Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иониты анионообменные

    Очень хорошие выходы для различных обменных реакций были достигнуты при использовании трехфазных катализаторов при кипячении за время от 24 до 100 ч [62] (см. табл. 3.1). Обычные анионообменные смолы для этих целей, как правило, не пригодны. В качестве альтернативы было предложено заряжать анионообменную смолу требуемым ионом и затем кипятить ее с субстратом в инертном растворителе [777]. Этот метод, -по-видимому, значительно менее привлекателен, чем МФК  [c.114]


    Примечание 3. Для удаления ионов хлора, которые могут присутствовать в индикаторе, необходимо пропустить раствор индикатора через ионообменную смолу в гидроксильной форме (анионообменную). Нейтрализовать образовавшуюся щелочность раствора индикатора титрованием азотной кислотой НЛ/Оз (3 97) [c.31]

    В случае использования анионообменной мембраны перенос тока осуще ствляется ионами ОН. Электроды выполняются в виде тонкой титановой, никелевой или платиновой сетки, покрытой платиновой чернью, либо в форме пористой массы, нанесенной на поверхность мембраны. Во втором случае водородный электрод делают из активированного угля, содержащего платину, а кислородный — из угля с добавкой серебра. [c.55]

    О. М. Тодесом и В. В. Рачинским [59—61] развита теория динамики ионного обмена и выведены уравнения, позволяющие рассчитать вероятную форму выходной кривой при режиме параллельного переноса фронта сорбционной волны. Ими были получены относительно простые расчетные формулы, пригодные для случая обменной сорбции одновалентных ионов. Экспериментальная проверка теоретически выведенных формул выполнена В. В. Рачинским [61] с использованием катионита КУ-2, а затем А. Т. Давыдовым и Ю. А. Толмачевой, изучавшим ионный обмен на сульфоугле [65] и анионообменных смолах 166]. [c.104]

    Аналогичные рассуждения относятся и к анионообменным смолам, содержащим в своем составе гидроксильную группу или кислотный остаток. Поэтому с электрохимической точки зрения всякий ионит представляет собой сложный поливалентный ион с отрицательным или положительным зарядом, связанный ионной связью с подвил<-ными ионами противоположного знака. [c.152]

    Вторая стадия деминерализации — это анионообменный цикл. Анионы из природной воды поглощаются смолой, а выделяется эквивалентное количество ОН -ионов. Но гидроксид-ионы нейтрализуются Н+-катионами, полученными при катионном обмене, и образуется вода  [c.303]

    Ионообменники характеризуются степенью набухания и емкостью. Степенью набухания называют объем упакованного в колонну обменника (в мл), приходящийся на 1 г его в сухом виде, и имеет размерность мл/г. Максимальное количество ионов, которое может связать ионообменник, определяет его емкость, которая совпадает с концентрацией ионогенных групп. Ёмкость выражается числам ммоль эквивалентов обмениваемого иона на 1 г сухого обменника (ммоль экв/г) или на 1 мл упакованного в колонну набухшего ионообменника (ммоль экв/мл) при значениях pH, соответствующих его полной ионизации. Для высокомолекулярных ионов или амфолитов, например белков, вводят понятие эффективная емкость, которая зависит от размера молекулы амфолита, расстояния между ионогенными группами и степени доступности всего объема пористой матрицы обменника для этих молекул. Понятия емкости и эффективной емкости могут не совпадать. Иногда приходится снижать полезную емкость сорбента за счет изменения pH, увеличивая при этом его эффективную емкость. Катионообменные смолы имеют емкость около 4,4 ммоль экв/г, а анионообменные — 3,5-4 ммоль экв/г для гелеобразной структуры и 2,5 ммоль экв/г дпя пористой. Обменная емкость изменяется при изменении pH. При низких pH происходит нейтрализация катионита при добавлении протона  [c.34]


    А. и. с.-твердые зернистые продукты. Размер зерен, имеющих обычно сферич. форму,-от 0,2 до 2,0 мм. Общая обменная емкость смол составляет 4,0-7,1 мг-экв/г, по анионообменным группам-1,0-1,9 мг-экв/г. С переходными металлами А. и. с. образуют хелаты. Этим обусловлена их высокая избирательность по отношению к сорбируемым ионам и молекулам (см. также Селективные ионообменные смолы). Важное достоинство нек-рых А. и. с.-возможность их регенерации при определенных условиях промывкой водой (при этом гидролизуются ионогенные группы), тогда как для регенерации анионо- и катионообменных смол необходимы р-ры к-т и щелочей. [c.157]

    Удаление анионов хлора и сульфата из Н -катионированной воды достигается в результате обмена на ОН -ионы ири фильтровании через слой анионообменной смолы. [c.224]

    Хлориды титана и ниобия разделяют ионным обменом [34, стр. 98]. Смесь хлоридов ниобия и титана растворяют в концентрированной НС1 концентрация ниобия не должна быть более 30 г/л. Раствор пропускают через колонну, наполненную анионообменной смолой. Здесь адсорбируются оба металла. Колонну промывают 6—8 н. НС1. Раствор, вытекающий из колонны, содержит почти весь адсорбированный смолой Ti и около 10% адсорбированного Nb. Для полного удаления Ti колонну промывают 2—3 н. НС1. Извлечение остатков Ti сопровождается вымыванием 30% Nb. Около 60% остающегося на смоле Nb извлекают разбавленной НС1, содержащей 3—5 г/л NaF. Пятиокись ниобия, осажденная из последней фракции, содержит менее 0,1 % Ti при соотношении Nb Ti в исходном растворе 1 1. Промежуточную фракцию, содержащую 30% Nb с примесью Ti, возвращают в процесс. Выход ниобия - 90%. [c.78]

    Мембраны с селективной проницаемостью, используемые для электродиализа, содержат ионогенные группы положительных ионов (анионообменные мембраны) или ионогенные группы отрицательных ионов (катинообменные мембраны). В электрическом поле в водном растворе анионообменная мембрана обеспечивает прохождение только анионов, а ка-тинообменная мембрана — только катионов. К важным необходимым характеристикам селективно-проницаемых мембран относятся  [c.14]

    Для полноты картины рассмотрим еще одну методику, хотя, строго говоря, она и не относится к истинным МФК-процессам. Сначала продажную сильноосновную анионообменную смолу (например, амберлит IRA 900) превращают в нитритную форму, промывают водой, этанолом и бензолом и сушат в вакууме. Затем для получения нитросоединений двойное количество смолу перемешивают и нагревают с бромэфирами карбоновых кислот ИЛИ с алкилбромидами. Таким способом, например, были получены 1-нитропропан (25 °С, 15 ч, 47%), фенилнитрометан (25 °С, 4 ч, 87%), этил-2-метил-2-нитропропионат (50 °С, 24 ч, 60%) [116]. Известны также и другие реакции с анионообменными смолами, включающими специфические, необходимые для реакции ионы (см. [116] и другие работы, рассмотренные выше). [c.139]

    Если в рассмотренном процессе использовать анионообменную мембрану, то переносом электричества ионами водорода можно пренебречь, тогда число переноса для перхлорат-иона будет равно единице, т. е. электричество будет переноситься только этими ионами. Из катодного пространства, при тех же условиях в результате восстановления исчезнет 1 экв Н+ и уйдет в анодное пространство 1 экв СЮ - В анодном пространстве одновременно появится в результате окисления 1 экв ионов и придет в него из катодного пространства 1 экв ионов СЮ - В итоге концентрирование в анодном пространстве с ионитовой мембраной идет в 5 раз быстрее (выход по току), чем с нейтральной мембраной. Если электроднализ проводить с катионитовой мембраной, которая непроницаема для анионов, то Н+-ионы, появляясь в анодном пространстве и проходя через мембрану, будут исчезать из катодного пространства в результате восстановления. В итоге концентрирования кислоты происходить не будет. [c.242]

    Фирма Токиута 5о(1а предлагает удалять хлорид-ион С1" и Н из водных растворов при хлоргидринировании олефинов путем электродиализа реакционной массы с применением катионо- и анионообменных мембран [105], [c.29]

    В зависимости от знака заряда противоиона, вступающего в обмен, различают катиониты и аниониты. Катиониты обменивают катионы, аниониты — анионы. Наибольшее значение имеют органические иониты из синтетических ионообменных смол, образующие структуру пространственной сетки. Сетка полимера, заполненная раствором, является как бы одной гомогенной фазой, в узлах которой закреплены ионы одного знака. Противоионы находятся в растворе внутри сетки и способны обмениваться. Активные группы у катионообменных смол —ЗОзН, — СООН, —ОН, —РО3Н2 и др. Анионообменные смолы содержат аминогруппы. В общем виде ионный обмен на границе ионит—раствор можно выразить уравнением [c.252]

    Большинство исследовании ионного обмена посвящено изучению адсорбции фосфат-ионов глинами или замещением ионов ОН в решетке каолинита. Однако здесь встречаются большие трудности, связанные с разложением минерала в процессе реакции. Есть и другие взгляды на причины анионного обмена. Так, некоторые авторы предполагают, что нескомпенсированные поверхностные заряды, образовавшиеся вследствие перемещений в решетке (31 + АР+ -> М 2+ и др.) на базальной плоскости пакетов, могут иметь, кроме катионообменных позиций, еще и анионообменнь(Е. Кое-кто из ученых не разделяет этого мнения об анионном обмене. Так, Н. И. Горбунов считает, что поглощение анионов, если исходить из электростатических представлений амфотерных свойств коллоидов, мембранного равновесия и др., невозможно, поскольку трудно экспериментально установить анионный обмен. Как правило, анионы не принимают непосредственного участия в равновесии катионного обмена. [c.122]


    Оксиды и гидроксиды ряда металлов также проявляют способность к ионному обмену. Однако в этом отношении они ведут себя неодинаково. Например, кислые оксиды молибдена (VI), вольфрама (VI), урана (VI), ванадия (V) практически не обладают анионообменной способностью, а основные оксиды титана (IV), висмута (1П) обладают лишь незначительной катионообменной способностью и ведут себя как аниониты. Такие амфотерные гидроксиды, как А1(0Н)з, 5п(ОН)4, ЫЬ(ОН)в, Та(ОН)б в кислой среде поглощают анионы, а в щелочной — катионы. [c.45]

    Ионит типа ретардион содержит одновременно катионообменные и анионообменные функциональные группы, расположенные так близко друг к другу, что их заряды частично взаимно нейтрализуются. Несмотря на это, функциональные группы способны еще притягивать подвижные анионы и катионы и в известной степени связываться с ними. В результате такая бифункциональная смола способна извлекать из раствора, с которым она вступает в соприкосновение, и катионы и анионы. Это особое свойство смолы тормозит продвижение ионов электролита вдоль колонки отсюда происходит и название способа способ отстающего электролита . [c.113]

    В этих равновесиях Ап обозначает матрицу анионообменного сорбента, несущую один положительный заряд. В соответствии с равновесием (99) поглощение анионов затруднительно в силънощелочных растворах. В то же время щелочи можно использовать для вытеснения из анионита всех поглощенных ионов. Однако, если при этом комплексные ионы разрушаются с образованием гидроксидов металлов, регенерация не эффективна. Поэтому для регенерации анионитов часто используют соляную кислоту, переводящую их в СР-форму. Следует, однако, учитывать, что металлы, образующие прочные хлоридные комплексы, например Pt le , могут поглощаться анионитами из солянокислых растворов. В подобных случаях необходим тщательный выбор регенерирующего раствора на основе химических свойств поглощенных ионов. [c.149]

    Оксид алюминия обладает катионообменными или анионообменными свойствами в зависимости от его химической обработки. При обработке А1гОз щелочью получают катионообменный препарат состава [(Л120з) А1021Ка, у которого в слабощелочных растворах ионы Ма " могут обмениваться на другие катионы. При обработке МзОз кислотой, например азотной, получают анионообменный оксид [c.153]

    Селективность поглощения разнозарядных анионов зависит как от величины и плотности их заряда, так и от взаимодействия с молекулами воды, определяемого силой соответствующей кислоты. Сравнение селективности поглощения ионов приблизительно одинакового строения и размера показывает (табл. 25), что с ростом величины заряда селективность поглощения уменьшается, по крайней мере, при обмене больших анионов на сильноосновных анионитах. Следовательно, электростатическое притяжение к фиксированным группам ионита в данном случае не имеет решающего значения. Однако в ряде случаев, например на анионообменном оксиде алюминия, получены ряды селективности с преимущественным поглощением более высокозарядных анионов. [c.189]

    В зависимости от того, происходит ли обмен катионами или анионами, различают ттионообменную или анионообменную сорбцию. В настояшее время известно сравнительно большое число веществ, обладающих свойствами обмена либо катионов, либо анионов. Ввиду большой практической важности ионообменной адсорбции наша промышленность изготовляет специально так называемые ионообменные смолы, при помощи которых можно изменить состав ионов исследуемого раствора. Ионообменные смолы, или иониты, разделяют на две группы катиониты, обладающие свойством обменивать свои катионы на катионы солей, и аниониты, обменивающие собственные анионы на анионы солей, присутствующие в растворе. Катионы содержат в своем составе активные кислотные группы типа  [c.140]

    Катионсюбменные смолы содержат активные группы —50зН, —СООН, —ОН, которые структурно связаны со скелетом смолы эти группы не могут переходить в раствор. Подвижными остаются только ионы водорода этих групп или замещающие их катионы В анионообменных смолах активными являются основные группы — ЫН , =ЫН, =N Обменными анионами являются ионы гидроксила, которые образуюк я на поверхностна смолы в процессе ее гидратации. [c.480]

    Анионообменную смолу марки ЭДЭ-10П в хлоридной форме промывают 20%-иым раствором ацетата калия или натрия до исчезновения ионов СГ в фильтрате (проба с AgNOs), потом дистиллированной водой до тех пор, [c.54]

    ЭЛЕКТРОДИАЛИЗ, метод разделения ионизированных соед. под действием электродвижущей силы, создаваемой в р-ре по обе стороны разделяющей его мембраны (М.). Использ. неселективные М., проницаемые для любых ионов (для отделения электролитов от неэлектролитов), и селективные, проницаемые только для катионов или только для анионов (для обессоливания р-ров электролитов или фракционирования ионов). Аппараты с селективными М. (см. рис.) состоят из ряда камер, по к-рым под давл. перемещаются р-ры электролитов. В крайних камерах расположены электроды. При прохождении электрич. тока через пакет М. катионы перемещаются к катоду, анионы — к аноду. Поскольку катионообменные М. пропускают только катионы, а анионообменные — только анионы, камеры поочередно обогащаются и обедняются электролитом. В результате исходный р-р электролита удается разделить на два потока— обессоленный и концентрированный. Разделение ионов с одинаковым знаком заряда происходит в результате различия между скоростями их переноса через М. [c.696]

    Элюцию нуклоо31Дмопо-, дп- и трифосфатов с анионообменной смолы мон но вести п нарастающей концентрацией достаточно сильной кислоты (вместо соли). Ири этом происходит частичная нейтрализация остатков фосфорной кислоты, а в ионном взаимодействии начинает играть роль отталкивание от обменника положительно заряженных оснований С, А и G. [c.320]

    АНИОНИТЫ,. СМ. Анионообменные смолы. Иониты. АНИОННАЯ ПОЛИМЕРИЗАЦИЯ, ионная полимеризация, при к-рой концевое звено растущей цепи несет полный или частичный отрицат. заряд. Традиционно к А. п. относят процессы, инициируемые соед. щелочных или щел.-зем. металлов (либо своб. анионами). Процессы, развивающиеся с участием переходных металлов, относят обычно, независимо от характера поляршации связи металл-углерод, к координационно-ионной полимеризации. [c.166]

    По знаку заряда обменивающихся ионов различают катионообменные смолы, анионообменные смолы и амфотерные ионообменные смолы (содержат одновременно кислотные и основные группы) к специфич. группе относят селективные ионообменные смолы, содержащие комплексообра-зующие группы, и окислительно-восстановительные ионообменные смолы, способные к изменению зарядов ионов. Ионогенные группы в И. с. могут быть одного типа (монофункциональные смолы) или разного (полифуикциональные смолы) известны, напр., катионообменные смолы, содержащие группы СООН и 80 зН. В зависимости от способности ионогенных групп к диссоциации различают сильно-, средне- и слабокислотные (или основные) И. с. Два последних типа И. с. ионизируются только соотв. в щелочных и кислых средах (см. табл.). [c.264]

    Из выражения (6.14) следует, что селективность жидкостных мембран зависит от коэффициентов распределения и подвижности ионов А" и в". В случае полной диссоциации молекул ионита (чего следует ожидать в растворителях с высокой диэлектрической проницаемостью) подвижность ионов определяется только природой растворителя и не зависит от природы аниона К . Так, вводя карбоновые, сульфоновые или фосфорорганические кислоты с длинной цепью в нитробензол или нитрометан, можно получить на их основе мембранные электроды с высокой селективностью к различным катионам. При этом неважно, какого рода группы - карбоксильные, сульфатные или фосфатные - введены в качестве ионообменных. Если вместо кислоты в нитробензол ввести анионообменные молекулы, например тетраалкиламмониевые соли, то получим анионоселективный электрод, селективность которого уменьшается в ряду Г > Вг > СГ > Р. [c.179]

    S04 , а фильтр II ступени — до проскока С1 -ионов, т. е. до тех пор, пока фильтрат остается нейтральным. Такое разделение смеси анионов 504 " и С1 целесообразно, так как позволяет использовать более высокую обменную емкость анионообменных смол при поглощении сульфатов и при регенерации анионитовых фильтров создает возможность утилизации отрабо-та1шых растворов, содержащих практически индивидуальные соли —сульфат аммония (или натрия) и хлорид, которые более выгодны для утилизации. [c.224]

    Для получения обессоленной воды содержание ионов Na- в воде, поступающей на ОН -фильтр, загруженный слабоосновной смолой, должно быть менее 0,2 г-экв/м . Слабоосновные смолы поглощают двухзарядные ионы S04 значительно сильнее, чем однозарядные анионы хлора. Поэтому при работе анио-ннтового фильтра до проскока анионов SO4 в слое анионита последовательно протекают два процесса. На первой стадии, за-поршающейся проскоком анионов хлора в фильтрат, в смоле осуществляется обмен ОН -ионов на анионы S04 " и С1 . На второй стадии, начинающейся после проскока анионов С1 , фронт сорбции иопов S04 перемещается по слою ионита в результате вытеснения ранее сорбированных ионов хлора, т. е. >па этой стадии протекает обмен между ионами S04 и С1 . В результате ионы Н+, находящиеся в Н+-катионированной воде, не нейтрализуются и фильтрат содержит свободную соляную кислоту. Таким образом, Н+-катионированную воду можно фильтровать через анионит только до завершения стадии ОН -обмена, т. е. до тех пор, пока pH фильтрата не начнет падать. При работе двух последовательно включенных ОН -филь-тров, фильтр I ступени может работать до проскока ионов S04 , а фильтр II ступени — до проскока С1 -ионов, т. е. до тех пор, пока фильтрат остается нейтральным. Такое разделение смеси анионов 504 " и С1 целесообразно, так как позволяет использовать более высокую обменную емкость анионообменных смол при поглощении сульфатов и при регенерации анионитовых фильтров создает возможность утилизации отрабо-та1шых растворов, содержащих практически индивидуальные соли —сульфат аммония (или натрия) и хлорид, которые более выгодны для утилизации. [c.224]

    Вследствие гидрофильности ионизированных функциональных групп ионообменные смолы в воде набухают. При этом объем смол увеличивается, что обусловлено выпрямлением полимерных цепей, образующих матрицу смолы, и увеличением расстояния между ними [3, 4]. Поперечносшивающие-цепи полимера (мостики, образованные дивинилбензолом или эпихлор-гпдрином), повышая жесткость структуры смолы, препятствуют ее набуханию. Поэтому с увеличением содержания в смоле сшивающего агента ее способность к набуханию уменьшается [5]. Чем больше ионный радиус катиона солевой формы катионита, т. е. чем меньше гидратация противоиона функциональной группы ионообменнкка, тем меньше набухание солевой формы смолы. Та же закономерность справедлива и для набухания анионообменных смол. Поэтому набухание катионита КУ-2 максимально в Н+-форме, а анионита АВ-17 в ОН -форме. [c.210]

    Экстракционные процессы по типу используемого экстрагента можно разделить на три труппы экстракция кислотными (катионообменными), основными (анионообменными) и нейтральными экстрагентами (табл. 7.3). Нейтральные экстрагенты, как правило, обладающие высокой донорной способностью, используют дпя экстракции незаряженных комплексов ионов металлов с лигандами типа СГ, Вт , Г, 8СН . Натфимер, экстракцию циркония(1У) из хлорндных растворов описывают уравнением [c.226]

    И медленного добавления к раствору при кипении металлического натрия до появления синей окраски, сохраняющейся в течение нескольких минут [188]. Избыток натрия разрушают, добавляй хлористый аммоний или иодистый аммоний или же уксусную кислоту [129]. Указанные реагенты часто вводят в избытке для нейтра- тизащ1и натрия, израсходованного при реакции, и для того, чтобы не допустить сильной щелочности среды при обработке продукта реакции. Полное удаление образовавшихся натриевых солей иногда сопряжено с трудностями, так как продуктом восстановления обычно является водорастворимый пептид. Эти трудности можно устранить, если к раствору в жидком аммиаке к концу реакции добавить анионообменную смолу. Смола связывает ионы натрия, и получается раствор пептида без примеси солей [129, 141, 142, 183]. [c.176]


Смотреть страницы где упоминается термин Иониты анионообменные: [c.98]    [c.215]    [c.135]    [c.55]    [c.49]    [c.144]    [c.126]    [c.227]    [c.33]    [c.25]    [c.335]    [c.57]    [c.170]    [c.168]   
Краткий справочник по химии (1965) -- [ c.417 ]




ПОИСК





Смотрите так же термины и статьи:

Анионообмен



© 2025 chem21.info Реклама на сайте