Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окиси с формальдегидом

    Сернистый ангидрид Сероводород Углерод, окись Формальдегид Этнлен [c.322]

    Каталитическое окисление в жидкой фазе имеет то преимущество перед газофазным процессом, что позволяет более точно регулировать состав конечных продуктов [60]. Та1 , при окислепии н-бутана в жидкой фазе образуется в первую очередь уксусная кислота при полном отсутствии формальдегида. При окислепии же пропана в газовой фазе, напротив, образуются главным образом пропионовый альдегид, пропиловый спирт, ацетон, уксусный альдегид, уксусная кислота, формальдегид, метиловый спирт, окись пропилена, окись этилена. При окислении н-гексана теоретически можно получить около 60 различных продуктов окисления, не считая вторичных продуктов, образующихся за счет дальнейших реакций кислородсодержащих компонентов. Метан и этан не только содержатся в значительно больших количествах в природном газе, чем пропан или бутан, но они представляют интерес и для применения в качестве исходного сырья, так как нри окислении дают продукты более простого состава. Именно сложный состав продуктов газофазного окисления был причиной того, что внедрение этого процесса в промышленную практику сильно задержалось. [c.151]


    Побочными продуктами реакции будут формальдегид, ацетальдегид, окись углерода, органические кислоты, карбонильные соединения и полимеры. [c.95]

    Окисление. Катализаторы окисления поочередно адсорбируют кислород и выделяют его в активной форме. Первичные окислы металлов служат акцепторами не только при окислении элементарным кислородом, но и в присутствии хромовой, марганцовой и хлорноватистой кислот, а также перекиси водорода. Примерами катализаторов различных процессов являются окись серебра (для получения окиси этилена из этилена) серебро или медь (для получения формальдегида из метанола) соединения щелочных металлов, марганца или алюминия (для окисления жидких углеводородов) окислы ванадия и молибдена (для получения фталевого ангидрида из нафталина) раствор нафтената марганца (для получения жирных кислот из высокомолекулярных углеводородов). Чаще всего окисление происходит при повышенных температурах. [c.330]

    Акролеин образуется нрп окислении пропилена воздухом над катализатором (окись меди на носителе) [282]. Этот ненасыш,енный альдегид также получают путем конденсации ацетальдегида с формальдегидом. [c.582]

    Состав продуктов и кинетика реакций. Побочными продуктами окислительного дегидрирования бутенов являются окись и двуокись углерода, фу ран, формальдегид, ацетальдегид, акролеин. [c.686]

    Атомный кислород, окисляя формальдегид, дает окись углерода и воду [c.136]

    При прямом гомогенном окислении этилена кислородом образуется ряд ценных продуктов окись этилена, формальдегид, органические кислоты. Направление реакции окисления этилена можно регулировать с помощью катализатора. [c.172]

    В качестве побочных продуктов образуются пропионовый альдегид, ацетальдегид, формальдегид, ацетон, СО, СОа и вода. Катализаторо.м-для этого процесса служит окись меди, нанесенная на непористый носитель (пемзу или карборунд) в количестве 0,5—1,5% (масс.). Позднее был разработан молибдено-кобальтовый катализатор с висмутом и другими добавками. Окисление ведут при 320—350 °С и времени контакта 0,5—1,0 с в присутствии водяного пара, позволяющего улучшить условия выделения акролеина и подавляющего реакции глубокого окисления. Последний эффект достигается также при добавлении в исходную газовую смесь микроколичеств (0,05% от массы пропилена) бромистых или хлористых алкилов. Состав исходной смеси диктуется пределами взрывоопасных концентраций. Соотношение (мольное) пропилен кнслород водяной пар поддерживают равным 4 1 5 или 1 1,5 3, т. е. выше верхнего или ниже нижнего пределов взрываемости. В зависимости от состава газовой смеси процесс ведут с рециркуляцией пропилена или без нее. Реакцию окисления проводят в многотрубчатых контактных аппаратах с солевым теплоносителем. Реакционные газы проходят водную промывку, при этом получают 1,5—2%-ный раствор акролеина в воде,содержащий также побочные продукты реакции — ацетальдегид, пропионовый альдегид й т. д. Акролеин выделяется из водного раствора, ректификацией очищается от ацетальдегида и экстрактивной дистилляцией с водой — от пропионового альдегида. Выход акролеина составляет 67—70% при степени превращения пропилена 50%. [c.207]


    Катализатор готовился нанесением на силикагель крепких растворов азотнокислой меди и азотнокислого висмута (Си В1=4 . 1), до содержания металлов эквивалентного 12,7% Си и 3,2% В1. Силикагель брался прокаленный во вращающихся печах при 800°. После нанесения на него солей силикагель нагревался до 450—550°, причем нитраты превращались в окиси. Поело заполнения реактора этим катализатором окись меди превращалась в ацетилид. Для этого при 60 — 70° и в течение, примерно, 12 час. в реактор подавался разведенный формальдегид (5—20%) и разведенный азотом ацетилен. По мере образования ацетилида концентрация ацетилена постепенно повышалась с 10 до 90%, а температура—до 90°. Приготовленный таким образом. катализатор дозволял проводить синтез бутин-диола при температуре всего 100° и под давлением ацетилена всего 5 атм (ацетилен в синтез берется не разведенный азотом). [c.483]

    Однако это уравнение весьма приближенное, так как очень трудно осуществить полное горение при стехиометрическом соотношении топливо —окислитель (кислород или воздух). Для достижения полного сжигания всегда требуется некоторый избыток окислителя. Если это условие не соблюдается, то некоторое количество топлива не будет сгорать до СОг и будут образовываться продукты неполного сгорания, в которых присутствуют окись углерода, водород, ненасыщенные углеводороды, формальдегид (иногда элементарный углерод). Если процесс горения остановить на промежуточной стадии, то количество высвобождаемого тепла будет значительно ниже. Для того чтобы быть уверенным в полном завершении процесса образования продуктов неполного горения, необходимо подвести дополнительное тепло, количество которого превышает количество тепла, выделяемого при реакции их образования. Процесс сжигания осложняется также цепным характером протекания реакций горения через образование промежуточных соединений перед появлением конечного продукта. Промежуточные соединения представляют собой химически недолговечные образования и радикалы, которые способствуют протеканию процесса горения и поддерживают его постоянным. Рассмотрим цепную реакцию горения метана  [c.97]

    За счет обогащения атмосферы углекислым газом увеличивается урожайность, повышается качество и сокращаются сроки созревания оранжерейных растений, однако при этом важно учитывать побочные явления. Вот почему при обогащении воздушной среды СО2 необходимо тщательно контролировать температуру, влажность, освещенность и количество вносимых загрязняющих примесей. В частности, в топливе, используемом для генерации СО2, не должно быть серы, а генераторы, работающие не на газовом топливе, следует оборудовать устройствами, поглощающими серу и сернистые соединения. Так как каждый вид растений имеет оптимальную температуру роста, которая меняется по мере его развития, то тепло, получаемое в генераторе СО2, может использоваться для обогрева теплицы или оранжереи. Обязательным требованием является обеспечение полноты сгорания СНГ, поскольку окись углерода, этилен, формальдегид и другие частично окисленные продукты, как известно, являются весьма вредными для растений, выращиваемых в теплицах и оранжереях. [c.346]

    Реакции переокисления (полное сгорание до углекислоты) и образования формальдегида можно в значительной степени подавить добавками некоторых галоидных производных. В этом отношении наблюдается интересный параллелизм с подавлением полного сгорания этилена при его каталитическом окислении в окись этилена добавками небольших количеств 1,2-дихлорэтана. Если в исходной газовой смеси кислорода слишком мало, то начинает протекать побочная реакция образования 2-оксиметил-1,3-диоксолана [c.407]

    Из этилена, полученного описанными выше методами (1925 г.) в США — из каменного угля через окись углерода и формальдегид (1935— 1940 гг.) [c.25]

    Раньше уже были описаны сложные ненасыщенные кетоны, получающиеся в результате конденсации двух и трех молекул ацетона (окись мезитила и форон). Простейший ненасыщенный кетон — метилвинилкетон СНзСОСН = СНа. Он образуется из ацетона и формальдегида или гидратацией моновинилацетилена серной кислотой в присутствии ртутного катализатора  [c.330]

    Другой промышленный способ получения этиленгликоля заключается в действии окиси углерода на формальдегид. В результате конденсации образуется гликолевая кислота, метиловый эфир которой восстанавливают в паровой фазе в этиленгликоль (гл. 16, стр. 296). В 1954 г. в США 83% этиленгликоля было получено из окиси этилена, а 17% — из формальдегида и СО [1]. Последний способ нельзя использовать для производства окиси этилена хотя теоретически этиленгликоль и может превратиться при повышенной температуре и низком давлении в окись этилена, на практике основными продуктами реакции, проведенной при этих условиях, являются ацетальдегид или диоксан, более устойчивые, чем окись этилена. [c.354]

    Термическое окисление становится заметным при 400° С, однако при температуре ниже 575° С процесс протекает медленно. В течение индукционного периода происходит экспонентное возрастание концентрации формальдегида до стационарной величины. Вслед за индукционным периодом происходит быстрая реакция, основными продуктами которой являются окись углерода и вода. Путем добавления к газовой смеси формальдегида можно частично или полностыо сократить продолжительность индукционного периода если же добавить формальдегид в таком количестве, чтобы концентрация его превысила стационарную, скорость быстрой реакции также соответственно увеличится и формальдегид будет разрушаться до тех пор, пока снова не установится нормальная стационарная концентрация его. Важная роль формальдегида в процессе окисления подчеркивается также следующим наблюдением если реакционную смесь метана и кислорода подвергнуть при 485° С сильному облучению ультрафиолетовым светом с длинами волн в интервале от 2400 [c.321]


    Однако только в работе Ньютона и Доджа [23] была сделана попытка исследовать равновесие указанной реакции. Авторы проводили свои опыты по гидрированию формальдегида в интервале 180—200° С при атмосферпом давлении, применяя медноцинковые катализаторы или окись цинка. Авторам пе удалось получить воспроизводимых результатов поэтому мы не станем приводить здесь этих экспериментальных данпых. Отметим только, что для температуры 197° С авторы принимают среднее значение константы равиовесия АГр = 2090. С помощью этого числа, а также теплот горения метилового спирта, водорода и формальдегида они рассчитали уравнение [c.372]

    Промышленный процесс при атмосферном давлении включает следующие этапы смешение метана с воздухом, подогрев смеси до 400 °С (за счет тепла газов, выходящих из реактора), смешение с окислами азота (около 0,01 объемн. %), собственно окисление в реакционной печи при 600 °С, охлаждение продуктов реакции до 200 °С (при этом нагревкется сырье), выделение формальдегида из смеси водой в абсорбционной колонне и рециркуляция непрореагировавших газов (содержащих метан, окись и двуокись углерода, кислород и азот). Описанная схема приведена на рис. 60. [c.142]

    Полимеры с концевыми гидроксильными группами получаются при реакции живых полимеров с окисями алкиленов, альдегидами, кетонами [7—И]. Окись этилена и формальдегид образуют первичные гидроксильные группы, при реакции с окисью пропилена и альдегидами (гомологи выше формальдегида) получаются вторичные гидроксильные группы, а с кетонами —третичные гидроксильные группы. [c.419]

    При термоокислении ПДМС образуются формальдегид и параформ, окись и двуокись углерода, вода, метанол, муравьиная кислота и обычные продукты термодеструкции — циклосилоксаны, метан, водород. В окисленном полимере появляются боковые си-ланольные группы, в состав которых входит часть атомов водорода отщепившихся метильных групп, но в нем отсутствуют перекисные, карбонильные, карбоксильные и кремнийгидридные группы [66]. Накопление боковых силанольных групп приводит к ускорению как структурирования полимера в результате их конденсации, так и термодеструкции с выделением циклосилоксанов и метана по реакциям (34) и (35) [66, 67]. Потери массы очи щенного ПДМС за одинаковое время при 300 °С на воздухе в 2—3 раза выше, чем в вакууме. Термоокисление ингибируется различными антиоксидантами [66—68. Все имеющиеся данные [c.487]

    Медведеву, изучавшему разнообразные катализаторы окисления, удалось пе Гевести свыше 50% реагирующего метана в формальдегид. Условия, давшие столь исключительный выход, были таковы смесь, содержавшая 13,8% метана и 17,98% кислорода, пропускалась через трубку, нагретую до 600°, со ск1оростью 0,23 л в минуту. Наиболее активным катализатором оказалась окись марганца, наименее активным-—окись меди. [c.99]

    При помош,и процессов конверсии кислородом или водяным паром из метана получают синтез-газ (СО На) — прекрасное сырье для дальнейшего органического синтеза, а также чистую окись углерода, водород и синтез-газ (2На а) для производства аммиака, являюш,егося исходным сырьем для выработки удобрений. Неполным окислением метана при низких температурах могут быть получены формальдегид, метанол, ацетальде-гид. При хлорировании лгетана в промышленных условиях образуются хлористый метил, хлористый ыетплен, хлороформ и четыреххлористый углерод. Нитрованием метана получают нитрометан. [c.15]

    Пропан и бутан. Указанные углеводороды за рубежом широко применяются в промышленности как сырье для процессов неполного окисления. В результате некаталитического парофазного окисления пропана при умеренных давлениях и температуре 250— 350° получается сложная смесь различных продуктов окисления ацетальдегид, формальдегид, метанол, пропиональдегйд, пропа-нолы, ацетон, окиси пропилена и этилена, этиловый спирт, уксусная И муравьиная кислоты, окись п двуокись углерода и др. [c.84]

    Заслуживает внимания недавно запатентованный фирмой Нейшнл рисерч корпорейшн метод прямого некаталитического окисления этана в окись этилена. При работе по этому методу кислород смешивают со свежим этаном и рециркулирующим газом с таким расчетом, чтобы молярное отношение СаНе Оа в смеси составляло от 10 до 15. Реакция проводится прп 500—700° под давлением от 1 до 7 ат. Газы, выходящие из реактора, пропускаются через окись алюминия для разложения перекиси водорода, затем охлаждаются и поступают в скруббер для конденсации окиси этилена, формальдегида и ацетальдегида. Часть неконденсирующихся газов сбрасывается, а остальные подаются на рециркуляцию в реактор. [c.93]

    В некоторых производствах образование взрывоопасных концентраций вообще исключается. Однако в боль-шлнстве химических производств возможность образования взрывоопасных концентраций определяется е мим характером производства. В ряде производств крупно-тоннажного синтеза заданный продукт получают окис-лением веществ кислородом воздуха. Например, формальдегид получают окислением метанола нитрил акриловой кислоты — окислением пропилена в присутствии аммиака окись азота — окислением аммиака. В таких случаях неизбежно образование смесей взрывчатых веществ с кислородом, поэтому технологический процесс разрабатывается так, чтобы концентрации этих смесей были ниже нижнего или выше верхнего концентрационных пределов взрываемости. [c.143]

    В качестве катализатора может использоваться серебро в нескольких модификациях серебряные сетки, крупнокристаллическое электро.читическое серебро, губчатое серебро, а также серебро, нанесенное на крупнопористые природные или искусственные носители (пемза, корунд, фаянс, алюмосиликат, окись алюминия и т. д.). В СССР наибольшее распространение имеет серебряный катализатор на пемзе, содержащий от 20 до 40 % (масс.) серебра. Для него характерна высокая производительность, достигающая 7—10 т 100%-ного формальдегида на 1 м катализатора в I ч. При отсутствии в исходном метиловом спирте вредных примесей (высшие спирты, кетоны, эфиры, непредельные соединения, пентакарбонил железа и т. д.) срок службы катализатора составляет 8—9 месяцев. [c.200]

    Эта теория, развитая Боном и его сотрудниками [27], полагает, что окисление идет через реакции последовательного гидроксилирования. По этой теории, например, окисление метана последовательно идет через метиловый спирт, метилен-гликоль, разлагающийся на формальдегид и воду. Формальдегид может окисляться в муравьиную кислоту или разлагаться на окись углерода и водород. Окисленио этилена идот по нижо- ледующей схеме  [c.347]

    Непосредственное превращение этилена в формальдегид при нагревании с кислородом стало известно уже давно благодаря исследованиям Шутценбергера (1875 г.), Вильштеттера, Бона, Уилера и их шкоп. Наилучшие выходы получаются при 550—600° и больших объемных скоростях газов. Одновременно с формальдегидом образуются также следы ацетальдегида и уксусной кислоты. Ленер [1] подробно исследовал продукты окисления этилена молекулярным кислородом. Окисление проводилось в интервале 300—500° при длительной реакции (в проточной системе без рециркуляции) и при кратковременной реакции (в системе с рециркуляцией). В жидких продуктах реакции, полученных после конденсации, содержались окись этилена, этиленгликоль, глиоксаль, ацетальдегид, формальдегид, муравьиная кислота и вода. В опытах с рециркуляцией основными продуктами являлись окись этилена и формальдегид. При работе на более крупной лабораторной установке в значительном количестве была выделена перекись формальдегида НОСНзООСНцОН. Последняя могла быть разложена на водород и муравьиную кислоту, которые присутствуют в продуктах окисления этилена  [c.157]

    В своей работе по окислению пропилена кислородом Ленер [I] выделил только ацетальдегид, формальдегид и муравьиную кислоту. Однако Ньюитт и Мен, работавшие с избытком пропилена, получили при 215—280" и 12—18 ата окись пропилена, пропиленгликоль и глицерин наряду с различными кислотами и альдегидами [2]. Установлено, что в начальных стадиях окисления образуются аллиловый спирт и пропионовый альдегид. Можно сказать почти определенно, что аллиловый спирт и глицерин получаются в результате атаки кислородом метильной группы. Лукас исследовал окисление бутилена-2 кислородом при 350—500° [3]. Основными продуктами реакции являются ацетальдегид и дивинил. Установлено также присутствие глиоксаля, окиси олефина, кислоты и перекисей метилэтилкетон не обнаружен. Дивинил, по-видимому, получается в результате дегидратации 2,3-бутандиола или окиси бутилена, а окисление его по двойным связям приводит к глиоксалю  [c.158]

    Механизм каталитического окисления исследован Твиггом [11]. При окислении происходит прочная хемосорбция кислорода на поверхности серебра. Скорость образования окиси этилена пропорциональна концентрации кислорода в первой степени. Скорость полного окисления пропорциональна квадрату этой концентрации. Твигг предполагает, что, если молекула этилена приближается к двум атомам кислорода, близко расположенным друг от друга на поверхности серебра, окисление протекает до двуокиси углерода через промежуточное образование формальдегида. В том случае, когда атомы кислорода отстоят далеко друг от друга, образуется окись этилена. [c.161]

    Замещение водорода амидогруппы м е т-ок с и метиленовой группой. При одновременном действии формальдегида и метилового спирта в присутствии кислого катализатора водородные атомы части амидных групп полиамида яамещаются метоксиметиленовыми группами  [c.454]

    Продуктами окпсления этплепа [8] (рнс. 5) являются ацетальдегид, окись этилена, формальдегид, перекись, муравьиная кислота, окислы углерода и вода. В некоторых условиях констатировалось также образование глиоксаля и диоксиметилперекисп. Из рис. 5 видно, что формальдегид и муравьиная кислота достигают максимальных количеств раньше, чем заканчивается прирост давления, дости кепио же максимальных количеств перекисей предшествует максимуму формальдегида. После этого перекиси очень скоро (еще до окончательного израсходования кислорода) полностью исчезают. [c.19]

    Как видно из таблицы, продуктами реакции являются непредельные углеводороды, метан, водород, формальдегид, высшие альдегиды, метиловый и этиловый спирты, окись и двуокись углерода и вода, т. е. в основном те же продукты, какие были найдены при окислении пропана и Пизом. Непредельные углеводороды состоят из пропилена и этилена, а под высшими альдегидами следует понимать ацетальдегид. Данные таблицы приводят авторов к выводу о слабом влиянии природы поверхности на химизм окисления пропана. Важным результатом этих опытов, проведенных в статических условиях, явился факт полного [c.141]

    Анализы реагирующей смеси по ходу холоднопламенной реакции (рис. 46) проводились, кончая моментом угасания второго холодного пламени. В конце периода индукции высшие альдегиды, пропилен, кислоты п окись углерода имеются уже в измеримых количествах, перекиси же, формальдегид и двуокись углерода еще отсутствуют. Через 45 сек. после начала периода реакции возникает первое холодное пламя, и к этому моменту выход высших альдегидов достигает своего первого максимума. В промежуток времени, в течение которого холодное пламя возникает, распространяется и гаснет, скорость окисления пропана растет, и процент высших альдегидов уменьшается, зато впервые появляются и начинают расти количества перекисей и формальдегида. Вскоре после угасания холодного пламени содержание перекисей в смеси достигает первого своего максимума, а высших альдегидов падает до минимума. Вслед за этим содержание высших альдегидов в смеси снова нарастает до второго максимума, большего, чем первый, содержание же перекисе падает. Возникает второе холодное пламя, сопровождаемое таким же изменением в продуктах реакции, как и первое холодное пламя. [c.157]


Смотреть страницы где упоминается термин Окиси с формальдегидом: [c.121]    [c.619]    [c.262]    [c.321]    [c.338]    [c.100]    [c.368]    [c.456]    [c.401]    [c.22]    [c.349]    [c.188]    [c.311]    [c.469]    [c.120]   
Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8 (1966) -- [ c.167 ]




ПОИСК







© 2025 chem21.info Реклама на сайте