Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутан из спирта

    Относительная реакционная способность типичных водородных атомов понижается от третичных к вторичным и первичным. При 300° скорости их окисления относятся как 10 2 1. Поэтому изобутан окисляется очень легко. Метан и этан, содержащие только первичные водородные атомы, чрезвычайно устойчивы к окислению. Пронан и бутан, имеющие первичные и вторичные водородные атомы, занимают среднее положение. В настоящее время еще не известен промышленный способ окисления метана в метиловый спирт пли формальдегид. [c.150]


    Каталитическое окисление в жидкой фазе имеет то преимущество перед газофазным процессом, что позволяет более точно регулировать состав конечных продуктов [60]. Та1 , при окислепии н-бутана в жидкой фазе образуется в первую очередь уксусная кислота при полном отсутствии формальдегида. При окислепии же пропана в газовой фазе, напротив, образуются главным образом пропионовый альдегид, пропиловый спирт, ацетон, уксусный альдегид, уксусная кислота, формальдегид, метиловый спирт, окись пропилена, окись этилена. При окислении н-гексана теоретически можно получить около 60 различных продуктов окисления, не считая вторичных продуктов, образующихся за счет дальнейших реакций кислородсодержащих компонентов. Метан и этан не только содержатся в значительно больших количествах в природном газе, чем пропан или бутан, но они представляют интерес и для применения в качестве исходного сырья, так как нри окислении дают продукты более простого состава. Именно сложный состав продуктов газофазного окисления был причиной того, что внедрение этого процесса в промышленную практику сильно задержалось. [c.151]

    Переработка углеводородных газов может быть направлена на получение других ценных продуктов — фенола, этилового спирта и т. п. В отдельных районах смеси пропан-пропиленовой и бутан-бутиленовой фракций в сжиженном виде используются в качестве топлива в двигателях внутреннего сгорания и в быту для газовых плит (сжиженный газ из баллонов).  [c.63]

    Вторичный и третичный бутиловые спирты получают в настоящее время сернокислотной гидратацией олефинов С4 (соответственно н- и изобутилена). Сырьем для получения этих спиртов служит обычно бутан-бутиленовая фракция нефтезаводских газов, содержание бутиленов в которой колеблется от 15 до 40% вес. Содержание бутиленов и соотношение между изомерами зависит от источника ползгчения жирных газов, перерабатываемых на газофракционирующих установках. Основными источниками олефин-содержащих газов на современных нефтеперерабатывающих заводах (НПЗ) являются газы процессов термического и каталитического крекингов [50]. [c.81]

    Метил-трег-бутиловый эфир [105, 150]. Процесс получения МТБЭ основан на реакции конденсации метанола и изобутилена в качестве катализатора используется ионообменная смола. Источники изобутилена бутан-бутиленовая фракция процессов каталитического крекинга и пиролиза изобутилен, получаемый в процессе дегидратации трег-бутилового спирта — побочного продукта при производстве пропиленоксида из изобутана изобутилен, получаемый дегидрированием изобутана. [c.177]


    Процесс взрывного распада диацетилена может быть флегматизирован добавками бутана. Жидкий диацетилен, смешанный с бутаном в отношении 1 1, может быть нагрет до 220°С без последующего взрыва. Давление паров при этом достигает 160 ат, тогда как в отсутствие бутана диацетилен взрывается уже при 60°С и давлении 6,5 ат. Стабилизация жидкого диацетилена производится путем добавления равного по весу количества метилового или этилового спиртов. [c.47]

    Пропан, бутан, н- и изопентан, выделенные из природных газов и газов стабилизации бензинов, могут быть использованы в нефтехимической промышленности для получения пропилена и бутиленов, а также спиртов, альдегидов и кислот (при окислении) с тем же или меньшим числом углеродных атомов. [c.48]

    Перспективны проводимые в СССР работы по омылению хлор-бутанов в бутиловые спирты. [c.125]

    Как мы видим, катализатор представляет собой вещество, которое ускоряет химическую реакцию, обеспечивая более легкий путь ее протекания, но само не расходуется в реакции. Это не означает, что катализатор не принимает участия в реакции. Молекула РеВгз играет важную роль в многостадийном механизме рассмотренной выше реакции бромирования бензола. Но в конце реакции РеВгз регенерируется в исходной форме. Это является общим и характерным свойством любого катализатора. Смесь газов Н2 и О2 может оставаться неизменной при комнатной температуре целые годы, и в ней не будет протекать сколько-нибудь заметной реакции, но внесение небольшого количества платиновой черни вызывает мгновенный взрыв. Платиновая чернь оказывает такое же воздействие на газообразный бутан или пары спирта в смеси с кислородом. (Некоторое время назад в продаже появились газовые зажигалки, в которых вместо колесика и кремня использовалась платиновая чернь, однако они быстро приходили в негодность вследствие отравления поверхности катализатора примесями в газообразном бутане. Тетраэтилсвинец тоже отравляет катализаторы, которые снижают загрязнение атмосферы автомобильными выхлопными газами, и поэтому в автомобилях, на которых установлены устройства с такими катализаторами, должен использоваться бензин без примеси тетраэтилсвинца.) Каталитическое действие платиновой черни сводится к облегчению диссоциации двухатомных молекул газа, адсорби- [c.303]

    Аммиак ацетилен ацетон бензин Калоша бензол бутан бутилен бутиловый спирт водород дивинил дихлорэтан диэтиловый эфир изобутан изобутилен изопентан изопрен метан метанол моновинилацетилен окись углерода пентан пропан пропилен стирол толуол хлористый аллил хлористый бутил хлористый винил хлористый метил хлористый этил этан этилен этиловый спирт. [c.192]

    Ацетилен аллиловый спирт акролеин акрилонитрил ацетон ацетальдегид бутан бутилен бензин Б-70 бензин Б-95/130 бензин А-72 диизопропиловый эфир диоксан диэтиламин диметилдиоксан изобутилен изобутан изопрен изопентан изопропиловый спирт изобутиловый спирт коксовый газ пропиловый спирт пентан пропилацетат пропилформиат сольвент нефтяной сольвент каменноугольный топливо Т-1 топливо ТС-1 толуол триэтиламин бензин А-66 бензин Калоша бензол бутиловый [c.192]

    Циклогексанол н-Бутиловый спирт н-Бутан Диэтилкетон [c.100]

    Тривиальные названия не вытекают из каких-либо единых систематических принципов номенклатуры они не выражают строения соединения и обычно отражают историю, происхождение веществ, выделение их из природных продуктов, путь синтеза и т. п. (например, рудничный газ, муравьиная кислота, винный спирт, бензол, ванилин, стрептоцид). Многие соединения названы по имени ученого, открывшего их (кетон Михлера, углеводород Чичибабина и т. п.). Однако и некоторые тривиальные названия приведены в известную систему. Так, в ряду метана все названия углеводородов, начиная от С5, являются систематическими — корни их производятся от греческих числительных, и все они имеют общее окончание -ан (пентан, гексан, гептан) и т. д. (ср. стр. 306) названия же первых четырех представителей этого ряда (метан, этан, пропан, бутан) — тривиальные, так как корни их не образованы по какой-либо системе, однако и эти названия имеют общее для ряда метана окончание -ан. Такие [c.270]

    Подобная тенденция проявляется в изменении структуры методов производства ряда нефтехимических продуктов с заметным переходом к широкому применению более селективных процессов. Например, следует отметить тенденцию к снижению абсолютных масштабов производства некоторых нефтехимических продуктов, в частности ацетальдегида и этилового спирта. Это явление обусловлено внедрением в промышленность новых методов получения бутилового спирта и 2-этилгексанола, на производство которых ранее расходовался ацеТ-альдегид, а также заменой этилового спирта как сырья для получения дивинила на бутилен и бутан, [c.12]


    Основной реакции сопутствуют многочисленные побочные и вторичные реакции, в частности крайне нежелательные реакции образования углеводородов, соответствующих по числу углеродных атомов высшим жирным спиртам, а также бутиловому и метиловому спиртам. Высокомолекулярные углеводороды загрязняют получаемые спирты, а газообразные углеводороды (метан, бутан) переходят в качестве примесей в циркулирующий водород. Степень превращения сырья достигает 95—99%. Для нормального протекания процесса и поддержания катализатора во взвешенном состоянии требуется 10—15-кратный избыток водорода. Реакционная смесь, состоящая из жирных спиртов, непрореагировавших эфиров, [c.32]

    Ацетон, бензин Б-100, бензол, пропан, толуол, окись углерода Бензин Б-95/130, бутан, спирты к-бутило-вый, метиловый, этиловый Бензины А-72, А-76, Б-70 нефть сырая ромаш-кинская  [c.220]

    Условия газофазного некаталитического окисления пропана и бутана на принадлежащих фирме Силениз Корнорейшн установках в Бишопе (Тексас, США) и Эдмонтоне (Канада) приблизительно следующие смесь, состоящая примерно из 7 объемов газа циркуляции, 1 объема свежего газа и 2 объемов воздуха под давлением 7 ат, проходит через нагретую до 370° печь, где в результате экзотермической реакции температура повышается до 450°. Горячие газы поступают затем в орошаемый водой абсорбер, где быстро охлаждаются до 90°, причем образуется водный раствор формальдегида, обогащаемый затем до концентрации порядка 12—14%. Выходящие из этого абсорбера газы промываются водой вторично. Из газов извлекаются ацетальдегид, метиловый спирт, ацетон и т. д., а углеводороды и азот остаются в газообразном состоянии. Приблизительно 75% отходящего газа как газ циркуляции возвращается в печь, где он смешивается с исходным углеводородным газом и воздухом и подвергается повторному окислению. ]Иеньшая часть (25%) выходящего из последнего абсорбера газа подается на специальную установку, где пропан и бутан отделяются от азота и низкокипящих [c.152]

    По окончании реакции верхний слой, содержапщй пропан, бутан и продукты полимеризации, отделяется. Сернокислотный слой, содержащий алкилсульфаты, настолько разбавляется водой, чтобы в результате образовалась 30%-ная серная кислота. Гпдролпз и выделение спиртов производятся непрерывным способом. Ректификацией на ряде колонн из конденсата выделяют изопропиловый и втор-бутиловый спирты и соответствующие эфиры. [c.204]

    Продукт реакции фильтруют в горячем состоянии, катализатор в особой установке промывают ксилолом и затем регенерируют. Горячий ксилольный раствор полиэтилена охлаждают до 25—60 и выделяющийся в осадке полимер отделяют фильтрованием. Для дальнейшего выделения полиэтилена к фильтрату добавляют л идкий пропан, бутан или спирт. Затем от фильтрата перегонкой отделяют ксилол, возвращающийся на иолимеризациоппую установку. В остатке остаются низшие полимеры этилена и алкилированпый ксилол. Полиэтилен освобождается от остатков растворителя. Превращение взятого для полимеризации этилена составляет около 98%. [c.224]

    Ректификационная колонка заполнена насадкой из мелких колец Ращига. Колонка орошается углеводородом (пропан, н-бутан или изобутан), который охлаждается смесью твердой углекислоты с этиловым спиртом, загружаемой в сосуд 13. Температуру измеряют пентановым термометром 12. В кубе 10 ректификационной колонны накапливаются [c.160]

    Яегкие побочные продукты крекинга — бутан-бутиленовая и пронан-пропиленовая фракции — представляют собой ценное сырье для производства как весьма важных компонентов авиационных и автомобильных бензинов, так и нефтехимических продуктов. Бутан-бутиленовая фракция является сырьем для алкилируюш их и полимеризационных установок из бутиленов и изобутана на алкилирующих установках получают авиационный алкилат, входящий в состав высококачественных авиабензинов. Пропан и пропилен перерабатывают в этилен и спирты, а нормальный бутан в бутадиен и т. д. [c.5]

    Как уже наблюдалось, при алкилировании изобутана олефинами нормального строения и с разветвленной цепью в присутствии серной кислоты реакция переноса водорода идет несколько меньше с ето/)-бутиловым спиртом, чем с грет-бутиловым спиртом [27]. При реакции изопентана с втор-буталовым спиртом при 24° образовалось 44 % нонанов, 12 % изобутана, 18% деканов, 31% гексанов, 7% гептанов и 12% октанов м-бутан в продуктах реакции обнаружен не был по-видимому, изомеризация сопровождала перенос водорода. [c.336]

    Диизобутилев холодной сернокислотной полимеризации. Олефины Се, получаемые при сернокислотной полимеризации изобутилена, могут применяться для получения нонилового спирта. Фталевые эфиры этого спирта хотя и придают пластика-там из полихлорвинила низкую морозостойкость, но обеспечивают им высокие диэлектрические свойства. В качестве сырья для получения нонилового спирта используется фракция диизобутилена, выкипающая в пределах 95—115° С и получаемая при обработке 65%-ной серной кислотой сырой бутан-бутиленовой фракции нефтезаводских газов. При соответствующих температурах серная кислота абсорбирует практически исключительно изобутилен, не затрагивая к-бутиленов. Извлечение изобутилена может осу-ществляться двумя способами с использованием системы смесительный насос-отстойник или в реакторе с мешалкой, оборудованной электромагнитным приводом. [c.107]

    Пропан и бутан. Указанные углеводороды за рубежом широко применяются в промышленности как сырье для процессов неполного окисления. В результате некаталитического парофазного окисления пропана при умеренных давлениях и температуре 250— 350° получается сложная смесь различных продуктов окисления ацетальдегид, формальдегид, метанол, пропиональдегйд, пропа-нолы, ацетон, окиси пропилена и этилена, этиловый спирт, уксусная И муравьиная кислоты, окись п двуокись углерода и др. [c.84]

    Из 1 природного газа, содержащего 60% метана (остальное пропан и бутан), фирма Уоккер получала 0,333 л жидких продуктов, в том числе 15% метилового спирта, 22% формальдегида, 3% ацетальдегида и 60% смеси, состоящей из растворителей и воды. [c.93]

    При работе на м-бутане с использованием 1300 вес. частей ледяной уксусной кислоты, содержащей 0,3 вес. частей ацетата хрома, при температуре 165—170°, давлении 57 ати, скорости подачи м-бутана и воздуха 3,5 и 16,35 вес. частей в 1 мин. соответственно выход продуктов окисления (в весовых частях) на 100 частей м-бутана по сообщению фирмы Селаниз составил уксусной кислоты 79,2, метИлацетата 12,6, этилацетата 7,2, спирта 1,9 и метилэтилкетона 6,6. [c.97]

    Пиролизу подвергаются пропан-пропиленовая фракция, поставляемая нефтезаводами, а также пропан-пропиленовая и бутан-бутиленовая фракции, возвращаемые с узла фракционирования газов, наряду с этим пиролизуются конденсат от ком-примирования нефтяных газов, а также возвратная этан-этиленовая фракция от синтеза спирта. [c.219]

    За исключением указателей СА, иногда еще используются радикало-функциональные названия для соединений этого класса, особенно для простых соединений алифатического ряда, например метиловый спирт или бензиловый спирт. Соединение (СНз)зСОН проще называть грет-бутиловым спиртом, чем 2-ме-тилпропанолом-2. Следует отметить, что название грег-бутанол некорректно, так как в нем суффикс -ол присоединен к несуществующему соединению грег-бутану. Соединение (СНз)гСНОН в промышленности называют изопропанолом, но с точки зрения систематики это также некорректное название. [c.129]

    Бутан, пеитан, пропилеи, метиловый спирт, этило- [c.143]

    Разделение смеси на компоненты путем ректификации затрудняется в системах, в которых компоненты в чистом состоянии обладз7от близкими давлениями насыщенного пара или в которых образуется азеотропная смесь. В таких случаях нередко применяют методы, называемые азеотропной перегонкой и экстракционной (экстрактивной) перегонкой. Они основаны на добавлении к системе из двух компонентов третьего, который обладает различной растворяющей способностью по отношению к основным компонентам системы и в соответствии с этим неодинаково изменяет летучесть последних. В качестве примера азеотропной перегонки можно привести обезвоживание этилового спирта путем перегонки при добавлении бензола, а в качестве экстракционной — разделение бутан-бутиленовой смеси путем перегонкн при добавлении водного раствора ацетона. [c.324]

    С помощью этого метода можно рассчитывать свойства не только углеводородов, но и других соединений. Однако наличие сильно полярных связей (вследствие более значительного влияния их на другие связи) может существенно снижать точность результатов расчета и тем самым ограничивать его применимость. ГринЗ указывает, что согласно этому методу можно было бы ожидать, что разность теплот образования (АЯ , гэз) между бутаном и изобутаном, пентаном и изопентаном, бутантиолом-1 и бута тиолом-2, пропантиолом-1 и пропантиолом-2, нормальным и изопропиловым спиртами будет одинакова. В действительности же это соблюдается только для первых четырех из указанных пар (углеводороды и тиолы), для которых разность равна 2,00 0,10 ккал/моль, но для пропиловых спиртов она почти в 2 раза больше (3,71) и для пары нормальных первичного и вторичного бутилового спиртов она равна [c.271]

    Шире применяется способ окисления более дещевой, чем н-бутан, легкой фракции прямогонного бензина (С5—Св). Она содержит смесь н- и изопарафинов, что осложняет реакцию и состав продуктов. Их можно, однако, разделить на две группы кислоты (муравьиная, уксусная, пропионовая, янтарная) и нейтральные вещества (спирты и кетоны). Последние более летучи (сами по себе или в виде азеотропных смесей с водой, которая также находится в продуктах окисления), и это позволяет отделить нейтральные вещества от кислот и вернуть их на окисление. Из кислотной фракции выделяют чистые муравьиную, уксусную, пропионовую и янтарнук кислоты выход их из 100 кг бензина составляет соответственно 20, 70—75, 10—15 и 5—10 кг. [c.381]

    Успехи органической химии позволяют производить ряд ценных органических продуктов из самого разнообразного сырья. Так, напрнмер, этиловый спирт, используемый в громадных количествах в производстве синтетического каучука, искусственных волокон, илас ическпх масс, взрывчатых веществ, эфиров и т. п., можно получать из пищевых продуктов (зерна, картофеля, сахарной свеклы), гидролизом древесины и гидратацией этилена. Этилен же, в свою очередь, получается при химической переработке природных газов, нефти и других видов топлива. Вначале пищевое сырье в производстве спирта стала вытеснять древесина. Из 1 т древесины при гидролизе получается около 160 кг этилового спирта, что заменяет 1,6 т картофеля или 0,6 т зерна. Производство гидролизного спирта обходится дещевле, чем из пищевого сырья. При комплексной химической переработке древесина используется вместо пищевого сырья также в производстве глицерина, кормового сахара, кормовых дрожжей, уксусной, лимонной и молочной кислот и других продуктов. Особенно быстро развивается производство синтетического спирта гидратацией этилена таким образом, растительное сырье вытесняется минеральным. Себестоимость синтетического спирта из нефтяных газов в три раза ниже, чем из пищевого сырья. Интенсивно развивается также производство синтетического каучука из бутан-бутиленовой фракции попутных нефтяных газов, поэтому этиловый спирт потерял доминирующее значение в производстве. синтетического каучука. Из продуктов переработки газов и нефти ныне вырабатывают также уксусную кислоту, глицерин и жиры для производства моющих средств. При этом экономятся громадные количества пищевого сырья и получается более дешевая продукция. [c.23]

    Газовые потоки установок каталитического крекинга и термических процессов разделяются на пропаи-пропилеиовую и бутан-бутиленовую фракции. Про-пан-пропиленовая фракция используется для выработки автобензинов методом полимеризации и как нефтехимическое сырье для производства фенола и ацетона, бутиловых спиртов, нитрила акриловой кислоты, полипропилена. Из бутан-бутиленовой фракции получают легкий компонент высокооктановых бензинов методом алкилирования. Бутан-бутиленовая фракция является также ценным нефтехимическим сырьем для производства присадок к маслам (полиизобу-тилена, иоиола), метилэтилкетона, мономеров для СК (бутадиена, изопреиа, бутиленов). [c.57]

    Очищенная бутан-бутиленовая фракция с содержанием изобутилена не более 2% (масс.) контактирует с 80—85%-ной серной кислотой по схеме двухступенчатого противотока в реакторах 1 и 2 при температуре 30—45 °С (рис. 6.23). Насыщенная бутилсерная кислота из отстойника 3 попадает в гидролизер 5, а затем в отстойник 6, в котором отделяются полимеры. Нижний водный слой подается в спиртоотгонную колонну 7. Из куба колонны отбирается отработанная серная кислота для концентрирования, а из верха верхней части — пары воды, вторичного бутилового спирта и полимеров и туман серной кислоты. После отмывки серной кислоты водой и щелочью (колонны 8, 9) происходит конденсация продуктов гидролиза — вторичного бутилового спирта-сырца и примесей. Вторичный бутиловый спирт подается в двухколонный агрегат 11, 13. С верха колонны II отводится азеотроп 2БС — вода [68—73% (масс.) спирта], а с низа—фузельная [c.203]


Смотреть страницы где упоминается термин Бутан из спирта: [c.152]    [c.22]    [c.208]    [c.446]    [c.447]    [c.190]    [c.191]    [c.192]    [c.222]    [c.73]    [c.18]    [c.149]    [c.622]   
Избранные работы по органической химии (1958) -- [ c.420 ]




ПОИСК





Смотрите так же термины и статьи:

Бутан

Бутан Бутан

Бутан Бутиловый спирт Бутанол

Бутан абсорбция в спирты

Бутан втор-Бутиловый спирт

Бутан трет-Бут иловый спирт

Бутанал

Непредельные спирты в преобразованном бутане

Непредельные спирты, восстановление бутана

Пропиловый спирт из бутана

Сведения о получении изобутилена изомеризацией н-бутана и дегидратацией изобутилового спирта

Спирты, первичные получение из бутана

Этиловый спирт при окислении бутана

бром бутану к олефинам, спиртов



© 2025 chem21.info Реклама на сайте