиковавшаяся до тех пор для легкой очистки естественно, что при этом получились большие количества сульфонатов как побочных продуктов сульфирования. Вскоре было выяснено, что эти сульфокислоты бывают главным образом двух типов растворимые в масле ( красные кислоты ) и не растворимые в масле или растворимые в воде ( зеленые кислоты ). Несколько лет спустя эти продукты начали находить промышленное нрименение как реагенты Твитчелла и как ингредиенты в композициях в процессах обработки кожи и эмульсируемых ( растворимых ) масел. Оба направления продолжали развиваться так быстро, что к началу второй мировой войны спрос на эти продукты, получавшиеся в качестве побочных продуктов, начал превосходить предложение их. Это особенно справедливо в отношенип растворимого в масле типа сульфонатов, применяемых в эмульсионных маслах, в металлообрабатывающей промышленности, в противокоррозийных композициях и как добавки к смазкам для быстроходных двигателей. [c.535]

    Для сопоставления с приводимыми в качестве примера каталитическими реакциями перечислим некоторые важные органические соединения, которые получаются без применения катализаторов уксусная и другие кислоты, синтезируемые окислением углеводородов ацетилен, этилен и другие олефины, получаемые термическим крекингом хлоропарафины, этаноламины, нитропарафины окись этилена и пропилена, синтезируемые хлоргидри-новым методом фенол, получаемый сульфированием и из монохлорбензола мочевина.  [c.324]

    Катионообменные смолы (катиониты)—гетерополикислоты, состоящие из высокомолекулярной матрицы и катионогенных групп (чаще всего 50зН, СООН, РО3Н2, АзОзНг) и обладающие каталитическими свойствами [17]. Основой в большинстве случаев является полистирольная матрица, которую получают суспензионной полимеризацией с последующим сульфированием серной кислотой (в случае присутствия сульфокислотной группы). В зависимости от условий образуются гелеобразные либо макропористые полимеры, а при использовании полистирола с полипропиленом — формующиеся катализаторы. Наряду с поли-стирольной основой применяют и другие, например, силоксано-вые и фторопластовые. Активность катализатора определяется как свойствами полимерной основы, степенью сульфирования, так и размерами зерна катализатора, степенью его пористости, термической стабильностью и кислотностью.  [c.26]

    Однофазный Двухфазный Гомогенная газовая Гомогенная жидкая Жидкость — жидкость Газ — жидкость Газ —твердый катализатор Стационарный Термический крекинг, внсбрекииг, пиролиз Гидролиз, процессы конденсации Алкнлироваипе, диокса-новый Синтез Окисление, сульфирование, гидроформилиро-вание Гидроочистка, каталитический риформинг [c.100]

    Однако проблема выделения чистого мезитилена из реальных промышленных смесей, содержащих значительные количества о-этилтолуола, до сих пор не имеет удовлетворительного решения (недостатки метода сульфирования были отмечены ранее). Процесс кристаллизации связан с применением низких (до —70°С) температур и характеризуется невысоким выходом мезитилена. Окислительная и дегидрогенизациоиная очистка не обеспечивает глубокого удаления этилтолуолов. Способ гидрирования — дегидрирования сложен в аппаратурном и.технологическом оформлении. Клатрация дает очень невысокий выход продукта при большом числе ступеней разделения. Определенный интерес могут представить методы каталитической очистки мезитиленовых фракций с применением хлористого алюминия, характеризующиеся отсутствием отработанной серной кислоты и достаточно высокой степенью чистоты получаемого продукта. Но они не лишены недостатков, связанных с коррозией оборудования, образованием сточных вод и пр. Большинство описанных предложений находится в стадии исследований или технологической проработки и не получило промышленного применения. [c.272]

    Как показано в работах [10, 27], скорость превращения тио-нафтеиа возрастает в ряду процессов сульфирование— -алкилирование— -конденсация. И в таком же цррядке уменьшаются относительные потери нафталина. В двух последних процессах необходимо проводить очистку в две стадии на первой нафталин обрабатывать серной кислотой, а на второй —в реакционную смесь вводить алкилирующее непредельное соединение либо формалин (при ином порядке введения реагентов скорость процесса значительно меньше). Вероятно [10, 27], катализаторами обоих процессов. являются не столько се рная кислота, сколько нафталин-сульфокислоты, т. е. их можно рассматривать как сочетание сернокислотной очистки, протекающей с образованием нафталинсульфокислот, и алкилирования либо конденсации при каталитическом действии сульфокислот. Дело, очевидно, не в изменении механизма процесса, а в том, что нафталинсульфокислоты лучше серной кислоты растворимы в нафталине, и скорость процесса увеличивается из-за повышения концентрации катализатора в реакционной массе. [c.290]

    Алканы нефти достаточно инертны ко многим химическим реагентам. Однако найдены условия, при которых они вступают в различные химические реакции. Промышленное значение имеют следующие реакции алканов газо- и жндкофазное окисление, каталитическая изомеризация, сульфирование, сульфоокис-ление. [c.27]

    При исследовании каталитического действия различных сульфатов и окислов на скорость сульфирования бензола 70%-ной кислотой при 242—260° [17] найдено, что самым активным катализатором является смесь сульфата натрия и пятиокиси ванадия. Бензол и другие углеводороды количественно сульфируются при комнатной температуре избытком серной кислоты в присутствии сухой инфузорной земли или животного угля [18]. Бензолсульфо-кислЬта вместе с другими продуктами реакции образуется при действии иода и серной кислоты на бензол при 170—180°, а также при нагревании серной кислоты с иодбензолом [19]. Гладкое превращение дифенилртути в ртутную соль бензолсульфокислоты под действием серного ангидрида [20] может дать некоторые указания на механизм каталитического влияния солей ртути на некоторые [c.11]

    В общем случае алкилирование фенола олефинами (полимер-дистиллятом или бутан-бутиленовой фракцией) осуществляется в несколько стадий. На первой стадии образуется смесь алкилфенола, побочны.х продуктов реакции и непрореагировавших веществ обрабатывая эту смесь, получают сырой алкилфенол. В дальнейшем из него удаляют (регенерируют) катализатор и отгоняют непрореагировавший фенол, олефины и низкомолекулярные алкилфенолы. Качество и выход алкилфенола зависят от состава сырья и типа используамого катализатора. Широко используемым в промышленности катализатором алкилирования, обеспечивающим непрерывность процесса, является катионообменная смола КУ-2. Она представляет собой сульфированный сополимер стирола и дивинилбензола и обладает высокой каталитической активностью и селективностью. Прн ее использовании получается алкилат высокого качества и исключается стадия водной промывки катализатора для удаления алкилата, сопровождающаяся образованием фенолсодержащих сточпых вод. [c.315]

    Отщепление сульфогрупп от ароматических субстратов представляет собой процесс, обратный реакции 11-7 [411]. Согласно принципу микроскопической обратимости, механизм здесь тоже обратный. Обычно применяют разбавленную серную кислоту, так как при увеличении концентрации Н2804 обратимость сульфирования снижается. Эта реакция позволяет использовать сульфогруппу как блокирующую для ориентации замещения в жета-положение с последующим снятием блокировки. Сульфо-группа замещается также на нитрогруппу и галогены. Удаление сульфогрупп проводилось также и при нагревании со щелочным раствором никеля Ренея [412]. В другом каталитическом процессе сульфобромиды или сульфохлориды превращают соответственно в арилбромиды или арилхлориды при нагревании с хлоротрис(трифенилфосфин)родием (I) [413]. Эта реакция аналогична декарбонилировапию ароматических ацилгалогенидов, которое будет обсуждено при рассмотрении в т. 3 реакции 14-40, [c.387]

    Влияние катализатора. Вопрос о значении катализаторов в процессе сульфирования изучен недостаточно. Между тем их роль в целенаправленном синтезе сульфопроизводных несомненна. Еще в 1891 г. М. А. Ильинский установил каталитическое действие солей ртути, которые влияют не только на скорость, но и на место вхождения сульфогруппы в молекулу антрахинона. Сульфирование антрахинона в присутствии ионов ртути приводит к а-антра-хино.нсульфокислоте, а без катализатора — к р-изомеру  [c.125]

    Давно известно каталитическое влияние ртути или ее солей при сульфировании ароматических соединений. Однако первые опыты по изучению влияния ртутных солей при нитровании не даЛи положительных результатов. Но уже в 1913 г. Воль-фенштейн и Бетерс [16] нитрованием бензола разбавленной [c.9]

    Реагент ДС-РАС — детергент рафинированный алкил-арилсульфат, смесь алкиларилсульфокислот натрия с 8—12 атомами углерода, полученная при нейтрализации продуктов сульфирования газообразным серным ангидридом керосина прямой гонки (фракции 165—300 °С) или легкого газойля каталитического крекинга, богатого ароматикой (фракция 200—300 °С). [c.34]

    Помимо перечисленных факторов, активность каталитического комплекса зависит также от энергии связи А1—С. Различную реакционную способность связей Л1—С в алюминийтриалкилах наблюдал Гавриленко при последовательном карбоксилировании, галогенировании, сульфировании и селенировании алюминийтриалкилов [c.66]

    Аналогично, другой традиционно используемый катализатор - серная кислота -проявляет каталитические свойства как комплексно-связанное соединение, например на сульфатах металлов [109, 110], так и в виде ковалентно присоединенных к матрице сульфогрупп, т.е. полимерных сульфокислот [114-117]. В обоих случаях чем больше количество связанной кислоты (80зН-групп) и чем сильнее ее связь с матрицей, тем выше кислотно-каталитическая активность. Обпще представления о характере действия таких катализаторов можно проиллюстрировать на примере сульфированных сополимеров стирола с дивинилбензолом. Как и для любой твердой матрицы, и в этом случае существенную роль играет проницаемость полимерной сетки, определяемая степенью сшивки, набухаемостью, размером гранул, а также другими факторами. Химическая сторона каталитического действия сульфока-тионитов связана с наличием сетки водородных связей, кооперативных эффектов и формированием ассоциатов - центров повышенной локальной концентрации кислотных групп [182,183]. Наличие остаточной воды обеспечивает необходимую подвижность протонов, динамический характер сетки и наблюдаемое в эксперименте соотношение активности и селективности действия. Встраивание субстрата в сетку предпочтительнее, чем простое взаимодействие его с поверхностью [184-186]. Учитывая низкую полярность олефинов, например изобутилена, можно предположить электрофильные превращения его в присутствии сульфокислот через промежуточное образование спирта и последующее встраивание в сетку матрицы. Ниже приведены возможные структурные элементы полимерных сульфокислот  [c.57]

    Кобальт (никель) и молибден (вольфрам) образуют между собой сложные объемные и поверхностные соединения типа молибдатов (вольфраматов) кобальта (никеля), которые при сульфировании формируют каталитически активные структуры сульфидного типа Со МоВу (М1, Мо8у, Со, 8у, ). Возможно также образование [c.569]


Смотреть страницы где упоминается термин Сульфирование каталитическое: [c.111]    [c.133]    [c.179]    [c.116]    [c.78]    [c.140]    [c.142]    [c.12]    [c.41]    [c.139]    [c.715]    [c.60]   
Препаративная органическая химия (1959) -- [ c.243 , c.246 ]

Препаративная органическая химия (1959) -- [ c.243 , c.246 ]

Общая химическая технология органических веществ (1955) -- [ c.216 ]




ПОИСК







© 2025 chem21.info Реклама на сайте