Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перенапряжение катодного восстановления металлов

    Изучение водородного перенапряжения позволяет выяснить механизм этой реакции и представляет большой интерес с теоретической точки зрения. Установленные при этом закономерности можно частично распространить и на другие электрохимические реакции, что значительно повышает теоретическую значимость работ по водородному перенапряжению. Изучение водородного перенапряжения имеет также большое практическое значение, потому что современная промышленная электрохимия является преимущественно электрохимией водных растворов, и процессы электролитического разложения воды могут накладываться на любые катодные и анодные реакции. Водородное перенапряжение составляет значительную долю напряжения на ваннах по электролизу воды и растворов хлоридов. Знание природы водородного перенапряжения позволяет уменьшить его, а следовательно, снизить расход электроэнергии и улучшить экономические показатели этих процессов. В других случаях (электролитическое выделение металлов, катодное восстановление неорганических и органических веществ, эксплуатация химических источников тока) знание природы водородного перенапряжения позволяет успешно решать обратную задачу — нахождение рациональных путей его повышения. Все эти причины обусловили то, что изучение процесса катодного выделения водорода и природы водородного перенапряжения всегда находилось и находится в центре внимания электрохимиков. [c.397]


    Введение небольшого количества благородного металла в неблагородный металл, например в нержавеющую сталь или титан, может привести к возникновению центров низкого перенапряжения катодного восстановления растворенного кислорода или ионов водорода. Это позволяет получить большие токи и, следовательно, более положительные потенциалы в анодной области, что в некоторых условиях способствует пассивации [27]. Такой эффект был продемонстрирован для нержавеющих сталей [28], но иа практике он не применяется, так как в других условиях добавки благородного металла могут ускорять коррозию [c.225]

    Скорости ионных реакций в растворе обычно весьма значительны, и поэтому кинетику суммарного процесса будет определять замедленность стадии разряда органической молекулы. В этом случае плотность тока не будет зависеть от pH раствора и будет определяться потенциалом на границе раздела металл — раствор и концентрацией органического деполяризатора на поверхности катода. Чем труднее восстанавливается органическая молекула, тем более отрицательный потенциал необходимо создать на поверхности катода. Естественно, что в этом случае важное значение приобретает выбор материала электрода. Использование катодов с низким перенапряжением выделения водорода в случае трудно восстанавливающихся веществ приведет к тому, что на катоде одновременно с реакцией восстановления будет происходить выделение водорода и, соответственно, выход по току продуктов восстановления будет уменьшаться с ростом катодного потенциала и плотности тока. В связи с разрядом водорода на катоде, хотя скорость процесса катодного восстановления при постоянном потенциале не будет зависеть от pH, выход по току будет снижаться с уменьшением pH электролита. [c.446]

    В табл. 46 приведены опытные значения перенапряжения при катодном восстановлении (ионизации) кислорода на различных металлах. [c.459]

    Другой важный вывод, вытекающий из этих исследований, состоит в том, что ряд металлов, расположенных по возрастанию перенапряжения ионизация кислорода при постоянной плотности тока (например, равной половине предельного диффузионного), не совпадает с таковым для металлов, расположенных по возрастанию водородного перенапряжения. Иными словами, металлы ведут себя неодинаковым образом по отношению к катодному процессу разряда ионоа водорода и электрохимическому восстановлению кислорода. [c.92]

    Практическое значенне П. м. исключительно велико. Она обеспечивает необходимую коррозионную стойкость конструкций и изделий, изготовляемых из разл. сталей, алюминия, титана и др. нестойких металлов во многих прир. и технол. средах. Широко применяется самопассивация металлич. материалов, достигаемая путем легирования добавками, к-рые снижают критич. ток (напр., №, Мо) или и ток, и потенциал пассивации (напр., Сг в кристаллич. сплавах на основе железа, Р и С в аморфных сплавах) (см. Коррозионностойкие материалы). Т. наз. катодное легирование сводится к ускорению катодного восстановления окислителя из-за того, что на пов-сти накапливаются частицы коррозионностойкой добавки (напр., Рс1 или Мо в сплавах на основе Т1), на к-рых катодный процесс происходит при меньшем перенапряжении. Такого же результата добиваются введением в среду дополнит, окислителя или повышением его концентрации. Во всех этих случаях должны выполняться условия < р или < Е . [c.449]


    Реакция катодного восстановления водорода протекает на некоторых металлах со значительным перенапряжением, величины которого можно определить из следующих уравнений в кислой среде  [c.204]

    При катодном восстановлении величина перенапряжения зависит от природы разряжаемого металла. Hg, Ag, Pb, d, Sn — это металлы с очень низким металлическим перенапряжением (не более тысячных долей вольта). Такие металлы, как Bi, Си, Zn, характеризуются перенапряжением порядка сотых вольта, а у металлов третьей группы (Со, Fe, Ni) — перенапряжение может достигать нескольких десятых вольта. [c.204]

    Зависимость вида (II, 40), где G — потенциал ионизации, установлена в работах [262—265] аналогичное уравнение найдено для кинетики процессов присоединения радикала Fg к олефинам, их производным [266] и к замещенным бензола [267]. Для разности электроотрицательностей она была установлена в работе [268] Сравнение суммарного изобарного потенциала возгонки металлов и последующей их ионизации с работой выхода электронов из металла [269] и в первом приближении с перенапряжением водорода и катодного восстановления кислорода на разных металлах [270] также может быть осуществлено с помощью уравнения (II, 40). [c.93]

    Скорость катодного восстановления окислителя, т. е. величина, обратная перенапряжению, также зависит не только от природы окислителя, но и от природы металла, па котором происходит восстановление окислителя. Естественно поэтому пассивирующая способность окислителя по отношению к различным металлам мо- [c.196]

    Дальнейшим указанием на то, что незаряженные атомы н радикалы могут образоваться при соприкосновении с металлом с большим перенапряжением, являются примеры выделения металла в форме ковалентного гидрида или алкильного производного. Так, например, при катодном восстановлении кетонов образуются алкилы свинца и ртути. Вместе с те . , электролиз является единственным способом получения гидрида олова .  [c.246]

    Чаще всего катодное восстановление проводят на гладких металлических поверхностях, на которых перенапряжение водорода особенно высоко [69]. При этом используют такие металлы, как Hg, Pb, Tl, Zn, d или Sn, которые предварительно можно амальгамировать. Чтобы предотвратить окисление восстановленного раствора, анодное и катодное пространства, как правило, разделяют диафрагмой из пористой глины или пористого стекла при очень небольшой силе тока достаточно даже сифонной трубки. На рис. 331 показан прибор для электролиза со стеклянной диафрагмой, который можно использовать, например, для получения раствора Т12(504)з. [c.585]

    Если рассматривать поведение электрода при более высоких значениях потенциалов, то, как видно из кривых рис. 10, увеличение скорости вращения электрода ведет к снижению перенапряжения катодного процесса и в области потенциалов, при которых происходит восстановление водорода. Это снижение, однако, не обязательно должно быть связано с уменьшением перенапряжения восстановления водорода в этих условиях. Действительно, рассмотрим суммарный катодный процесс, протекающий на металлах в нейтральных электролитах в этих условиях (рис. 13). Как видно из рисунка, при постоянном потенциале (фо) плотность тока на электроде зависит от скорости вращения электрода Вместе с тем величина этого тока для каждой скорости вращения электрода складывается из предельного диффузионного тока восста-54 [c.54]

    При ВЫСОКИХ температурах практически полностью исчезает перенапряжение, связанное с затруднениями в электрохимических актах электронных переходов (при ионизации металлов, перезаряде и разряде ионов). Вследствие этого анодный (ионизация металлов) и катодный (восстановление деполяризатора) процессы могут протекать как на одних и тех же, так и на различных участках поверхности корродирующего металла. Какой ИЗ предполагаемых процессов будет лежать в основе коррозии и с какой скоростью будет протекать процесс в данных условиях, можно судить из более детального рассмотрения термодинамики и кинетики соответствующих реакций. [c.187]

    А — большая растворимость кислорода Б — малая растворимость кислорода, о, и Ог — анодные кривые окисления металлов 1 и в — катодные кривые восстановления Н+ и О (предположено, что перенапряжение катодных реакций на обоих металлах одинаково)  [c.172]

    Величина водородного перенапряжения играет важную роль в самых различных электрохимических явлениях. Величина и природа водородного перенапряжения влияют на протекание многих электрохимических процессов. Так, катодное восстановление неорганических и органических веществ, электроосаждение металлов и их самопроизвольное электрохимическое разрушение протекают неодинаково, а зависят от механизма выделения водорода на металле. [c.368]

    Величина и природа водородного перенапряжения влияют на многие электрохимические процессы. Так, протекание катодного восстановления неорганических веществ, а также электроосаждение металлов и их самопроизвольного электрохимического разрушения, зависят от механизма выделения водорода на металле. [c.369]


    Было предложено несколько теорий относительно влияния потенциала на ход электродного процесса. Наиболее приемлемым является положение, утверждающее, что с повышением катодного потенциала увеличивается потенциальная энергия атомов водорода, выделяющихся на поверхности электрода. Поэтому на данном электроде можно получить восстановленные атомы водорода с различной энергией путем изменения катодного потенциала. Таким образом, восстановительная способность катода зависит от его потенциала чем выше потенциал, тем выше восстановительная активность. Так, можно ожидать, что кетон или альдегид может быть восстановлен до спирта при более низком катодном потенциале, чем требуется для получения свободных радикалов с последующим восстановлением в бимолекулярной реакции до пинакона [11. Габер и другие авторы [2, 3] показали, что при восстановлении нитробензола можно получать продукты различной степени восстановления путем изменения катодного потенциала. Другая точка зрения исходит из экспериментальных исследований Эйринга с сотрудниками [4], которые показали, что металлы с низким перенапряжением образуют прочную металл-водородную связь, а с высоким перенапряжением—относительно слабую. Это представление можно распространить и на протоны. Так, [c.58]

    В этом отношении особый интерес представляет реакция катодного восстановления водорода, протекающая на поверхности некоторых металлов с очень большим перенапряжением, значительно превосходящим перенапряжение многих других электродных реакций. Так, например, на ртутном катоде в 1 н, растворе соляной кислоты, при плотности тока l = 10 а/см , потенциал сдвигается примерно на 0,9 в от равновесного потенциала водорода в этом растворе. [c.419]

    Кроме величины поляризации на скорость электродных процессов влияют некоторые другие факторы. Рассмотрим катодное восстановление ионов водорода. Если катод изготовлен из платины, то для выделения водорода с заданной скоростью необходима определенная величина катодной поляризации. При замене платинового электрода на серебряный (при неизменных прочих условиях) для получения водорода с прежней скоростью понадобится ббльшая поляризация. При замене катода на свинцовый поляризация потребуется еще большая. Следовательно, различные металлы обладают различной каталитической активностью по отношению к процессу восстановления ионов водорода. Величина поляризации, необходимая для протекания данного электродного процесса с определенной скоростью, называется перенапряжением данного электродного процесса. Таким образом, перенапряжение выделения водорода на различных металлах различно. [c.294]

    Смещение потенциала стали в отрицательную сторону от значения собственного стационарного потенциала при наложении внешнего катодного тока определяет защиту металла подземного трубопровода. Когда катодная поляризация (перенапряжение) возникает на металле при прохождении наложенного внешнего тока, растворение или ток коррозии уменьшается, в то время как скорость восстановления увеличивается. На закономерном снижении скорости растворения металлов по мере смещения их электродных потенциалов в отрицательном направлении в области потенциалов более отрицательных, чем стационарный потенциал, основан метод катодной зашиты металлов от коррозии. [c.101]

    Реакция катодного восстановления водорода протекает на некоторых металлах со значительным перенапряжением, существенно превышающим перенапряжение многих других электродных реакций. Значение водородного перенапряжения зависит от многих факторов и, в первую очередь, от состава раствора, материала катода и состояния его поверхности, плотности тока и температуры. [c.84]

    Влияние материала электрода иногда приписывают только величине перенапряжения водорода на нем. Действительно, на металлах с высоким водородным перенапряжением реакции восстановления часто идут полнее. Кроме того, на таких электродах легче могут быть достигнуты потенциалы, при которых происходит носстановление трудно восстанавливаемых соединений. Однако в общем случае прямого параллелизма между водородным перенапряжением на электродном материале (его катодным потенциалом) и его активностью по отношению к реакциям электровосстановления не существует. Более того, оказывается, что некоторые соединения лучше восстанавливаются на катодах с низким перенапряжением и хуже или даже вообще не восстанавливаются на металлах с высоким водородным перенапряжением. Такое избирательное электровосстановление органических соединений представляет собой распространенное явление (Л. И. Антропов, 1951). Примеры избирательного восстановления приведены в табл. 21.1. На катодах с низким перенапряжением — платине и никеле (особенно в форме черни или губки) —преимущественно восстанавливаются изолированные ненасыщенные связи в органических соединениях жирного ряда и двойные связи в бензольном кольце. В то же время эти связи практически ке гидрируются на катодах, обладающих высоким водородным перенапряжением, таких, например, как ртуть или свинец. Напротив, полярные группы — карбонильная и карбоксильная — восстанавливаются на катодах с высоким перенапрям ением водорода и не затрагиваются на катодах с низким перенапряжением. Исключение составляют нитро- и нитрозо- [c.432]

    Затруднением в протекании катодного процесса может служить противодействие пленки диффузии кислорода (коррозия металлов с кислородной деполяризацией) или большое перенапряжение процесса восстановления кислорода па пленке по сравнению с металлической поверхностью (если пленка обладает значительной электронной проводимостью). Электродный потенциал металла при этом или мало изменяется, или даже смещается несколько в отрицательную стороггу. [c.63]

    В активных средах для анодного покрытия скорость коррозии определяется разностью потенциалов контактирующих электродов (покрытие - основа), а длительность защиты - скоростью растворения покрытия и его толщиной. Поэтому повышение коррозионной стойкости самого покрытия способствует увеличению долговечности системы покрытие — основа. В активных средах анодное растворение металлов протекает при поляризации анодного процесса менее значительной, чем для катодного. Контактный ток пары в этом случае определяется в основном перенапряжением катодного процесса и связан со вторичными явлениями, изменяющими поведение контактных пар. Методы, повышающие катодный контроль например, повышение перенапряжения водорода для сред с водородной деполяризацией или уменьшение эффективности работы катодов, в том числе за счет вторичных явлений, будут способствовать снижению скорости саморастворения покрытия и, наоборот, катодные включения с низким перенапряжением восстановления окислителя стимулируют коррозионное разрушеше системы. [c.71]

    Формирование чужеродных (локальных) катодов практикуется в первую очередь в случае материалов с высоким перенапряжением водорода для уменьшения коррозии с водородной деполяризацией (кислотной коррозии). На рис. 20.11 показана кривая анодный частичный ток — потенциал (а) для пассивируемого металла в среде с током пассивации /р и соответствующая кривая катодный частичный ток — потенциал (б) для водорода. Ввиду высокого перенапряжения водорода ток пассивации не достигается. При свободной коррозии устанавливается стационарный потенциал и а в активном состоянии. Если этот материал привести в контакт с металлом, имеющим меньшее перенапряжение водорода в соответствии с кривой катодный частичный ток — потенциал (см. рис. 20.11, в), то такой катодный частичный ток будет достаточен для пассивации. При свободной коррозии теперь установится стационарный потенциал и р в пассивном состоянии. Аналогичным образом действуют и локальные катоды, полученные в материале путем легирования. По такому же электрохимическому принципу можно уменьшить и перенапряжение для восстановления других окислителей в среде, причем тогда согласно рис. 2.14 нестабильно пассивные материалы могут стать стабильно пассивными. [c.391]

    Экспериментальные данные в общем согласуются с предположением о том, что электролитическое восстановление в основ-Н0Л1 является реакцией атомов водорода при разряде. Оно облегчено на электродах с высоким перенапряжением, на которых атомарный водород либо выделяется с больщой энергией активации (теория замедленного разряда, стр. 243), либо сохоа-няется в большой концентрации на поверхности электрода (теория Тафеля). Часто обнаруживаются, однако, специфические каталитические эффекты. Так, при восстановлении нитратов в аммиак или нитросоединений в амины особенно эффективны губчатые медные катоды. На других электродах получаются большие выхода гидроксиламинов. Необходимо отметить, что метал-лы, наиболее эффективные при катодном восстановлении, отнюдь не являются теми металлами, которые способствуют каталитическому восстановлению органических соединений газообразным водородом. Причины этого вполне понятны. Поверхность никеля, платины или палладия может катализировать и диссоциацию и рекомбинацию водорода [c.245]

    Перенапряжение. Исследование перенапряжения дает доиолни-тельные данные, подтверждающие значение электронной структуры при катализе на металлах. Гиммлер [97] нашел, что перенапряжение на медном электроде увеличивается при сплавлении металла с элементами более высокой валентности. По мере того как увеличивается отношение электрон/атом в а-фазе, т. е. по мере заполнения зоны Бриллюэна, увеличивается и перенапряжение. Трехвалентные металлы А1 и 1п оказывают в два раза больший эффект, чем двухвалентный цинк. Исследования последних лет, по-видимому, позволяют сделать вывод о том, что медленной стадией процесса выделения водорода на металлических электродах является образование хемосорбированных атомов водорода [98]. Таким образом, вполне вероятно, что имеется связь между эффектом Гиммлера и хемосорбцией водорода. Хемосорбция водорода на меди, которая вообще протекает с трудом, становится еще более затрудненной, когда заполняются энергетические уровни в зоне Бриллюэна. Бокрис [99] отметил, что перенапряжение водорода на металле тем больше, чем ниже работа выхода этого металла. Этот факт становится понятным, если исходить из современных представлений, согласно которым переход электрона на уровень Ферми при образовании ковалентной связи Ме—Н происходит легче, если работа выхода велика (см. стр. 496). Указанную связь между перенапряжением и работой выхода ранее использовали в качестве доказательства лимитирующей роли десорбции водорода. Это положение противоречит новым экспериментальным данным, однако приведенные выше соображения позволяют устранить эту трудность. Бургере и Браберс [100] недавно показали, что скорость катодного восстановления ферри- [c.522]

    Восстановление бисульфита натрия в гидросульфит на твердом катоде происходит в кислой среде, в которой гидросульфит весьма нестоек. Это приводит к серьезным затруднениям -электролиз приходится вести при высокой объемной концентрации тока (т. е. при малом объеме католита), при небольшой катодной плотности тока и низкой температуре. Так как процесс образования гидросульфита сопровождается одновременным образованием щелочи, необходимо непрерывно вводить в катодное пространство газообразный SO2, разбавленный инертным газом во избежание перекисления раствора в местах введения газа. Анолитом служит раствор сульфита натрия. Наиболее целесообразно применение проточного электролизера с диафрагмой, который дает возможность получать растворы, содержащие до 180 г N328204 в I л. Лучшими материалами для катода являются платина, золото, молибден, серебро, свинец, никель. На этих материалах водород выделяется с большим перенапряжением (потенциал восстановления HSO3 равен —0,163 в, потенциал выделения водорода —0,157 в). Однако некоторые из этих металлов каталитически ускоряют дальнейшее восстановление гидросульфита до тиосульфата  [c.544]

    При электролизе возможны побочные процессы катодное восстановление молекулярного хлора, растворенного в электролите СЬ -Ь + 2е -> 2С1 совместное с натрием выделение водорода на ртутном катоде это происходит особенно при ра боте с очень концентрированными по щелочному металлу амальгамами, при повышенных температурах (уменьще-ние перенапряжения водорода) и при наличии примесей в электролите, например, ионов a иMg++, образующих амальгамы, легко разлагающиеся непосредственно в электролизере с выделением водорода, ионов хрома, ванадия, молибдена, катализирующих выделение водорода и частиц графита, осыпающихся с анодов. Содержание водорода в хлор-газе ртутных ванн обычно составляет около 1%, но иногда достигает 2—4%, что опасно вследствие [c.91]


Смотреть страницы где упоминается термин Перенапряжение катодного восстановления металлов: [c.669]    [c.193]    [c.353]    [c.445]    [c.586]    [c.182]    [c.349]    [c.351]    [c.131]   
Теоретическая электрохимия (1959) -- [ c.514 , c.517 , c.531 ]

Теоретическая электрохимия Издание 3 (1970) -- [ c.514 , c.516 , c.531 ]




ПОИСК





Смотрите так же термины и статьи:

Восстановление катодное

Восстановление металлами

Металлы восстановление катодно

Металлы перенапряжение

Перенапряжение

Перенапряжение катодное

Ток катодный



© 2025 chem21.info Реклама на сайте