Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хром определение в вольфрама

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]


    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]

    ЛЕГИРОВАНИЕ (нем. legieren — сплавлять, от лат. ligo — связываю, соединяю) — введение в металлы и сплавы легирующих материалов для получения сплавов заданного хим. состава и структуры с требуемыми физ., хим. и мех. св-вами. Применялось еще в глубокой древности, в России — с 30-х гг. 19 в. Л. осуществляют введением легирующих материалов (в виде металлов и металлоидов в свободном состоянии, в виде различных сплавов, напр, ферросплавов, или в газообразном состоянии) в шихту или в жидкий (при выплавке) сплав. Иногда добавки легирующих материалов вводят в ковш. В закристаллизовавшемся сплаве легирующие материалы распределяются в твердом растворе и др. фазах структуры, изменяя его прочность, вязкость и пластичность, повышая износостойкость, увеличивая глубину прокаливаемости и др. технологические св-ва. Л. существенно влияет па положение критических точек стали. Никель, марганец, медь и азот расширяют по температурной шкале область существования аустенита, причем при известных соотношениях содержания углерода и этих элементов аустенит существует в области т-р от комнатной и ниже до т-ры плавления. Хром, кремний, вольфра.м и др. элементы сужают эту область и при определенных концентрациях углерода и легирующего элемента расширяют область с>тцествоваиия альфа-железа (см. Железо) до т-р плавления. При некоторых концентрациях углерода и легирующего материала сталь даже после медленного охлаждения имеет структуру закалки. Легирующие материалы, не образующие карбидов (напр., никель, кремний и медь), находятся в твердых растворах, карбидообразующие материалы (хром, марганец, молибден, вольфрам и др.) частично растворяются в железе, однако в основном входят в состав карбидной фазы и при больших концентрациях сами образуют карбиды (напр.. [c.681]


    Определение вольфрама основано на выделении его из раствора навески в виде растворимой в кислотах вольфрамовой кислоты Н2 У 04-Н20 желтого цвета при этом вольфрам одновременно отделяется от большинства сопутствующих компонентов. Образование осадка вольфрамовой кислоты происходит в результате окисления карбидного и металлического вольфрама действием азотной кислоты. Вольфрам обычно не весь выделяется в осадок, небольшая часть его остается в растворе. При очень точных анализах в фильтрате оставшуюся часть вольфрама снова выделяют в осадок с помощью коагулятора (желатины) или осаждают алкалоидом (цинхонином). Осадок вольфрамовой кислоты способен соосаждать примеси из раствора (кремниевую кислоту, железо, фосфор, хром, ванадий, молибден, ниобий и др.), поэтому титриметрический и фотометрический методы имеют определенные преимущества, так как загрязнения здесь существенного влияния не оказывают, как это происходит в гравиметрическом методе. [c.343]

    Потенциометрическое определение кобальта в стали после осаждения фенилтиогидантоиновой и тиогликолевой кислотами [921]. Методика рекомендована для определения кобальта в жаропрочных сплавах, содержащих алюминий, углерод, хром, медь, железо, марганец, молибден, никель, ниобий, фосфор, серу, тантал, титан, вольфрам, ванадий и цирконий. Она основана на избирательном осаждении кобальта тиогликолевой и фенилтиогидантоиновой кислотами и последующем титровании кобальта феррицианидом калия в присутствии этилендиамина. 0,05—0,3 г стали, содержащей от 6 до 50 мг Со, растворяют в смеси соляной и азотной кислот (3 1), прибавляют 5 мл 85%-ного раствора фосфорной кислоты, 20 мл серной кислоты (1 1) я 5 мл 70%-ной хлорной кислоты и выпаривают большую часть последней. Остаток растворяют в воде, прибавляют 10 г цитрата аммония и концентрированный раствор гидроокиси аммония до pH 8 и сверх того еще 10 мл и разбавляют водой до 250 мл. При высоком содержании железа прибавляют 4 мл тиогликолевой кислоты (при низком содержании железа этого делать не нужно), далее бумажную массу и вводят при перемешивании 35 мл раствора фенилтиогидантоиновой кислоты (4 г реагента на 100 мл этанола). Раствор кипятят 5 мин., перемешивают до коагуляции осадка и добавляют еще 5 мл раствора фенилтиогидантоиновой кислоты. Осадок отфильтровывают, промывают [c.194]

    К числу тяжелых металлов относят хром, марганец, железо, кобальт, никель, медь, цинк, галлий, германий, молибден, кадмий, олово, сурьму, теллур, вольфрам, ртуть, таллий, свинец, висмут. Употребляемый иногда термин токсические элементы неудачен, так как любые элементы и их соединения могут стать токсичными для живых организмов при определенной концентрации и условиях окружающей среды. [c.93]

    Реакция определения никеля (И) диметилглиоксимом (ОНг) в щелочной среде в присутствии окислителей получила большое распространение. В результате реакции образуется соединение, растворы которого окрашены в бурый цвет (отношение N1 [)Нг = = 1 3). Максимальное поглощение наблюдается при >, = 470 нм-, значение е= 13 000. В качестве окислителя используют раствор иода. Никель может быть определен указанной реакцией в сталях в присутствии ванадия, молибдена. Вольфрам, хром и титан могут присутствовать до 18%. Мешают медь, кобальт и все элементы, ионы которых дают осадки гидроокисей в щелочной среде. Это первый недостаток метода, второй — малая чувствительность. [c.493]

    Гравиметрические методы определения. Красный осадок соединения кобальта (III) с 1-нитрозо-2-нафтолом примерного состава Со(СюНб02 )з-пН20 образуется в слабокислых (pH 3.8—4,0), нейтральных и аммиачных растворах. Образовавшееся соединение при подкислении не разрушается. Мешают осаждению кобальта серебро, висмут и олово. Железо и вольфрам можно маскировать фторид-ионом. Не мешают осаждению кобальта равные по содержанию количества никеля, алюминия, кадмия, кальция, магния, бериллия, хрома, свинца, марганца, цпнка, сурьмы, мышьяка, ртути. В присутствии больших количеств никеля проводят переосаждение кобальта. После высушивания при 115°С состав соединения становится постоянным (п = 2), и оно применимо для гравиметрического определения содержания кобальта. В некоторых случаях отделение Со от сопутствующих элементов проводят осаждением в виде кобальтинитрита (гексанитрокобальтата III) каль я  [c.71]

    Пластичность металла определяется способностью металла не разрушаясь деформироваться так, что деформации остаются и после окончания действия нагрузки. Пластичность металлов имеет очень большое практическое значение. Благодаря этому свойству металлы поддаются ковке, прокатке, вытягиванию в проволоку (волочению), штамповке. Смещение заполненных атомами металла плоскостей в кристалле в определенных пределах не приводит к разрушению металлической связи. Механизм образования смещений связан с появлением и движением дислокаций. Хрупкими определенное время считались титан, вольфрам, хром, молибден, тантал, висмут, цирконий. Очищенные от примесей эти металлы — высокопластичные материалы, которые можно ковать, прессовать, прокатывать. В табл. 11.3 приведены значения относительного удлинения некоторых металлов, характеризующего их пластичность. [c.324]


    В чугуне углерода содержится до 1,7% и более, в стали— от 0,3%) до 1,7%), а в ковком железе — менее 0,3%. Однако существуют специальные так называемые легированные стали, в состав которых, помимо железа и углерода, входят в определенных количествах хром, никель, вольфрам, молибден, ванадий, кобальт, титан и другие металлы. Введение тех или иных металлов в железо дает возможность получать стали с нужными свойствами (повышенной тугоплавкостью, прочностью, кислотостойкостью и т. д.). Так, хром повышает твердость стали и ее химическую стойкость никель увеличивает вязкость вольфрам сильно повышает твердость ванадий (0,2—0,5%) повышает твердость и вязкость молибден (0,15—0,25%) повышает упругость и улучшает свариваемость. [c.281]

    По окончании разложения железо частично или полностью переходит в трехвалентное состояние, поэтому перед титрованием окислителем необходимо предварительное восстановление железа любым из описанных ранее методов, например восстановление в редукторе Джонса. Амальгама цинка восстанавливает и другие элементы, обычно сопутствующие железу, например титан, ниобий, ванадий, хром, уран, вольфрам, молибден и мышьяк. В низших степенях окисления они также реагируют с перманганатом их присутствие вызывает завышение результатов определения железа. [c.380]

    Оксихинолин и н-бутиламин надо прибавить в таких концентрациях, чтобы щелочные и щелочноземельные металлы, хром, молибден, вольфрам, мышьяк, сурьма, бор, селен, теллур и бериллий не мешали определению. [c.870]

    Качественные и высококачественные стали отличаются от обыкновенных сталей более низким содержанием вредных примесей (серы, фосфора, кислорода), более узкими пределами по содержанию углерода, а легированные стали содержат, кроме того, легирующие элементы, например хром, никель, вольфрам, присутствие которых в определенных сочетаниях улучшает структуру и повышает физико-химические свойства. [c.211]

    Потенциометрическое определение ванадия в железе и стали, содержащей хром и вольфрам. [c.171]

    Определению мешают элементы, способные восстанавливаться в тех же условиях, что и титан. К ним относятся ванадий, хром, молибден, вольфрам, уран, ниобий и железо. [c.140]

    Тантал с пирогаллолом образуют комплекс в среде 4 и. раствора НС1 и 0,0175 М оксалата. Молярный коэффициент поглощения комплекса е в этих условиях составляет 4775. Оптическая плотность растворов пропорциональна концентрациям тантала до 40 мкг мл. Определению мешают молибден (VI), вольфрам (VI), уран (VI), олово (IV). Влияние ниобия, титана, циркония, хрома, ванадия (V), висмута, меди не. существенно, и его можно учесть введением их в холостой раствор. Определению тантала мешает фторид, платина, поэтому сплавление анализируемых проб нельзя проводить в платиновой посуде. [c.386]

    Определению мешают по механизму (б) — золото (1П) Ф = 1,1), рений (VII) (3000) и ртуть по механизму (в ) — серебро, хром (VI), вольфрам, ванадий, анион NO3. Обработка растворов металлической медью (цементация), предусмотренная прописью определения, устраняет мешающее влияние до 100—200 жкг золота и до 10—20 жг ртути и серебра. Присутствие в растворе 1 г железа, меди или молибдена не влияет на результаты определения. [c.206]

    Большое значение в современной технике имеют легированные стали. Они содержат так называемые легирующие элементы, к которым относятся хром, никель, молибден, ванадий, вольфрам, марганец, медь, кремний и др. Легирующие элементы добавляются для придания стали определенных свойств. Так, х р о м о н и к е л е- [c.264]

    При анализе образцов металлического плутония сильно влияло железо, содержание которого составляло 0,02—0,08%. Так как железо титруется вместе с плутонием, то определение его следует проводить другим подходящим методом. В данной работе железо определяли фотометрически. Определению мешают хром, титан, молибден, вольфрам, уран и ванадий. Нитрат-ионы мешают определению за счет их восстановления в редукторе. При отделении плутония от примесей необходимо учитывать полноту выделения. [c.183]

    Все элементы подгруппы ванадия, за исключением протактиния, имеют объемноцентрированные кубические решетки другие формы этих элементов не известны, но по аналогии со щелочными металлами можно считать, что любые другие аллотропные формы должны быть устойчивыми при низких температурах. Хром, молибден и вольфрам могут иметь объемноцентрированную кубическую структуру, хром и вольфрам, помимо указанной формы, имеют ряд других аллотропных модификаций. Так, известны еще три формы хрома плотноупакованные гексагональная и кубическая и форма, изоструктурная с а-марганцем. Все три формы получены электролитическими методами при строго определенных условиях. При комнатной температуре они переходят в обычную объемноцентрированную кубическую форму, т. е., следовательно, метастабильны. Были высказаны предположения, что это формы хрома, содержащего примеси, и даже что это гидриды хрома. [c.110]

    Анализ стали. В стали, кроме железа, могут содержаться следуюш,ие элементы марганец, хром, никель, кобальт, ванадий, молибден, вольфрам, титан, цирконий, углерод, кремний, фосфор, сера и др. Обычно фосфор, серу и углерод в сталях не открывают, а проводят только количественное определение их. [c.454]

    Разработаны методы определения кобальта в металлических никеле [88, 109, 584, 775, 957, 1002, 1082, 1188, 1200, 1417, 1518], натрии [1321, 1458], меди [686], магнии [343, 830], алюминии [1395], цирконии и титане [343, 927, 1071, 1081, 1445, 1499], свинце [186], висмуте [233], уране [1387], стеллите [73], победите [357], в сплавах кобальт — платина [1488], хром — кобальт [96], вольфрам— кобальт [520], в карбидах вольфрама и титана [1208] и других объектах [227]. [c.198]

    В основном этот метод аналогичен методу определения примесей в цирконии (см. стр. 169) он дает возможность определять алюминий, ванадий, вольфрам, железо, кальций, кобальт, кремний, магний, марганец, медь, молибден, никель, ниобий, олово, титан и хром. [c.182]

    Шестивлентный вольфрам не дает с 8-оксихинолин-5-суль-фокислотой каких-либо окрашенных соединений и при условиях Определения молибдена не восстанавливается, а поэтому не влияет на результаты определения молибдена. Однако в присутствии больших количеств вольфрама (больше 10 мг) нужно увеличить количество добавляемого реагента. Определению молибдена мешают ванадий, двухвалентное железо, кобальт, цинк, большие количества меди, комплексон III и винная кислота. Кальций, магний, барий, никель, кадмий, двухвалентный марганец, трехвалентный хром, алюминий, торий, небольшие количества висмута и урана, цианид, щавелевая кислота не мешают определению молибдена. [c.228]

    Молибден может быть определен в присутствии шестивалентного хрома (0,004—0,009 г). В этом случае осадок необходимо прокаливать до МоОз. Шестивалентный вольфрам осаждается реагентом из кислых растворов и мешает определению молибдена. Двухвалентный кобальт (0,1 г), никель (0,15 г) и медь (0,12 г) не мешают полученный в этом случае осадок промывают сначала 0,2 N НС1, затем 0,02 А/ НС1. В присутствии трехвалентного железа (0,8 г) и пятивалентного ванадия (0,008 г) прибавляют 1—2 г комплексона III. [c.166]

    Образует соли (типа аммиакатов), например с титаном (IV) и цирконием (IV). Применяют для фотометрического определения титана (IV) в интервале кислотности от 0,1 до 5—6 н. Определению не мешают ванадий, молибден, вольфрам, тантал, ниобий, железо, кобальт, никель, хром, марганец, алюминий, цинк, кадмий и ртуть. [c.134]

    Быстрый и достаточно точный фотометрический метод определения около 1 % Мо в простых и легированных сталях, содержащих никель, хром,. вольфрам и другие элементы, включает экстракцию роданидных соединений пятивалентного молибдена диэтиловым эфиром [601]. Вольфрам удерживают в растворе добавлением винной или лимонной кислоты. [c.221]

    Осаждение миндальной кислотой. Миндальная кислота eHj HOH OOH образует с цирконием белый хлопьевидный осадок, который при нагревании переходит в кристаллический. Осадок имеет состав Zr( gH5 HOH OO)4 [586]. Манделат циркония разлагается NaOH с образованием гидроокиси циркония. Осадок растворим в концентрированной соляной, серной (1 1) и щавелевой кислотах. Винная и лимонная кислоты не мешают количественному осаждению циркония поэтому мешающие определению вольфрам, тантал и ниобий маскируют винной или лимонной кислотой. Замедленное осаждение циркония наблюдается при содержании этих кислот в растворе до 10 г. Определению циркония миндальной кислотой не мешают железо, алюминий, хром, титан, ванадий, молибден, редкоземельные элементы [19]. [c.64]

    Хорошим реактивом для осаждения циркония является фениларсоновая кислота. И. П. Алимарин и О. А. Медведева [530] подробно исследовали условия образования осадка и наиболее полного отделения циркон)ия от примесей. Р. Б. Голубцова показала, что фениларсоновая кислота с брльшим успехом может быть применена для определения 0,1% и больше циркония в высоколегированных сталях, содержащих титан, ниобий, бор, ванадий, алюминий, медь, хром 1и вольфрам. Фениларсоиовую кислоту рекомендует также А. М. Дымов [226] для определения циркония в ферроцирконии, Соста]в осадка отвечает формуле 2гО(СбН5АзОзН)2, весовая форма после прокаливания осадка — 2 г02. Прокаливание ведут обязательно под тягой. [c.199]

    В простой углеродистой стали Д.-ф. существует в интервале очень высоких т-р, при снижении т-ры превращается в гамма-фазу (аустенит). Превращение дельта—гамма в чистом железе является аллотропическим, в стали — перитектическим (см. Перитектика). Ферритообразующие элементы (напр., хром, молибден, вольфрам), растворяющиеся в феррите и стабилизирующие его, способствуют расширению области существования Д.-ф. и сближению ее с областью альфа-фазы. При определенной их концентрации эти области могут соединиться в область твердого раствора на основе альфа-железа. В некоторых сталях (особенно высокохромистых) часть Д.-ф. сохраняется при охлаждении до комнатной т-ры, что обусловливается выделением Д.-ф. с повышенной стабильностью в обогащенных при кристаллизации хромом осях дендритов. В межосных участках, обедненных хромом и др. ферритообразующими элементами, при снижении т-ры происходит дельта—гамма- превращение, а в осях дендритов Д.-ф. остается. Области Д.-ф., наиболее пересыщенные хромом, служат центрами зарождения сигма-фазы, охрупчиваю-щей сталь. Д.-ф. наблюдается в нержавеющих сталях и жаропрочных сталях (хромоникелевых), где в процессе длительных выдержек при т-ре 600—800° С также распадается с образованием сигма-фазы. Вследствие небольшой прочности феррита при высокой т-ре Д.-ф. снижает жаропрочность сталей. [c.324]

    На потенциал системы W VW большое влияние оказывает концентрация НС1. С уменьшением концентрации НС1 потенциал понижается, что приводит к уменышению скачка потенциала при титровании вольфрама раствором соли двухвалентного хрома. Шестивалентный вольфрам успешно титруется в среде концентрированной соляной кислоты раствором соли двухвалентного хрома. Возможность определения вольфрама таким путем впервые показали Флат и Соммер [147] в 1944 г. и Ю. А. Чернихов и В. Г. Горюшина [148] в 1945 г.  [c.104]

    Применяя, например, прибор, подобный предложенному Kelley (стр. 231), погружают каломельный и платиновый электроды в холодный разбавленный азотно-сернокислый раствор, содержащий ванадий в пятивалентном состоянии, и титруют раствором сульфата железа (II), пока луч света, отраженный от зеркальца гальванометра, после некоторого периода покоя не придет снова в движение. Затем прибавляют титрованный раствор хромата калия эквивалентной концентрации до тех пор, пока двигающийся обратно к своему прежнему положению луч света на некоторое время не остановится. После этого снова прибавляют раствор сульфата железа (II) до заметного смещения луча. Израсходованный объем раствора хромата вычитают из введенного объема раствора сульфата железа (II) и содержание ванадия зычисляют, основываясь на том, что IFe соответствует IV. Хром и вольфрам определению не мешают. [c.515]

    Определению мешают молибден, вольфрам, ванадий и хром. Определение осмия (VIII) (первый вариант). Стандартный раствор готовят растворением окиси осмия в серной кислоте. В реакционный сосуд вводят различные объемы этого раствора (л мл) и (10 —л) мл 0,1 и. раствора серной кислоты. При приготовлении стандартного раствора учитывают, что метод применим в интервале концентраций осмия от 0,0004 до 0,05 мкг/мл. [c.142]

    Молибден отделяют от мешающих элементов (железо и др.) прн помощи а-бензоиноксима, как описано на стр. 122 [1539]. Вместе с молибденом осаждаются также вольфрам, палладий, шестивалентаый хром, пятивалентный ванадий и тантал. Палладий и тантал не мешают последующему определению молибдена, а влияние вольфрама, хрома и ванадия может быть легко устранено. Другие элементы не осаждаются а-безноинокстом. [c.233]

    Калибровочный график пригоден для определения ванадия в присутствии большого количества посторонних ионов. Из табл. 1 видно, что большинство ионов металлов не мешает определению при концентрациях 10 М, что соответствует превышению примерно на 6 порядков над концентрацией ванадия. Исключение составляют хром VI), вольфрам (VI) и молибден (VI), не мешающие в концентрациях, на 2—3 порядка превышающих концентрацию ванадия. Железо (II и III) связывается сульфосалициловой кислотой в неактивный комплекс. Однако из-за его окраски определение становится невозможным при концентрации железа более 10" М. Присутствие сильных окислителей и восстановителей мешает определению ванадия. Ионы-комплексообразователи также мешают определению, поскольку связывают ванадий в менее активный комплекс. [c.71]

    Ацетилацетон представляет селективный реагент для экстракционного выделения молибдена при анализе материалов, содержащих железо в качестве главного компонента, например различных легированных сталей [1059]. Шестивалентный молибден экстрагируют из среды 6 N Н2804 при этом вольфрам, медь, хром не экстрагируются. Большая часть трехвалентного железа не экстрагируется (в органическую фазу переходит около 3% Определение молибдена заканчивают фотометрическим роданидным методом после трудоемкого мокрого окисления ацетилацетоната молибденила. [c.143]

    По данным Сарма [1299], вольфрам не мещает фотометрическому определению молибдена, если оптическую плотность раствора измерять при 400 ммк. При этой длине волны практически не мешает также трехвалентный хром. [c.234]

    Хром. Навеску хрома высокой чистоты растворяют в азотной кислоте, после восстановления серы до H2S иодистоводород-, ной кислотой фотометрируют в виде метиленового голубого [1447]. При растворении хрома в фосфорной кислоте сера полностью переходит в сероводород, определение заканчивают, как и в предыдущем случае [467]. Мешает вольфрам мышьяк и фосфор не мешают. Чувствительность определения 1-10 %. [c.200]


Смотреть страницы где упоминается термин Хром определение в вольфрама: [c.44]    [c.690]    [c.302]    [c.561]    [c.213]    [c.20]    [c.139]    [c.389]    [c.215]    [c.180]    [c.174]   
Химико-технические методы исследования (0) -- [ c.144 ]




ПОИСК





Смотрите так же термины и статьи:

Активационное определение хрома вольфраме

Окисление иодид-иона перекисью водорода (определение титана, циркония, гафния, тория, ниобия, тантала, молибдена, вольфрама, железа, хрома и фосфора)

Определение никеля, кобальта, хрома (Сгв и Сг3), железа, марганца, титана, молибдена, меди и вольфрама

Определение хрома в присутствии вольфрама

Определение хрома, никеля, кобальта, железа, марганца, алюминия, молибдена, меди, титана и вольфрама

Потенциометрическое определение вольфрама солями двухвалентного хрома



© 2025 chem21.info Реклама на сайте