Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поликонденсация пространственная

    Термореактивные смолы, называемые резольными, получают при избытке формальдегида в присутствии щелочного катализатора. В этих условиях происходит связывание длинных линейных цепей поперечными связями с образованием на последней стадии поликонденсации пространственных полимеров  [c.286]

    Ионообменная очистка основана на способности ионообменных смол (ионитов) удерживать те загрязнения, которые в растворенном состоянии диссоциируют на ионы. Иониты получают путем полимеризации и поликонденсации органических веществ они представляют собой твердые гигроскопичные гели, не растворимые в воде и углеводородах. В высокомолекулярной пространственной решетке ионита закреплены фиксированные ионы. Заряды этих ионов компенсируются зарядами противоположного знака, принадлежащими подвижным ионам (противоионам), расположенным в ячейках решетки и способным к обмену с ионами раствора электролита. Иониты, содержащие активные кислотные группы и подвижные катионы, способные к обмену, называются катионитами, а иониты с активными основными группами и подвижными анионами — анионитами. [c.125]


    Отвержденная смола подвергается грубому дроблению в дробилке 11 я через элеватор 12 и транспортер 13 поступает на завершение поликонденсации. Аппарат 14 для окончательной поликонденсации имеет полки, по которым катионит последовательно проходит сверху вниз в течение 24 ч. Температура на полках 90—100°С. На этой стадии происходит окончательное отверждение полимера и получение катионита трехмерного пространственного строения. Далее катионит измельчают в ножевой 15, а затем дисковой 17 дробилке и просеивают на вибрационных ситах 16 для получения частиц размером 0,3—2 мм. Здесь в аппаратах 16 происходит отделение пыли. Просеянный катионит промывают водой для удаления свободной серной кислоты (выделившейся при отверждении продукта). Промывку осуществляют в колоннах 19 до со- [c.91]

    Важную роль в процессе спекания играют различия в структуре высокомолекулярных соединений нефтяных остатков — смол и асфальтенов прямогонного и деструктивного происхождения. По данным рентгеноструктурного исследования, при термической поликонденсации смол и асфальтенов прямогонных остатков получаются промежуточные продукты, плохо упорядоченные в двухмерной плоскости, с пространственными связями, затрудняющими перемещение этих молекул в коллоидных растворах. В отличие от них смолы и асфальтены, выделенные из крекинг-остатков вторичного происхождения, относительно хорошо упорядочены в двухмерной плоскости, а при термоконденсации мало или совсем не образуют пространственных связей. Это позволяет из остатков, содержащих [c.75]

    Если общее количество функциональных групп в соединениях, вступающих в реакцию поликонденсации, превышает четыре группы, образуется пространственный полимер. В реакции поликонденсации двух компонентов, содержащих вместе пять и более функциональных групп, количество функциональных групп в образующемся полимере постепенно увеличивается  [c.418]

    При введении большего количества воды или при нагревании продуктов реакции происходит дальнейшее отщепление бутоксигрупп и поликонденсация вплоть до образования твердого нерастворимого пространственного полимера [c.498]

    Различают линейную поликонденсацию, которая имеет место при наличии у исходных веществ двух функциональных групп, и поликонденсацию с образованием трехмерных пространственных полимеров. Исходные реагенты в этом случае должны иметь более двух функциональных групп. [c.204]


    Известно, что структура макромолекулярной цепи полимеров определяется функциональностью мономеров. В случае бифункциональных мономеров при поликонденсации образуются линейные полимеры (линейная поликонденсация). Если в поликонденсацию вступают мономеры с функциональностью, равной трем и более, то образуются разветвленные или пространственные полимеры. Такая поликонденсация называется пространственной. Чем больше функциональных групп содержит мономер, тем больше он похож на жесткую пространственную сетку с высокой степенью поперечного сшивания. Примером такой структуры может служить полимер, полученный из глицерина и фталевой кислоты (см. с. 386). [c.402]

    При поликонденсации, которая протекает по ступенчатой схеме, размер молекулы непрерывно увеличивается с относительно низкой скоростью (сначала из мономеров образуется димер, тример, тетрамер и т. д. до полимера) до образования полимера с молекулярной массой 5000 — 10 ООО. Полученные в результате поликонденсации молекулы устойчивы и могут быть выделены на любой стадии процесса. Они содержат те же функциональные группы, что и у исходных мономеров, и могут участвовать в дальнейших реакциях друг с другом или с другими мономерами. Это используется в промышленности для получения олигомеров и полимеров с пространственно-сшитой структурой. Схема образования полиамидной смолы — капрона — служит [c.333]

    Общие закономерности процесса поликонденсации, приводящего к образованию линейных полимеров, распространяются и на реакции образования полиэфиров пространственного строения. [c.68]

    Исходные и полученные в результате поликонденсации молекулы устойчивы и могут быть выделены. Однако они содержат на концах реакционноспособные группы и могут участвовать в дальнейших реакциях конденсации друг с другом или с другими мономерами. Это используется в промышленности для получения олигомеров и синтеза из них различных полимеров, в том числе имеющих структуру пространственно-сшитых. [c.67]

    Если разрывы кратных связей обеспечивают появление более двух свободных валентностей или в реакцию поликонденсации вступают молекулы, содержащие три и более функциональные группы, то это позволяет молекулам расти в трех направлениях и приводит к образованию пространственных полимеров, в которых между цепями осуществлены ковалентные связи. [c.275]

    В зависимости от состава основной цепи полимерные соединения делят на карбоцепные, гетероцепные и элементорганические. По форме макромолекул и порядку расположения валентных связей различают полимеры линейные, разветвленные и пространственные. Особенности указанных полимеров были рассмотрены в разделе 1 (стр. 7). По методам синтеза принято делить полимерные соединения на две группы полимеры, получаемые реакцией полимеризации полимеры, получаемые реакцией поликонденсации и ступенчатой полимеризации (стр. 33). По тому, как полимерные соединения ведут себя при нагревании, их делят на термопластичные и термореактивные. [c.26]

    Лаки представляют собой растворы пленкообразующих веществ (основа лака) в органических растворителях (летучая часть лака). Основа лака может состоять из одного иЛи нескольких веществ, образующих после удаления растворителей лаковую пленку из полимерного соединения линейной или пространственной структуры. Процесс образования пленки линейной структуры (на основе эфиров целлюлозы, полистирола и др.) заключается в удалении растворителя. Он не сопровождается химическим изменением пленкообразующих веществ и требует относительно низких температур. Основа лаков этого типа, кроме полимерных соединений, часто содержит пластификаторы. Процесс образования пленки пространственной структуры сопровождается реакциями окисления, полимеризации и поликонденсации, что требует более высоких температур. В состав основы таких лаков входят высыхающие масла, термореактивные смолы в смеси с другими смолами. Иногда в лаки для ускорения процессов поликонденсации добавляют сиккативы и сшивающие агенты. [c.32]

    В результате поликонденсации могут образоваться макромолекулы, имеющие линейный или пространственный характер. [c.41]

    Так как реакция поликонденсации может быть прервана, то пространственный полимер может получаться не сразу сначала образуется линейный полимер (растворимый и плавкий), а затем пространственный (нерастворимый и неплавкий). Такое разделение имеет большое технологическое удобство, так как первую стадию можно осуществить в производстве материала (лака, пресс-порошка), а вторую — в процессе изготовления изделия (например, изоляционного покрытия на проводах, прессования изделия). [c.41]


    Различают три стадии поликонденсации резольных смол А, В и С. Смолы в стадии А, называемые резолами, способны плавиться и растворяться в различных растворителях. Пространственный полимер представляет собой смолу в конечной стадии ноликонденсации — стадии С. Смола в этой стадии, называемая резитом, от нагревания не размягчается и не плавится, нерастворима и не набухает в растворителях. Между начальной и конечной стадиями сушествует промежуточная стадия В. На этой стадии смолы (резитолы) нерастворимы и неплавки, но способны набухать в некоторых растворителях (например, в ацетоне) и от нагревания размягчаются. [c.203]

    Феноло- и аминоформальдегидные смолы получают поликонденсацией формальдегида с фенолом или аминами (см. ХП1.1). Это термореактивные полимеры, у которых в результате образования поперечных связей образуется сетчатая пространственная структура, которую невозможно превратить в [c.368]

    При поликонденсации бифункциональных соединений обычно образуются линейные полимеры. В случае поликонденсацин соеди-нений, содержащих более двух функциональных групп, образуются полимеры с разветвленной и пространственной структурой. Такой процесс можно иллюстрировать схемой поликонденсации трехатомного спирта — глицерина и двухосновной фталевой кислоты [c.462]

    На приведенной схеме показано, что в результате поликонденсации (в зависимости от условий реакции) могут образоваться не только линейные структуры. При избытке формальдегида его молекулы могут реагировать с иминогруппами (отмечены звездочкой) линейных макромолекул. После отшепления воды последние окажутся сшитыми между собой метиленовыми мостиками. При этом могут образоваться пространственные структуры высокой прочности. [c.100]

    С раэвнт( ем химии высокомолекулярных соедипеннп стало возможным синтезировать самые разнообразные иониты, получившие название ионообменных смол. Для их синтеза применяют различные продукты полимеризации или поликонденсации пространственного (сетчатого) строения, При полимеризации в качестве сшивающего агента обычно используют дивинилбензол.) Эти пространственные полимеры являются как бы скелетом ионообменных смол. В состав ионообменных смол входят также ионогенные группы, т. е. группы, способные к электролитической диссоциации. К ннм относятся карбоксилыше груипь], сульфогруппы, в незначительной степени гидроксильные группы фенолов и др. Ионогенные группы могут входить в состав молекулы мономера, из которого [c.507]

    Детальное рассмотрение этих вопросов выпадает из рамок нашей работы. Отметим лишь, что термическое воздействие на ВМС нефти приводит, как правило, к отщеплению насыщенных фрагментов, дополнительной ароматизации, поликонденсации молекул и к формированию пространственно более упорядоченных слоистых, а на поздних стадиях — графитоидных структур. Более подробные сведения о термических превращениях смол и асфальтенов можно найти, нанример, в работе [6]. [c.199]

    В качестве примера постепенпого образования полимера пространственной структуры может с.тужить поликонденсация силан-трио.лов  [c.160]

    При поликонденсации фенола и формальдегида промежуточно образуются оксибензиловый спирт и диметилолфенол, взаимодействие которых приводит к получению пространственного полимера  [c.161]

    В процессе поликонденсации оксибензиловых спиртов с ди-и триметилольны.ми производными фенола образуется пространственный полимер. Изменяя условия реакции поликонденсации (повышение pH или снижение температуры), можно приостановить этот процесс на какой-либо промежуточной стадии, В тех случаях, когда получаемый полимер предполагается использовать в производстве изделий, клеев, лаков, реакцию поликонденсации целесообразно приостановить на стадии образования сравнительно низкомолекулярного продукта (молекулярный вес 700— 1000). Полимер, полученный на этой стадии поликонденсации (обычно 1 азываемый феноло-формальдегидной смолой), представляет собой прозрачную янтарного цвета аморфную массу, твердую, стекловидную, но очень хрупкую. При 60—90° полимер перех одит в жидкотекучее состояние, легко [c.375]

    Закончив формование изделий, нанесение клеевых или лаковых пленок, их вновь нагревают. В этих условиях процесс полн-конденсации возобновляется происходит увеличение молекулярного веса и образование полимера пространственной структуры. По мере возрастания степени поликонденсации полимер утрачивает растворимость и способность переходить в жидкотекучее состояние, затем перестает набухать в растворителях и переходить в пластическое состояние при нагревании. Вплоть до 250—280" полимер сохраняет высокую твердость, прочность и стекловид-ность. Выше 280 полимер конечной стадии поликонденсации начинает постепенно деструктироваться. Нерастворимый и неплавкий продукт конечной стадии поликонденсации фенола и формальдегида, в отличие от растворимых и плавких продуктов начально стадии поликонденсации, носит название резит. [c.376]

    В результате проведения поликонденсации мочевины и формальдегида в сильнокислой среде образуются высокомолекулярные нерастворимые и перазмягчающиеся пространственные полимеры, так как реакция в этих условиях не регулируется и не может быть приостановлена в начальной стадии. Однако в таком полимере содержится некоторое количество и низкомолекулярных полимергомологов, с трудом выделяемых из смеси. Переработка такого полимера затруднена в связи с тем, что он не обладает термопластичностью. [c.434]

    Методом сополимеризации или совместной поликонденсации можно в очень широких пределах регулировать силы внутримолекулярного и межмолекулярного взаимодействия макромолекул, а также 1юлучать полимеры пространственной структуры с различной частотой расположения поперечных связей. [c.510]

    Синтез полимерных ионитов с наперед заданными свойствами может осуществляться несколькими путями поликонденсацией или полимеризацией. Вещество с сетчатой структурой, содержащее фиксированные ионы, можно синтезировать на основе мономерных органических электролитов. В другом случае ионогенные группы вводятся в готовый полимер. В процессе синтеза важно, чтобы пространственная решетка полимера была достаточно разветвлена и линейные цепи были соединены мел ду собой поперечными связями — мостиками . Исходными мономерами для синтеза обычно служат пара-замещенные фенолы и формальдегид, стирол и дивинил или дивинилбензол, этилендиампн и эпихлоргидрин, стирол и эфир двухатомного спирта и ненасыщенной кислоты и др. Варьируя основные мономеры и сополимеры, а такх-се ионогенные группы, создают большое разно-рН(рОН1 образие синтетических смол, обладаю-Рис. 111.4. Зависимость об- определенными, заранее заданными [c.114]

    Термореактивные полимеры, образующиеся в щелочной среде при поликонденсации фенола с избытком формальдегида, имеют разветвленный характер и называются резолами (полимер в стадии А). Резолы — нестабильные продукты, переходящие через промежуточную стадию (резитрл, или полимер в стадии В-эластич-ное, резинообразное соединение, способное набухать в органических растворителях или размягчаться при нагревании) в конечное неплавкое и нерастворимое состояние — резит, или полимер в стадии С, имеющий пространственное строение  [c.424]

    Цепная полимеризация. Механизмы радикальной и ионной поли меризации. Инициаторы и регуляторы. Причины образования развет вленных и пространственных полимеров. Стереорегулярные полимеры Применение катализаторов Циглера—Натта. Сополимеризация. Блок сополимеры и привитые сополимеры. Поликонденсация. Фенолальде-гидные и мочевиноальдегидные полимеры. Сложные полиэфиры. Поли меры на основе фурфурола. Мономер ФА. Эпоксидные и кремнийорга нические полимеры. Тиоколы. Полиуретаны. Полиамиды. Альтины Синтетические и натуральные каучуки. Полистирол и полиакрилаты Особые свойства высокомолекулярных соединений. Химические реак ции высокомолекулярных соединений полимераналогичные превращения и макромолекулярные реакции. Вулканизация. Деструкция полимеров. Ингибиторы деструкции. [c.108]

    КАУЧУК СИНТЕТИЧЕСКИЙ (СК)-высокополимерный каучукоподобный материал, получаемый полимеризацией и сополимеризацией различных непредельных соединений (бутадиен, стирол, изопрен, хлоропрен, изобутилен, нитрил акриловой кислоты) или поликонденсацией соответствующих бифункциональных производных углеводородов. Подобно И К К. с. имеет длинные макромолекулярные цепи, иногда разветвленные, со средней молекулярной массой, равной сотням тысяч, иногда миллионам. Полимерные цепи К. с. в большинстве случаев имеют двойные связи, благодаря которым при вулканизации образуется пространственная сетка, обусловливающая характерные для резины физико-механические свойства. Некоторые виды К. с. (напр., полиизо-бутиленовый, силиконовый и др.) — полностью предельные соединения, вулканизуются в присутствии органических пероксидов, аминов и др. По техническим свойствам некоторые К. с. значительно превосходят НК, но в отличие от НК в К с. при переработке требуется вводить специальные активные наполнители (сажу, активную кремнекис-лоту, оксид алюминия, каолин, мел и др.), усиливающие механическую прочность вулканизаторов. К. с. применяют для изготовления резин, резиновых изделий, автошин, транспортных лент, обуви, изделий для работы с органическими растворителями и др. [c.123]

    В основу классификации поликонденсационных процессой могут быть положены различные признаки — структура образующихся продуктов, число и характеристика мономеров, участвующих в реакциях, и т. д. В линейной поликонденсации участвуют бифункциональные мономеры, приводящие к получению линейных полимеров. Для проведения сетчатой трехмерной) поликонденсации необходимо использование мономеров с тремя или большим числом функциональных групп. В этом случае образуются пространственно сшитые полимеры. Выделяют также циклополиконденсацию, приводящую обычно к получению лестничных полимеров, имеющих структуру двух параллельных цепей, соединенных поперечными связями. [c.31]

    В отличие от поликонденсации при ступенчатой полимеризации не происходит выделения низкомолекулярного побочного продукта реакции. Если заменить гликоль многоатомным спиртом (глицерин, пентаэритрит и др.) или диизоцианат триизоцианатом, то получаются пространственные полимеры реакция их образования аналогична реакции трехмерной поликонденсации. [c.70]

    Поликонденсацию меламина с формальдегидом проводят при 40—60° С. Наличие в каждой молекуле меламина трех и более функциональных групп обусловливает образовачие стабильного пространственного полимера с частыми поперечными связями, придающими структуре прочность и жесткость. Благодаря этому меламино-формальдегидные смолы по сравнению с мочевино-формальдегидными более нагревостойки и водостойки, а также лучще противостоят действию кислот. [c.213]

    Такая структура может перейти в пространственную с потерей растворимости (образуется гель). Вследствие этого при конденсации глицерина с фталевым ангидридом трудно добиться высокой степени поликоиденсации, и получаемые смолы — глицерофталаты— имеют большое кислотное число (136 и выше). Чем больше кислотное число или чем больше свободных карбоксильных групп в единице массы смолы, тем меньше степень поликонденсации. [c.219]

    Термореактивные полиэфиры терефталевой кислоты и эмальлаки на их основе. При поликонденсации терефталевой кислоты (точнее, ее диметилового эфира) с глицерином получаются полимеры, растворимые в полярных растворителях и способные переходить в пространственную структуру. Лаковые покрытия, полученные из таких растворов, хрупки и не имеют практического значения. Для получения полимеров, образующих эластичные покрытия, часть глицерина заменяют этиленгликолем или другим двухатомным спиртом. Такие полиэфиры являются основой эмальлаков для получения нагревостойкой эмалевой изоляции проводов, высоко эластичной и прочной. [c.224]

    Для получения ионитовой смолы с оптимальной по структуре пространственной сеткой поликонденсация (или полимеризация) должна быть проведена так, чтобы полученные линейные цепи были бы достаточно разветвлены и связаны друг с другом мостиками . Это можно пояснить на следующих примерах. [c.55]

    Поликонденсация протекает при высоких температурах 4—8 ч. Молекулярная масса полимеров в значительной степени определяется чистотой мономеров. При поликонденсации силандиолов Р251(0Н)2—бифункциональных кремнийорганических соединений— образуются линейные полимеры с каучукоподобными свойствами. Они используются как заменители каучука при получении термостойких резин. При поликонденсацин силантриолов Н81(ОН)з— трифункциональных соединений — образуются пространственные кремнийорганические полимеры, структура которых представлена схемой на стр. 483 они применяются в производстве термостойких пластически х масс. [c.482]

    Такие олигомеры легко могут быть получены путем поликонденсации гликоля с двухосновной кислотой в присутствии непредельной одноосновной кислоты (например, акриловой). При последующей полимеризации этих олигоэфиров образуются пространственные блок-сополимеры олигоэфиров и соответствующей непредельной кислоты. Меняя исходные компоненты при синтезе олигоэфиров и степень полимеризации последних, можно в широких пределах изменять свойства получаемых полимеров. Так как полимеризация указанных олигомеров связана с образованием полимеров сильноразветвлеиных и пространственных (трехмерных), то уже на очень ранних стадиях полимеризации наблюдается резкое возрастание вязкости среды, что сильно влияет на кинетику процесса. [c.204]

    Из ароматических полиэфиров пространственного строения наибольшее техническое значение имеют глифталевые полимеры. Их получают поликонденсацией фталевого ангидрида с глицерином. Реакция протекает в несколько стадий. Сначала при взаимодействии эквимоль-ных количеств фталевого ангидрида и глицерина вступают в реакцию более реакционноспособные первичные гидроксильные группы глицерина, и образуется линейный полиглииерофталат  [c.352]

    Поликонденсация в растворе (в пиридине) протекает с большей скоростью, чем поликондеисация соли в твердой фазе. Полифенилеп-сульфид плавится при температуре около 295 С, стоек до 400°С па воздухе. Его применение при высоких температурах лимитируется температурой плавления, поэтому из него сначала формуют изделия (пленки, волокна), а затем прогревают их в атмосфере азота при 400 В результате образования межмолекулярных сульфидных связей образуется неплавкий нерастворимый термостойкий полимер пространственного строения. Полифениленсульфиды обладают исключительно высокой адгезией к стеклу. [c.401]


Смотреть страницы где упоминается термин Поликонденсация пространственная: [c.194]    [c.31]    [c.150]    [c.159]    [c.166]    [c.185]    [c.426]    [c.398]   
Курс общей химии (1964) -- [ c.328 ]




ПОИСК







© 2025 chem21.info Реклама на сайте