Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиизобутилен химические свойства

    Химические свойства полимеров определяются их непредельностью. На присоединение мономеров при образовании линейных цепей затрачивается одна двойная связь, а другая остается в структуре основной цепи или в боковых группах макромолекулы. Рассмотренные ранее полимеры, в частности полимерные углеводороды (полиэтилен, полиизобутилен и др.), — предельные соединения. Одна двойная связь, приходящаяся на очень больщое число атомов, не оказывает какого-либо влияния на свойства. [c.177]


    Полиизобутилен представляет собой насьпценный линейный полимер, содержащий как правило одну концевую С—С-связь на макромолекулу. Строение макромолекул определяет химические свойства полимера. [c.120]

    Сущность процессов переработки полиизобутиленов вытекает из их физических и химических свойств. Технология переработки полиизобутилена подробно освещена в периодической литературе [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. [c.229]

    Особенность их химических свойств определяется тем, что полимеры диеновых углеводородов являются непредельными, так как на присоединение мономеров при образовании линейных цепей затрачивается одна двойная связь, а другая остается в макромолекуле в структуре основной цепи или в боковых группах. Рассмотренные ранее полимеры и, в частности, полимерные углеводороды (полиэтилен, полиизобутилен и др.) являются предельными соединениями, так как наличие одной двойной связи, приходящейся на очень большое число атомов, не оказывает какого-либо влияния на их свойства. Непредельным характером обладает натуральный каучук, который является полимером изопрена следующего строения  [c.156]

    Смолы разделяют на две группы в зависимости от характера изменения их физико-химических свойств при нагревании группу термопластических смол и группу термореактивных. Термопластичными называют смолы, которые при нагреве становятся пластичными и затвердевают при охлаждении, причем этот процесс может быть повторен неоднократно. К термопластичным относятся поливинилхлоридные и полиакриловые смолы, полистирол, полиизобутилен, полипропилен, полиамиды и некоторые производные целлюлозы. [c.121]

    Обкладочный полиизобутилен обладает весьма ценными свойствами стойкостью к различным химическим веществам, хорошей диэлектрической стойкостью, устойчивостью к старению эластичность его сохраняется в пределах от—50 до + 100°С. [c.302]

    Синтетические высокомолекулярные соединения называют также полимерными материалами, высокополимерами, или просто полимерами. Некоторые представители их обычно называют по исходным продуктам, из которых их получают к названию исходного вещества добавляют приставку поли-, например, полиэтилен, полипропилен, полибутадиен,полиизобутилен, поливинилацетат и т. п. Так как такие названия не дают представления о строении, свойствах и возможных химических превращениях, было сделано много попыток разделить все высокомолекулярные соединения на определенные классы и дать этим классам рациональные названия. [c.438]


    Министерством здравоохранения СССР разрешен к применению ряд синтетических полимеров в качестве материалов тары. Из них наибольшее применение находят полиэтилен высокого и низкого давления, смесь полиэтилена высокого давления с полиизобутиленом, поливинилхлорид, полипропилен, ударопрочный полистирол, поликарбонат. В фармацевтической практик используют, как правило, нестабилизированные полимерны материалы, поскольку стабилизаторы (а также в ряде случаев катализаторы, пластификаторы и красители), добавляемые к полимерам для придания им определенных свойств и предотвращения старения, обладают, как правило, высокой химической активностью и токсичны. В связи с этим полимерные упаковки в чистом виде для лекарств следует оберегать от прямого солнечного света, длительного нагревания, бактерицидного-облучения. [c.80]

    Полиизобутилен обладает хорошей тепло-, и свето- и химической стойкостью, низкой газо-и паропроницаемостью, совместимостью с другими полимерными продуктами, хорошими диэлектрическими свойствами. Высокомолекулярный полиизобутилен перерабатывают штампованием, экструзией. Его растворы применяют для обработки тканей, кожи, бумаги. Смеси полиизобутилена с каучуками используют для изоляции 170 [c.170]

    Полиизобутилен по своим свойствам занимает промежуточное место между пластмассами и каучуками. Он обладает хорошей химической стойкостью, термостойкостью, газонепроницаемостью на него не действуют водяные пары. Отличается от каучуков значительно меньшей эластичностью. Применяется в качестве электроизоляционного и антикоррозийного материала. [c.39]

    Полиизобутилен характеризуется хорошей газонепроницаемостью и высоким сопротивлением действию водяных паров. Он сохраняет эластичность при температуре от —50 до +100° и отличается высокими диэлектрическими свойствами, озоностойкостью, а также химической стойкостью. При комнатной температуре он стоек к действию слабых и концентрированных кислот, щелочей и окислителей. Уд. вес 0,91—0,93 г/см . [c.1074]

    Сравнительно высокой химической стойкостью, судя по изменению физико-химических И механических свойств, в экстракционной фосфорной кислоте обладают эбониты 1751, 1726, 1814, полиизобутилен и резины м.арок 4476, 2566, 4601, 891, 4369, 4190. Резины и эбониты указанных марок рекомендованы для защиты от коррозии аппаратуры, коммуникаций и строительных конструкций производства термической и экстракционной фосфорной кислоты. [c.197]

    Высокая химическая стойкость полиизобутилена, значительно превосходящая стойкость обычных каучуков , имеет своей причиной насыщенный характер его макромолекулы. Полиизобутилен относится к слабополярным полимерам, что определяет его высокие диэлектрические свойства, в частности малую зависимость диэлектрической постоянной и тангенса угла диэлектрических потерь от температуры и частоты. В отношении химической стойкости и диэлектрических свойств полиизобутилен, а также его смеси с полиэтиленом, полистиролом и его сополимеры уступают только полиэтилену и политетрафторэтилену. [c.191]

    В резиновой промышленности в небольших количествах применяются материалы, обладающие каучукоподобными свойствами, но не способные к вулканизации. К ним относится полиизобутилен — продукт полимеризации изобутилена при —100°. Полиизобутилен обладает высокой химической стойкостью (к действию окислителей, кислот и щелочей), а потому применяется для футеровки химической аппаратуры. Неспособность полиизобутилена вулканизоваться объясняется отсутствием в его макромолекулах двойных связей. [c.355]

    При смешении на вальцах, нагретых до 160—170° С, могут быть получены гомогенные композиции полиизобутилена с полиэтиленом или полистиролом, превосходящие полиизобутилен по механическим свойствам и не уступающие ему по химической стойкости. Полиизобутилен можно совмещать и с некоторыми термореактивными веществами, например феноло-формальдегидными или алкид-ными смолами он подвергается хлорированию, сульфированию и другим химическим превращениям. [c.186]

    Полиизобутилен обладает высокой химической стойкостью к раз-Л1 чным агрессивным средам (см. табл. I. 3), слабо подвержен тепловому и кислородному старению, обладает высокой водостойкостью и газонепроницаемостью, имеет высокие диэлектрические свойства, которые, однако, утрачиваются в саженаполненных композициях. [c.37]

    Чтобы закончить обсуждение вопроса о свойствах сетки, необходимо упомянуть о процессах ее химической деструкции и разрушения. Эти процессы приводят к потере эластичности, растрескиванию поверхности и другим вредным эффектам, известным как старение , или потеря свойств . Натуральный каучук особенно склонен к таким реакциям, в которых участвуют его наиболее реакционноспособные двойные связи С=С, содержащиеся в элементарном звене изопрена [формула (1.7)]. Однако повышенная реакционная способность этих связей может быть и полезной, так как благодаря ей легко происходит вулканизация. Полимеры, не содержащие двойных связей, сшиваются с трудом, например полиизобутилен. Чтобы получить на его основе каучук, способный вулканизоваться (бутил-каучук), в цепь надо ввести небольшое количество мономера, например изопрена, содержащего две двойные связи в молекуле. Далее, при переработке каучука необходимо предварительно произвести мастикацию, в результате которой очень длинные молекулы разрушаются за счет комбинированного действия механического напряжения (при сдвиге), высокой температуры и кислорода воздуха. Только после такого разрушающего воздействия вещество становится достаточно мягким, или пластичным , для того чтобы его смешать с вулканизующими и другими необходимыми ингредиентами (сажа, пигменты и т. д.) полученную смесь вальцуют. Укороченные молекулы при вулканизации соединяются друг с другом, образуя непрерывную сетку, и таким образом происходит фиксирование требуемой формы конечного продукта. [c.83]


    К термопластам относятся винипласт, полиэтилен, полипропилен, фторопласты, органическое стекло, полиизобутилен, полистирол, полиамиды и полиуретаны. Эти материалы характеризуются небольшой плотностью, высокой механической прочностью, термо-, звуко- и электроизоляционными свойствами, высокой химической стойкостью к агрессивным средам, пластичностью и способностью свариваться. Термопластические материалы можно перерабатывать в изделия методами экструзии, пневматического формования, прессования, каландрова-ния и сварки. [c.19]

    По свойствам полиизобутилен приближается к каучукам, однако вследствие насыщенности структуры устраняется возможность его вулканизации и различные смеси из полиизобутилена приобретают свойство хладотекучести. Для улучшения свойств полиизобутилена в состав смеси вводят соответствующие наполнители По химической стойкости полимер не уступает полиэтилену и полипропилену, однако при введении наполнителей, сорбирующих агрессивную среду, химическая стойкость полимера несколько снижается. Так, полиизобутилен марки ПСГ (ТУ 2987—52), содержащий в качестве наполнителей графит и сажу, разрушается в 98%-ной азотной кислоте при 40° С, тогда как ненаполненный полиизобутилен только незначительно набухает. Этим же объясняется и [c.16]

    Полиэтилен хорошо совмещается при вальцевании с высокомо- кулярным полиизобутиленом, например, марки П-200 с молекулярным весом около 200000. Такие совмещенные полимеры выпускаются в промышленном масштабе получаемые из них покрытия имеют хорошие диэлектрические свойства и обладают высокой химической стойкостью. Наиболее известны следующие смеси ПОВ-30 (содержащая 30% нестабилизированного полиэтилена низкой плотности и 70% полиизобутилена П-200) ПОВ-45 ПОВ-50 (СТУ 30-14270—65 и МРТУ 6-05-967—66) продукт 504, содержащий не более 15% полиизобутилена Добавление полиизобутилена способствует увеличению эластичности полиэтилена, но связано с уменьшением его прочности при растяжении. [c.17]

    Табулированы и обсуждены имеющиеся данные по физическим и химическим свойствам полимеров изобутилена. Рассмотрены химические свойства и превращения олиго- и полиизобутиленов, которые подразделены на превращения концевых групп двойных связей (реакция присоединения и расщепления) звеньев основной цепи, боковых метильных групп (заместител ьные реакции) и распад основной цепи (деградация, деполимеризация, сшивка). В ряду различных воздействий на полимер проанализированы химические, физические и высокоэнергетические методы воздействия (реагенты и окислители, механохимия, ультразвук, плазма тлеющего разряда, ионизирующие излучения и др.). Особенно выделены направленные превращения полимеров изобутилена, открывающие пути технического применения полимеров изобутилена (каталитическое ионное гидрирование, алкилироваьше фенолов и аминофенолов, каталитическая деполимеризация и некоторые другие). Суммированы аналитические характеристики полиизобутилена спектроскопические (ИК, ЯМР) данные, касающиеся основной цепи и дефектов структуры вязкостные, реологические и молекулярно-массовые параметры их взаимосвязь и методы определения (фракционирование, озонолиз, гель-проникающая хроматография и др.). Совокупное сочетание различных методов обеспечивает высокую степень надежности полученной информации, касающейся аналитических характеристик полиизобутилена. [c.379]

    При исследовании физико-химических свойств смесей и комво-зиций с полимерными наполнителями особенное внимание уделяется прямым наблюдениям структуры. Исследование методом электронной микроскопии морфологии смесей СКС-ЗО-ПС и полиизопрен— полиизобутилен, полученных из растворов в общем растворителе, показало [429], что в системе образуются частицы дисперсной фазы одного из компонентов, распространенные в среде другого, причем в зависимости от соотношения компонентов может наблюдаться инверсия фаз. Соотношение компонентов в смеси влияет также на морфологию системы, изменяя не только размер, но и форму частиц дисперсной фазы. Отжиг пленок приводит к увеличению размера частиц дисперсной фазы, состоящих из агрегированных частиц одного из компонентов. [c.215]

    Большое промышленное применение находит в последние годы сополимер изобутилена с небольшим количеством изопрена. Обычно в состав этого сополимера вводят 97—98% изобутилена и 2—3% изопрена. Введение в состав полимера такого небольшого количества изопрена обеспечивает непредельность, достаточную (1,6% мол.) для обычной серной вулканизации. Бутилкаучук, обладая всеми желательными свойствами полиизобутиленов (химическая стойность, устойчивость к старению, хорошая газонепроницаемость и др.), в отличие от полиизобутилен- способен вулканизоваться. [c.172]

    После полимеризации в смоле остается некоторое количество ненасыщенных связей, что обусловливает протекание процессов самоокисления и медленной полимеризации на воздухе. Поэтому при хранении лака этиноль его физико-химические свойства изменяются, а пленка лака, нанесенная на металл, быстро стареет. Для предупреждения самоокисления в лак этиноль вводится в количестве от 1,5 до 2,5 /о стабилизатора, которым служит многоатомный фенол марки АО (антиокислитель древесно-смоляной) и антиполимеризатор АП. Уменьшение склонности к старению достигается путем модифицирования лака этиноль различными добавками. В качестве добавок вводились полиизобутилен, фенол, хлоропренавый каучук, хлорпарафин, диметилси- [c.135]

    Наряду с непрерывным и периодическим добавлением пря-садок механическими способами [36, 38, с. 265—272] применяют и другие способы дозированного ввода присадок с использованием диффузионных процессов. В этих случаях для присадок используют емкости из материалов, физико-химические свойства которых обеспечивают поступление присадок в масло во время его контакта с этими материалами. В качестве таких -материалов — носителей присадок — употребляют различные -пористые вещества [18]. Носители пропитывают присадками, а затем домещают в специальную емкость на линии циркуляции масла. При циркуляции горячего масла происходит интенсив- ый массообмен с пористым носителем присадок. Изменяя по- верхность пористого носителя, расход масла через линию циркуляции и другие показатели, можно подобрать режим дозирования присадки, наиболее близкий к темпу ее срабатывания. В другой работе также описана система дозированного ввода лрисадок с использованием в качестве носителя медленно растворяющихся в маслах полимеров, например полиизобутилена с молекулярной массой около 100 000. Расплавленный полимер смешивают с сукцинимидными, сульфонатными и диалкилдитиофосфатными присадками. Смесь охлаждают, и затвердевшую массу помещают в корпус масляного фильтра. Во время циркуляции масла в работающем двигателе полиизобутилен медленно в нем растворяется, а вместе с полиизобутиленом растворяются и присадки. [c.124]

    Здесь приведены примеры вескольких типичных органических линейных полимерных цепей. Простейший органический полимер — полиэтилен. Его цепи содержат до 10 связей С—С и соответственно молекулярные веса достигают значений порядка 10 . Полиизобутилен, полистирол, поливиниловый спирт и ряд других полимеров могут рассматриваться как производные полиэтилена типа (СПК) . При этом мы отвлекаемся от конечных групп, таковыми в полиэтилене являются, по-видимому, ме-тильные группы СПд. Полибутадиен и каучук являются представителями полимеров, каучукоподобных при обычных температурах. Эти полимеры содержат двойные связи С=С в цепи. Подробности об известных науке линейных полимерах и методах их получения читатель найдет в специальной литерату])е [ ]. Химическое строение полимеров не представляет собой чего-либо принципиально отличного от строения аналогичных низкомолекулярных соединений. Химические свойства полимеров не позволяют выделить их в какой-либо особый класс. Так, например, полиэтилен является насыщенным углеводородом, отличающимся от низкомолекулярных парафинов большей длиной цепи, большим молекулярным весом. Реальные полимеры, в отличие от низкомолекулярных соединений, не могут быть охарактеризованы однозначной брутто-формулой, но представляют собой смесь полимер-гомологов с более или менее резким распределением по молекулярным весам. Эти свойства полимеров не создают, однако, особенностей в их химическом поведении, принципиально отличающих полимеры от низкомо-леку,11ярных веществ. Так, например, химические реакции полиэтилена подобны химическим реакциям любого низкомолекулярного парафина, так как за них ответственны отдельные группы СН2, входящие в состав и того, и другого вещества. Своеобразны как раз физические, а не химические свойства полимеров. В этом смысле высокомолекуляр- [c.14]

    Полипропилен [—СНг—СНСНз—] и полиизобутилен [—СНг—С (СНэ) 2—]п получают соответственно ионной полимеризацией пропилена и изобутилена, используя в качестве катализатора в первом случае комплекс Циглера — Натта, а во втором — различные соединения галогена (А1С1з, ВРз, А1Вгз). В химическом отношении полипропилен аналогичен полиэтилену, но отличается значительно большей механической прочностью, что позволяет применять его для изготовления водопроводных труб различного диаметра, а также в качестве облицовочного материала с антикоррозионными и декоративными целями. Особое значение для строительства приобрела полипропиленовая пленка, употребляемая в качестве гидроизоляционного материала. Для некоторых работ иногда готовят специальные асфальты с добавлением в них полипропилена в виде порошка, что значительно улучшает его свойства, повышает стойкость к старению и воздействию высоких температур. Полипропилен может идти на армирование цемента. Полученный при этом строительный материал близок к асбестоцементу, но технология его изготовления и проще и безвреднее нет контакта с асбестовой пылью. [c.415]

    Многие полимерные материалы обладают ценными химическими и физическими свойствами и успешно применяются в различных областях энергетической техники как конструкционные и электротехнические материалы. Для этой цели используются термопластичные и термореактивные полимеры. Из термопластичных полимеров широко применяют полиметилметакрилат (органическое стекло), полистирол, полиэтилен, винипласт (непластифицированный поливинилхлорид), полиизобутилен, капрон, фторопласт-4 (политетрафторэтилен), из термореактивных — фенопласты, получаемые на основе фенолоформаль-дегидной смолы аминопласты, получаемые на основе мочевино-формальдегидной смолы полиэфирные, эпоксидные и кремнийорганические полимеры. [c.337]

    Возможные области применения полиизобутиленов весьма разнообразны. Так, например, они могут применяться для изготовления водонепроницаемых тканей для дождевых плащей, палаток, покрытий, защитной одежды против кислот и щелочей, приводных ремней, транспортерных лент и др. Из-за высокой химической стойкости, устойчивости к старению, отсутствия запаха и вкуса полиизобутилены более пригодны для обкладки различных сосудов, труб, изготовления рукавов, прокладок и т. п., чем натуральный каучук. Вследствие высоких электроизолирующих свойств, озо-постойкости и нечувствительности к воде полиизобутилены и их комбинации с каучуком применяются в электротехнике, но их текучесть на холоду ограничивает возможность применения, особенно для изоляции тяжелых [c.654]

    Как же после всего сказанного о полимерах применять к ним понятия— химическое соединение и химический индивид Совершенно очевидно, что понятие о химической индивидуальности в химическом смысле здесь неприменимо, хотя полимеры — химические соединения, а не смеси. Очевидно также, что нет никакой необходимости отбрасывать вовсе ионятие о химической индивидуальности этих веществ, ибо такие полимеры, как полиэтилен, полипропилен, полиизобутилен, полистирол н т. д. —это качественно различные вещества. Поэтому иредставления о химической индивидуальности применительно к высокомолекулярным соединениям в будущем должны, но-видимому, основываться не на определении лишь одного состава молекул, а на тех качественных особенностях данного вещества, которые отличают его и по составу, и но строению, и но свойствам от других веществ, в том числе и от его аналогов. [c.203]

    В книге описываются методы получения, свойства и способы применения новых антикоррозионных и герметизирующих материалов на основе жидких наиритов, тиокопов, а также жидких силоксановых каучуков и низкомолеку-.пярных полиизобутиленов. Наряду с рецептурой гуммиро-вочных составов приводятся подробные таблицы физикомеханических, антикоррозионных и других эксплуатационных свойств покрытий, рассматривается техника покрытий химической аппаратуры и другого оборудования и освещается опыт и перспективы применения этих материалов в различных отраслях промышленности СССР и зарубежных стран. [c.224]

    Высокомолекулярный каучукоподобный полимер изобутилена обладает исключительной стойкостью к действию различных химических соединений, устойчивостью к старению, хорошими. диэлектрическими свойствами. К недостаткам этого полимера относится отсутствие метода его вулканизации, что также обусловлено химической его инертностью. Невулканизованные же резины, в том числе и полиизобутилен, термопластичны, обладают текучестью на холоде. Области применения каучукоподобиых полиизобутиленов определяются вышеперечисленными свойствами. [c.170]

    И. Я. Клинов и Т. Л. Фабрикант (Московский институт химического машиностроения, кафедра коррозии) провели также работы по модифицированию лака этиноль. Модифицирование лака этиноль полиизобутиленом не дало заметного улучшения свойств, а введение полиизобутилена значительно усложняет технологию приготовления асбовиниловой массы. [c.13]

    Полиизобутилен получается при полимеризации изобутилена (бесцветный газ с температурой кипения — 6,9°) в присутствии катализатора (А1С1з и др.). Он представляет собой каучукоподобный эластичный мягкий материал с высокой морозостойкостью, водостойкостью и химической стойкостью. При обыкновенной температуре он устойчив почти ко всем кислотам и щелочам, не растворяется в спиртах, эфирах и других полярных растворителях. Сравнительно легко полиизобутилен растворяется в ароматических углеводородах, сероуглероде и хлорированных углеводородах. Высокоэластические свойства полиизобутилена сохраняются в пределах от —60 до 4-60°. При более высоких температурах он становится липким. [c.164]

    На основе БК могут изготовляться уплотняющие материалы в виде монолитных и пористых прокладок, лент, жгутов и другого профилированного погонажного материала, а также в виде пастообразных композиций, эксплуатируемых в пластическом состоянии или в вулканизованном виде. В этих материалах, помимо высокой газонепроницаемости, химической и тепловой стойкости также ценится отличная стойкость к естественному старению в воде и на воздухе. Хотя известны композиции, вулканизующиеся при комнатной температуре, например под воздействием парахинондиоксима, наиболее распространены нетвердеющие или, как их еще называют невысыхающие герметики. В них БК нередко используется совместно с полиизобутиленом или этилен-пропиленовым сополимером — каучуком, по свойствам наиболее близким к БК, а также с битумом, естественными или искусственными смолами и т. д. Такие составы, кроме порошкообразных или волокнистых наполнителей, обычно содержат растворители, в качестве которых используют минеральные или растительные масла, низкомолекулярные каучуки, немигрирующие пластификаторы и другие тяжелокипящие жидкости. При употреблении высыхающего льняного масла в герметик обычно вводят и сиккативы с тем, чтобы отвержденная на воздухе льномасляная пленка предохраняла пластичную мастику от оползания, запыливания и окисления. В зависимости от назначения в герметики нередко вводят адгезивы (в том числе и хлорбутилкаучук), огнезащитные вещества (антипирены) и другие добавки целевого назначения. В отечественной литературе [23, 24] опубликованы рецепты многих ревысыхающих [c.47]

    С целью изучения возможности ремонта некоторых антикоррозионных резин при помощи тиоколового герметика У-ЗОМ, были поставлены опыты по определению адгезии к резинам, наиболее часто употребляемым при гуммировании химической аппаратуры. Свежеприготовленный герметик У-ЗОМ прочно соединяется с наиритовой резиной Д-10 Н, с покштием из жидкого наирита, с листовым полиизобутиленом ПСГ и с вулканизованным покрытием из того же герметика У-ЗОМ, Благодаря этому герметик может быть использован для заделки неболь-щих повреждений на резиновых изделиях или покрытиях указанного типа. На основании проведенных исследований [12, 167] герметик У-ЗОМ был предложен для гуммирования химической и другой аппаратуры с целью защиты от коррозии, вызываемой водой или растворами электролитов, в том числе разбавленными кислотами. Гуммирование целесообразно проводить пастами, поскольку в этом случае не только упрощается технология, но гарантируется беспористость покрытия и, следовательно, его высокие защитные свойства. [c.133]

    Бутнлкаучук, имеющий некоторую непредельность, способен вулканизоваться. Следует, однако, заметить, что это ценное свойство бутилкаучука обычно не используется при употреблении его в герметизирующих составах, в которых он выступает главным образом как термопластичный, а не термореактивный материал. В невулканизованном состоянии бутилкау-чук обладает примерно такой же химической устойчивостью к действию кислот и щелочей, как и полиизобутилен. [c.191]


Смотреть страницы где упоминается термин Полиизобутилен химические свойства: [c.219]    [c.29]    [c.380]    [c.157]    [c.182]    [c.281]    [c.179]    [c.186]    [c.103]    [c.52]    [c.5]   
Химия и технология синтетических высокомолекулярных соединений Том 9 (1967) -- [ c.310 ]




ПОИСК





Смотрите так же термины и статьи:

Полиизобутилен



© 2024 chem21.info Реклама на сайте