Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дыхательная окислительно-восстановительные

    Окислительно-восстановительные потенциалы каждого переносчика увеличиваются по мере приближения к кислороду, так что электроны, отщепленные от субстратов соответствующими дегидрогеназами, переносятся к кислороду термодинамически самопроизвольно. Внутренняя мембрана митохондрий содержит полную дыхательную цепь с двумя дегидрогеназами (сукцината и НАДН). Известно несколько специфических ингибиторов переноса электронов. [c.435]


    Дыхательная цепь. Последовательность обратимых окислительно-восстановительных реакций, приводящая к восстановлению молекулярного кислорода. Электроны для восстановления поступают из цикла лимонной кислоты. Эпергия, которая освобождается при функционировании дыхательной цепи, идет на синтез АТФ. Дыхательная цепь будет рассмотрена подробно в гл. 23. [c.194]

    Биологическая функция убихинонов в окислительно-восстановительных реакциях зависит от обратимого восстановления соответствующего гидрохинона. В случае, если восстанавливающий агент является одноэлектронным донором, реакция представляет собой двухстадийный процесс, включающий образование промежуточного радикала схема (28) . Именно таково участие убихинонов в процессе переноса электронов в дыхательной цепи. Убихиноны, согласно общепринятому мнению, являются проме- [c.598]

    Обмен веществ в живых организмах в качестве одной из важнейших составляющих включает дыхательные процессы, которые базируются на обратимых окислительно-восстановительных превращениях комплексов Ре, Со с порфиринами. [c.290]

    Организация и функционирование дыхательной цепи. В клетках эукариот дыхательная цепь расположена во внутренней мембране митохондрий, у дышащих бактерий —в цитоплазматической мембране и специализированных структурах —мезосомах, или тилакоидах. Компоненты дыхательной цепи митохондрий в порядке убывания окислительно-восстановительного потенциала можно расположить, как показано в табл. 9.1. [c.309]

Таблица 9.1. Окислительно-восстановительный потенциал компонентов дыхательной цепи в стандартных условиях (концентрация компонентов 1М, pH 7,25°С) Таблица 9.1. <a href="/info/159316">Окислительно-восстановительный потенциал</a> <a href="/info/1402767">компонентов дыхательной цепи</a> в <a href="/info/4959">стандартных условиях</a> (концентрация компонентов 1М, pH 7,25°С)
    Дополнительным участником дыхательной цепи является железосерный белок FeS (негемовое железо). Он участвует в окислительно-восстановительном процессе, протекающем по одноэлектронному типу. Первый участок локализации FeS находится между ФМП и KoQ, второй - между цитохромами Ь и с . Это соответствует тому факту, что со стадии ФМП путь протонов и электронов разделяется первые накапливаются в митохондриальном матриксе, а вторые идут на гидрофобные переносчики - KoQ и цитохромы. [c.310]


    Движение клеток и организмов, выполнение ими механической работы например, мышечной) производятся особыми сократительными белками, служащими рабочими веществами этих процессов. Сократительные белки выполняют ферментативную, АТФ-азную функцию, реализуют превращение химической энергии (запасенной в АТФ, с. 40) в механическую работу. Зарядка аккумулятора , т. е. окислительное фосфорилирование, происходит в мембранах митохондрий при непременном участии ферментов дыхательной цепи. Окислительно-восстановительные ферментативные процессы происходят и при фотосинтезе. Другие мембранные белки ответственны за активный транспорт молекул и ионов сквозь мембраны и, тем самым, за генерацию и распространение нервного импульса. Белки определяют все метаболические и биоэнергетические процессы. [c.87]

    Рибофлавин, связанный с фосфорной кислотой, входит в состав ферментов, обычно называемых флавиновыми ферментами. Желтый рибофлавин сообщает желтую окраску флавиновым ферментам, входящим в группу аэробных дегидрогеназ. Таким образом, витамин Ва участвует в окислительно-восстановительных процессах. При восстановлении витамин Ва (желтый цвет) переходит в лейкоформу (бесцветный). Рибофлавин встречается в виде флавинмононуклеотида (ФМН) и флавинадениндинуклеотида (ФАД), а также в связанном с белками состоянии, образуя качественно новые системы — желтые дыхательные ферменты. Нейтральный водный раствор рибофлавина обладает желто-зеленой флуоресценцией. При подкислении или при подщелачивании флуоресценция рибофлавина уменьшается и исчезает. В щелочной среде витамин Ва разрушается, в кислой среде он устойчив. [c.141]

    Окисление происходит в результате переноса электронов через локализованную в мембране дыхательную электронтранспортную цепь, состоящую из набора переносчиков, и приводит в большинстве случаев к восстановлению молекулярного кислорода до Н2О. Таким образом, в процессе дыхания молекулы одних веществ окисляются, других — восстанавливаются, т. е. окислительно-восстановительные процессы в этом случае всегда межмолекулярны. [c.96]

    Таким образом, дыхательная цепь переноса электронов в митохондриях состоит из большого числа промежуточных переносчиков, осуществляющих электронный транспорт с органических субстратов на О2. Последовательность их расположения, представленная на рис. 94, подтверждается различного рода данными значениями окислительно-восстановительных потенциалов переносчиков, ингибиторным анализом. [c.364]

    Вместо О2 некоторые эубактерии могут в качестве конечного акцептора электронов использовать ряд окисленных органических или неорганических соединений (табл. 29). Этот процесс получил название анаэробного дыхания. Освобождаемая энергия и состав переносчиков определяются окислительно-восстановительными потенциалами акцепторов электронов. Анаэробные дыхательные цепи содержат те же типы переносчиков, что и аэробные, но цитохромоксидазы заменены соответствующими редуктазами. Иные, нежели О2, акцепторы электронов могут использоваться [c.367]

    Используемые в качестве доноров электронов неорганические соединения различаются окислительно-восстановительными потенциалами. Это определяет место включения в дыхательную цепь электронов окисляемого субстрата. При окислении Н2 водородными бактериями электроны с субстрата включаются в [c.368]

    Природа остроумно решила эту проблему ценой дополнительных энергетических затрат в тех случаях, когда место включения электронов с окисляемого субстрата находится ниже энергетического уровня, на котором образуется НАД Н2, работает система обратного переноса электронов, т.е. лифт , поднимающий электроны по дыхательной цепочке в сторону более отрицательного потенциала, необходимого для восстановления молекул НАД" . Процесс обратного транспорта электронов требует энергии, и часть молекул АТФ, получаемых за счет окислительного фосфорилирования на конечном этапе дыхательной цепи, тратится для образования восстановителя. Окисление соединений с положительным окислительно-восстановительным потенциалом происходит, таким образом, без участия флавопротеинов и хинонов. Эти переносчики функционируют только в процессе обратного переноса электронов. Следовательно, у таких эубактерий дыхательная цепь работает в двух направлениях осуществляет транспорт электронов для получения энергии в соответствии с термодинамическим потенциалом и перенос электронов против термодинамического потенциала, идущий с затратой энергии, чтобы синтезировать восстановитель (см. рис. 97). [c.370]

    Цепью переноса (транспорта) электронов или дыхательной цепью называется совокупность последовательных окислительно-восстановительных реакций, в ходе которых при участии промежуточных переносчиков электронов происходит их перенос от исходного донора (восстановленный субстрат — 8Н2) к терминальному акцептору электронов кислороду [c.198]


    Направление потока электронов при сопряжении одной окислительно-восстановительной системы с другой определяется их стандартными окислительно-восстановитель -ными потенциалами или редокс-по-тенциалами Е°. Обычно Е° системы сравнивают с потенциалом водорода, принимая последний за 0,0 В при pH 0. Однако для биологических систем обычно используют значение стандартного окислительно-восстановительного потенциала при pH 7,0 (Е° ). Стандартные окислительновосстановительные потенциалы компонентов дыхательной цепи и субстратов приведены в табл. 15.2. [c.198]

    В настоящее время экспериментально определена последовательность расположения переносчиков электронов в дыхательной цепи (рис. 15.4). Следует обратить внимание, что окислительно-восстановительный потенциал переносчиков электронов в этой последовательности постепенно становится все более положительным. Структура и механизм обратимых окислительно-вос-становительных реакций превращения промежуточных переносчиков электронов приведен выше. [c.199]

    Совокупность последовательных окислительно-восстановительных реакций называется цепью переноса (транспорта) электронов, или дыхательной цепью. [c.171]

    В дыхательной цепи цитохромы служат переносчиками электронов и располагаются соответственно величине окислительно-восстановительного потенциала следующим образом Ь, с , с, а, а , Гемо- [c.172]

    Угнетение дыхательных ферментов окисью углерода, азидами, цианидами натолкнуло исследователей на мысль об участии ионов железа в каталитическом эффекте окислительно-восстановительных ферментов. Тормозящее действие ряда веществ, реагирующих с карбонильными группами (гидроксиламин, гидразиды кислот, ароматические амины и т. п.), позволило высказать предположение о воз- [c.78]

    Стандартные окислительно-восстановительные потенциалы ( ) компонентов, связанных с дыхательной цепью, приведены в табл. 20. [c.224]

    Стандартные окислительно-восстановительные потенциалы компонентов, связанных с дыхательной цепью [c.225]

    В переносе энергии принимают участие еще две другие молекулы, с которыми следует познакомиться, прежде чем перейти к рассмотрению цикла лимонной кислоты. Одной из них является никотинамидадениндину-клеотид (НАД), структура которого показана на рис. 21-22. Эла молекула напоминает АТФ, так как тоже содержит адениновую группу, рибозу и фосфатную группу. Однако важнейшей частью НАД является никотиновое кольцо, которое может попеременно восстанавливаться и окисляться. Эта молекула является окислительно-восстановительным переносчиком энергии. Когда какой-либо метаболит окисляется на одной из стадий цикла лимонной кислоты, окисленная форма никотинамидадениндннуклеоти-да, НАД , может присоединить два атома Н и восстановиться с образованием НАД Н и Н . Другим важным переносчиком энергии является флавинадениндинуклеотид (ФАД). который восстанавливается в ФАД Н2. Оба этих переносчика энергии питают последнюю производственную линию биохимической фабрики запасания энергии, завершающ ю окислительный цикл дыхательной цепи. Она представляет собой четырехстадийный процесс, в котором принимают участие ферменты-цитохромы и происходит повторное окисление восстановленных переносчиков энергии НАД Н и ФАД Н2. В этом процессе кислород восстанавливается до воды, а выделяющаяся энергия запасается в молекулах АТФ. Каждый раз, когда происходит повторное окисление восстановленной молекулы-переносчика энергии, выделяемая при этом окислении энергия запасается путем синтеза нескольких молекул АТФ. [c.328]

    Хотя интактные митохондрии представляют собой удобный объект для изучения механизмов биоэнергетики, для решения ряда задач ис пользуют более простые системы — субмитохондриальные фрагменты К числу таких задач относится изучение переноса электронов в дыха тельной цепи, локализованной во внутренней мембране митохондрий Существование системы мембран, барьеров проницаемости, системы пе реноса энергии и др. очень осложняет однозначную интерпретацию кинетики окислительно-восстановительных реакций в интактных митохондриях. В связи с этим были разработаны методы получения более простых препаратов субмитохондриальных частиц. Последние могут быть получены при действии на митохондрии либо детергентов, либо сильных механических воздействий (ультразвук, растирание с песком и т. д.). К числу различных субмитохондриальных фрагментов относится так называемый препарат Кейлина—Хартри, представляющий собой фрагменты внутренней мембраны митохондрий, почти лишенные ферментов цикла Кребса. Препарат имеет полный набор дыхательных переносчиков, обладает высокими активностями НАД-Н и сукцинатокси-дазы, стабилен при хранении. [c.407]

    Перенос электронов по дыхательной цепи митохондрий приводит к аккумуляции энергии окислительно-восстановительных реакций в виде АТФ. Протекание эндергонической реакции синтеза АТФ из АДФ и Ф ( 10 ккал/мол) возможно за счет экзергонической реакции окисления НАДН или сукцината кислородом. Механизмом, обеспечивающим сопряжение этих двух реакций, является АТФ-синтетазный комплекс, способный в определенных условиях катализировать гидролитический распад АТФ. Последняя реакция (АТФазная активность) служит удобным объектом для изучения механизма окислительного фосфорилирования. Схема, иллюстрирующая процесс образования и распада АТФ в митохондриях, приведена на рис. 60. [c.471]

    В условиях аэробиоза распад углеводов до образования пировиноградной кислоты происходит так же, как и при анаэробиозе, но в отличие от него пировиноградная кислота полностью окисляется до диоксида углерода и воды в цикле трикарбован-ных кислот. В этом цикле последовательно протекают окислительно-восстановительные реакции, в которых под действием специфических дегидроназ происходит перенос водорода на молекулярный кислород. Однако перенос осуществляется не непосредственно, а через молекулы-переносчики, образующие дыхательную цепь. [c.1051]

    Большая ароматическая молекула порфиринов имеет несколько близко-лежащих заполненных и вакантных МО, способных одинаково легко приобретать и терять 71-электроны, превращаясь в анион-радикальные, анионные, катион-радикальные и катионные окислительно-восстановительные (ре-докс) формы. В связи с тем, что этот процесс может иметь место при фотосинтезе в зеленом листе растений, в дыхательных биологических системах (с участием цитохромов, каталаз и пироксидаз) человека, животных и растщий, а также в техническом катализе окислительно-восстановительных реакций с участием металлопорфиринов, его познание имеет громадное научное значение. [c.309]

    На основе всех этих соединений, включенных в сложные биологические структуры за счет взаимодействий различной природы, возникают взаимообусловленные и многообразные свойства, называемые функциями. Так, гемоглобин выполняет функции фиксации, переноса и хранения кислорода, цитохром Р-460 отвечает за окислительно-восстановительные функции дыхательных биосистем на уровне клетки растений и животных, хлорофиллобелковый комплекс выполняет функции фотосинтеза в зеленых растениях и т. д. [c.317]

    Окислительное фосфорилирование и дыхательный контроль. Функция дыхательной цепи—утилизация восстановленных дыхательных переносчиков, образующихся в реакциях метаболического окисления субстратов (главным образом в цикле трикарбоновых кислот). Каждая окислительная реакция в соответствии с величиной высвобождаемой энергии обслуживается соответствующим дыхательным переносчиком НАДФ, НАД или ФАД. Соответственно своим окислительно-восстановительным потенциалам эти соединения в восстановленной форме подключаются к дыхательной цепи (см. рис. 9.7). В дыхательной цепи происходит дискриминация протонов и электронов в то время как протоны переносятся через мембрану, создавая АрН, электроны движутся по цепи переносчиков от убихинола к цитохромоксидазе, генерируя разность электрических потенциалов, необходимую для образования АТФ протонной АТФ-синтазой. Таким образом, тканевое дыхание заряжает митохондриальную мембрану, а окислительное фосфорилирование разряжает ее. [c.311]

    Напомним, что прп прохожденпп по цепп дыхательных ферментов восстановительные эквиваленты НАДН генерируют три высокоэнергеттесиге фосфатные связп посредством образования АТФ из АДФ в процессе окислительного фосфорилирования (см. главу 9). [c.349]

    Завершающим этапом биологического окисления является тканевое дыхание, в результате которого происходит перенос водорода (протонов электронов) от субстрата (НАД-Н или сукцината) на молекулярный кис-лород. Этот процесс осуществляется при каталитическом участии системы коферментов, входящих в электроно-транспортную дыхательную цепь ми- I тохондрий животных тканей, последовательно осуществляющих реакции окислительно-восстановительных превращений. [c.559]

    Схема хемиосмотического сопряжения Митчелла показана на-рис. 13.7. Сопрягающей системой является мембрана. Донор водорода АНа (например, аскорбат) окисляется переносчиком электронов (например, цитохромом с) у внешней стороны мембраны,-Два электрона переносятся через мембрану по дыхательной цепп и посредством цитохромоксидазы передаются акцептору водорода В, т. е. кислороду. Акцептор присоединяет два протона из внутренней фазы митохондриального матрикса. Создается градиент концентраций протонов — их избыток во внешней и недостаток во внутренней жидкой фазе. Вследствие этого пронсходит перенос протонов через мембрану в противоположном направлении, в результате чего и реализуется фосфорилирование. Синтез одной молекулы АТФ приводит к поглощению днух протонов из внешней фазы и выделению двух протонов в матрикс. Митохондриальная мембрана работает как топливный элемент, в котором, разность электрохимических потенциалов создается за счет окислительно-восстановительного процесса. [c.433]

    В состав флавиновых дегидрогеназ входят флавиновые нуклеотиды, прочно связанные с апоферментом и не отщепляющиеся от него ни на одной стадии каталитического цикла. Окислительно-восстановительные свойства флавопротеинов обусловлены способностью изоаллоксазинового кольца рибофлавина к обратимому переходу из окисленного состояния в восстановленное, при котором происходит присоединение к кольцу 2 электронов в составе атомов водорода (рис. 93, Б). При изучении дыхательных цепей особенно интересны два связанных с мембраной флавопротеина сукцинатдегидрогеназа, катализирующая окисление сукцината в ЦТК, и НАД(Ф) Нз-дегидрогеназа, катализирующая восстановление своей флавиновой простетической группы, сопряженное с окислением НАД(Ф) Н2. [c.362]

    Если водородные бактерии содержат обе формы гидрогеназы, функции между ними четко разделены. В случае отсутствия у водородных бактерий цитоплазматической гидрогеназы возникает проблема получения восстановителя при хемолитоавтотрофном способе их существования. Она решается с помощью механизма обратного переноса электронов на НАД . При функционировании только цитоплазматической гидрогеназы она выполняет обе функции часть восстановительных эквивалентов с НАД Нз поступает в дыхательную цепь, другая расходуется по каналам конструктивного метаболизма. Таким образом, из всех хемолитоавтотрофных эубактерий только водородные бактерии с помощью определенной формы гидрогеназы могут осуществлять непосредственное восстановление НАД окислением неорганического субстрата. В электронтранспортную цепь электроны, следовательно, могут поступать с НАД Нз или включаться на уровне переносчиков с более положительным окислительно-восстановительным потенциалом. С этим связан энергетический выход процесса функционирование в дыхательной цепи 3 или 2 генераторов Ар1н+- [c.386]

    С помощью этих ферментов электроны передаются в дыхательную цепь. В качестве компонентов электронтранепортной цепи идентифицированы FeS-белки (ферредоксины, рубредоксин), флаводоксин, менахинон, цитохромы типа Ь, с. Особенностью дыхательной цепи многих сульфатвосстанавливающих эубактерий является высокое содержание низкопотенциального цитрохрома Сз( 0= -300 мВ), которому приписывают участие в акцептировании электронов с гидрогеназы. Все перечисленные выше соединения, вероятно, принимают участие в переносе электронов на sor, но точная их последовательность и локализация на мембране не установлены. Получены данные, указывающие на то, что окисление Нз происходит на наружной стороне мембраны, а реакция восстановления S0 — на внутренней. Из этого следует, что окисление Нз, сопряженное с восстановлением SO , связано с трансмембранным окислительно-восстановительным процессом. Перенос электронов по дыхательной цепи сопровождается генерированием А)1н+. На это указывает чувствительность процесса к веществам, повышающим проницаемость мембраны для протонов и делающим, таким образом, невозможным образование протонного градиента, а также к ингибиторам мембран-связанной протонной АТФ-синтазы. [c.391]

    Было установлено, что активность изолированных комплексов аддитивна, т. е. при смешении комплексов получается окислительно-восстановительная реакция, соответствующая сумме отдельных реакций дьгхательной цепи. Выделение комплексов дыхательной цепи позволило сделать вывод об определенной пространственной ориентации этих комплексов в мембране. Важная роль в передаче электронов от одного комплекса к другому принадлежит KoQ и цитохрому с. Цитохром с является единственным растворимым цитохромом и наряду с коэнзимом Q служит мобильным компонентом дыхательной цепи, осуществляя связь между фиксированными в мембране комплексами. [c.199]

    Существует несколько гипотез, объясняющих механизм сопряжения. Одной из них является хемиосмотическая теория. Цепь транспорта электронов функционирует как протонная (Н+) помпа, осуществляя перенос протонов из матрикса через внутреннюю мембрану в межмембранное пространство. Эндоэргический процесс выброса протонов из матрикса возможен за счет экзоэргических окислительно-восстановительных реакций дыхательной цепи. Перенос протонов приводит к возникновению разности концентрации с двух сторон митохондриальной мембраны более высокая концентрация будет снаружи и более низкая - внутри. Митохондрия в результате переходит в энергизованное состояние, так как возникает градиент концентрации Н+ и одновременно разность электрических потенциалов со знаком плюс на наружной поверхности. [c.177]

    ЛуУ-Ди(неитафтор- этил)пентафторэтанамин Перфтортриэтиламин (РзССР2)зМ Токсическое действие. Несмотря на относительную химическую инертность, обладает биологической активностью. Угнетает окислительно-восстановительные процессы в тканях, нарушает обмен биогенных аминов. Нарушает проницаемость сосудистых стенок и нейрогуморальную регуляцию организма. Раздражает верхние дыхательные пути [c.683]

    Переносчики электронов в дыхательных цепях живых организмов, убихиноны [63], и кофакторы ферментов [64] хиноидной структуры легко подвергаются окислительно-восстановительным превращениям на пирографитовых электродах. Нуклеотиды, содержащие пурины, флавинадениндинуклеотид, флавинмононук-леотид, также окисляются на углеродных материалах [65]. Это позволяет проводить одновременное определение пуриновых оснований и их нуклеозидов. В работе [66] предложено измерять микромолярные концентрации НАДН (никотинамидаденинди-нуклеотид) на стеклоуглероде. [c.113]

    Что же является самым главным в книге Харри Вилламо Как отмечает автор в предисловии к русскому изданию книги, центральным звеном проблемы ему представляется серьезный химический и биохимический подход к вопросу воздействия косметических средств на организм человека. Нам же хотелось бы отметить, что хотя сам автор и не называет процессы взаимодействия тканей человеческого организма с косметическим средством мембранными процессами, он, конечно, имеет в виду, что, например, кожа - идеальная модель для любой органической технологической мембраны Здесь и дыхательная ее функция, обеспечивающая обмен газов и разнообразнейшие окислительно-восстановительные процессы в коже и тканях, к ней прилегающих и всасывательная (абсорбционная) функция кожи по отношению к водно-со-левым растворам и жироподобным веществам, на основе которых приготавливают средства современной косметики и выделительная (десорбционная) функция кожи, способствующая удалению солей и других многочисленных шлаков в процессе потовыделения. И поскольку косметические композиции стимулируют все виды обмена (углеводного, белкового, жирового, гор-мональнолго) в коже, систематическое и грамотное употребление косметических средств благоприятствует нормальному протеканию нормальных процессов в человеческом организме. [c.278]

    Переносчики в дыхательной цепи должны быть расположены таким образом, чтобы окислительно-восстановительный потенциал ( ь) каждого компонента был более отрицательным, чем потенциал окисляющего его компонента. Болл [1] применил такой подход для определения последовательности цитохромов Ь, с и а. Величины Е 1 этих цитохромов в неочищенном экстракте сердечной мышцы показывают, что они соединены в цепь следующим образом  [c.224]

    Значение катехинов в технической биохимии (пищевая, ду- ильно-экстрактовая и витаминная промышленности) и в медицине (в качестве капилляроукрепляющих препаратов) несомнен-по. Вместе с тем, катехииы, безусловно, выполняют важные и разнообразные функции в жизнедеятельности растений. В настоящей работе на примере чайного растения показана способность катехинов служить дополнительным дыхательным материалом, а также участвовать в виде медиаторов в разнообразных окислительно-восстановительных процессах, протекающих в растительной клетке. [c.271]


Смотреть страницы где упоминается термин Дыхательная окислительно-восстановительные: [c.633]    [c.633]    [c.456]    [c.121]    [c.591]    [c.216]    [c.193]    [c.101]    [c.271]   
Молекулярная биология клетки Том5 (1987) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Дыхательные яды



© 2025 chem21.info Реклама на сайте