Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Частицы микроскопия

    В табл. 7.2 приведены результаты визуальных измерении отверстий в металлических пленках и нх сравнения с действительными размерами. Хотя они относятся к отверстиям в пленках, но весьма наглядно иллюстрируют величину ошибок, которые могут получаться при определении размеров частиц. Микроскоп, с которым проводились эти опыты, имел объектив с численной апертурой 1,3, а длина световых волн составляла 0,53 мк. [c.229]


    В реактивном топливе, если рассматривать его под микроскопом, можно обнаружить многочисленные твердые частички. В одном кубическом миллиметре топлива таких частиц содержится несколько тысяч штук, причем, чем меньше размер частиц, тем больше их количество. Достоверно установлено, что при транспортировке и хранении топлива как с доступом воздуха, так и в герметичных резервуарах количество частиц микрозагрязнений возрастает. Рост количества микрозагрязнений происходит не только за счет внешних загрязнений, но и за счет процессов, протекающих в топливе. Мелкие частицы (до 5 мк) могут находиться во взвешенном состоянии весьма длительное время, а частицы размерами более 5 мк постепенно переходят в отстой или оседают на стенах резервуара. Таким образом, при хранении в топливе непрерывно идут процессы накопления и выпадения в виде твердой фазы микрозагрязнений. [c.44]

    Структура консистентных смазок обычно поддается изучению только при весьма больших увеличениях (на электронных микроскопах), что объясняется чрезвычайно малой величиной частиц, образующих дисперсную фазу смазок. В настоящее время изучена структура почти всех типов смазок. [c.187]

    Непосредственный обмер отобранных порций частиц измерительным инструментом применим для частиц 3 мм и выше [64]. Более редко используют седиментацию в жидкости — до 200 мкм и отдувку или седиментацию в газе — до 200 мкм. Для часТиц размером более 100 мкм очень удобно по нашему опыту ие-пользовать инструментальные микроскопы, которые позволяют определять не только средний диаметр, но и другие геометрические размеры отдельных зерен, необходимые для оценки их коэффициентов формы. Для определения дисперсного состава доменного кокса применяют сита большого размера с квадрат- [c.52]

    Контроль за разделением, т. е. за размером частиц отбираемых фракций, осуществляют с помощью микроскопа. Условия разделения подбирают, изменяя расход воздуха. При этом стараются добиваться выделения максимально узкой фракции. После отбора нужной [c.29]

    А. Эйнштейн в 1905 г. и независимо от него польский физик М. Смолуховский в 1906 г. развили молекулярно-статистическую теорию броуновского движения, доказав, что оно является видимым под микроскопом отражением невидимого теплового, хаотичного движения молекул дисперсионной среды. Интенсивность броуновского двин<ения тем больше, чем менее скомпенсированы удары, которые получает одновременно частица со стороны моле- [c.318]


    В зависимости от размеров мелких частиц какого-либо вещества, распределенного в другом веществе (среде), двухкомпонентные системы подразделяют на истинные растворы, коллоидные растворы и механические смеси. Свойства этих систем, в первую очередь их стабильность, зависят от размеров распределенных частиц. Если распределенное вещество находится в виде отдельных молекул, системы получаются вполне устойчивые, не разделяющиеся при сколь угодно долгом стоянии. Такие системы называются истинными растворами у них растворенные частицы проходят через все фильтры, не оседают, не обнаруживаются в ультрамикроскопе. Если размеры частиц очень велики по сравнению с молекулами, дисперсные системы непрочны и распределенное вещество самопроизвольно оседает или поднимается вверх. Это — механические смеси (мути, суспензии, взвеси), они не проходят через тонкие фильтры, видимы в обычный микроскоп. Коллоидные растворы занимают промежуточную область размеры распределенных частиц средние между размерами частиц истинных растворов и механических смесей. Коллоидные растворы проходят через самые тонкие фильтры, но задерживаются в ультрафильтрах в таких растворах частицы заметно не оседают, невидимы в обычный микроскоп, но обнаруживаются при помощи ультрамикроскопа. [c.33]

    Влияние свойств пористого слоя на скорость фильтрования нередко выражают посредством параметров, определяющих его структуру, в частности эквивалентного размера пор, пористости слоя, удельной поверхности и щероховатости частиц. С этой целью принимают идеализированные модели пористого слоя, например модель цилиндрических капилляров. Однако в настоящее время принципы построения моделей пористых сред требуют уточнения [24]. Так, следует отметить, что способы определения параметров пористых сред адсорбцией, капиллярной конденсацией, ртутной поро метрией, электронной микроскопией нередко приводят к разным результатам, причем одни параметры модели и объекта могут совпадать, а другие различаться. Использование идеализированных моделей пористых сред не способствует лучшему пониманию процесса фильтрования, а все параметры, характеризующие пористую среду, в конечном счете приходится объединять в один, находимый экспериментально параметр, называемый коэффициентом проницаемости или удельным сопротивлением. К сказанному надлежит добавить, что отмечено шесть типов укладки моно-дисперсных шарообразных частиц в слое, причем форма пор, влияющая на гидродинамику слоя, различна для разных типов укладки [39]. [c.24]

    Существует несколько способов оценки задерживающей способности фильтровальных перегородок по отношению к твердым частицам суспензии, например определение размеров пор перегородки под микроскопом, фильтрование сквозь перегородку водной суспензии частиц полистирола определенного размера, исследование проницаемости перегородки по отношению к воздуху. Описан также способ оценки задерживающей способности фильтровальной бумаги, фетра и волокнистых материалов на основании данных о их пористости, проницаемости по отношению к воде, степени мутности фильтрата [119]. [c.109]

    Экспериментально найдено [195], что осадки, состоящие из частиц с размерами в одних и тех же пределах, но с различным распределением по размерам, значительно отличаются по пористости при этом удельная поверхность частиц не может полностью характеризовать распределение частиц по размерам. Выполнены опыты с осадками, состоящими из смесей различных фракций стеклянных шариков диаметром 43—1000 мкм и имеющими пористость 0,216— 0,374 (распределение шариков по размерам и удельная поверхность их определялись под микроскопом). Получено, что отношение величины удельного сопротивления, рассчитанного по уравнению (У,7), к соответствующей величине, определенной фильтрованием, находится в пределах 0,73—2,76. [c.184]

    Указано [198] на некоторое различие между результатами опытов и расчетов по фильтрованию при использовании удельной поверхности даже в том случае, если осадок состоит из стеклянных шариков, для которых величина 5о определялась под микроскопом. Отмечена [199] зависимость удельной поверхности частиц от процессов их деформации и агрегации или пептизации. [c.184]

    Для приготовления суспензий использованы 17 тонкодисперсных порошков, в частности карбонил железа, карбонат кальция, двуокись титана, тальк, активированный уголь и разбавленные водные растворы сульфата алюминия, фосфата натрия, едкого натра, а также дистиллированная вода. При помощи электронного микроскопа предварительно были определены размер и форма частиц тонкодисперсных порошков в сухом состоянии измерением проницаемости при фильтровании воздуха — удельные поверхности частиц этих порошков. При этом найдено, что средний размер частиц различных порошков составляет 0,1 —10 мкм, форма их изменяется от шарообразной (у карбонила железа) до очень неправильной (у талька), а удельная поверхность частиц находится в пределах от 1,2-10 (у карбонила железа) до 20-10 м -м (у двуокиси титана). [c.196]


    Диатомит состоит из индивидуальных кремнеземных панцирей микроскопических третичных (миоценовых) водорослей диатомей, отложившихся в морских или пресных водах. Под микроскопом частицы диатомита обнаруживают большое разнообразие форм (рнс. Х-2), что способствует образованию слоя вспомогательного вещества с высокой пористостью. [c.345]

    Иногда для исследования пленок, образовавшихся на металлах, применяют электронный микроскоп, что позволяет определить величину и типичную форму частиц пленки, равномерность толщины пленки, остроту ребер кристаллов, наличие перекрывающих друг друга кристаллов и посторонних включений. [c.435]

    Вследствие межмолекулярной ассоциации асфальтены обычно содержатся в нефти в форме коллоидных (мицеллярных) частиц, а смолы — в виде соединений, молекулярно растворенных в углеводородной среде или сорбированных на поверхности асфальтеновых мицелл [1027—1029]. В поле зрения электронного микроскопа макромолекулы (мицеллы) асфальтенов из различных нефтей и нефтяных остатков в сильно разбавленных растворах выглядят как округлые частицы вытянутой (овальной) формы. По результатам электронно-микроскопических измерений средние максимальные размеры (длины больших осей овалов) частиц асфальтенов из различных нефтей могут меняться от 20—30 до 150— [c.185]

    Коллоидные системы представляют собой частный вид дисперсных систем. К коллоидным относятся системы со сравнительно высокой степенью дисперсности размер частиц составляет от 10 до 2000 А. Таким образом, коллоидные системы по степени дисперсности частиц должны быть помещены между грубодисперсными системами и молекулярно-дисперсными, т. е. истинными растворами (в последних растворенное вещество находится в растворителе в виде отдельных молекул или ионов). В коллоидных системах частицы не могут быть обнаружены с помощью обычного микроскопа. Таким образом, коллоидные системы являются системами гетерогенными (точнее — микрогетерогенными), так как частицы дисперсной фазы составляют самостоятельную фазу, обладающую некоторой поверхностью, отделяющей ее от дисперсионной среды. Вследствие малого размера частиц общая поверхность их в коллоидных системах очень велика и составляет десятки, сотни и тысячи квадратных метров на грамм дисперсной фазы. Очень сильное развитие этой поверхности раздела и обусловливает особенности в свойствах, присущие коллоидным системам. [c.504]

    С помощью электронного микроскопа (действие которого основано на использовании не лучей света, т. е. электромагнитных колебаний, а направленных потоков электронов) удается в настоящее время достигнуть увеличения в 100 000—150 000 раз, благодаря чему стало возможным видеть коллоидные частицы или, точнее, проекции их на экране. [c.536]

    При подсчете числа частиц загрязнений непосредственно в поле зрения микроскопа существует субъективная погрешность вследствие возможного пропуска или повторного счета отдельных частиц, поэтому иногда такой подсчет проводят на предварительно изготовленных микрофотографиях. Чтобы уменьшить погрешность оп- [c.31]

    Размеры и число частиц загрязнителя определяют под микроскопом в пробах масла, отобранных до и после прохождения через фильтрующий материал. Перед анализом частицы загрязнителя в пробах предварительно отстаивают в специальных кюветах иЛи осаждают на нитратцеллюлозном фильтре № 4 с порами диаметром 0,9 мкм. Чтобы облегчить анализ, пробы масла в кюветах предварительно разбавляют отфильтрованным бензинам Б-70 в соотношении 1 50 или 1 100. [c.199]

    Для понимания механизма образования осадков могут быть полезны сведения об электронномикроскопическом исследовании структуры дизельного топлива [112]. Согласно литературным данным, моторные топлива рассматриваются в качестве полидисперсных коллоидных систем, в которых смолисто-асфальтеновые вещества находятся в растворенном или коллоидно-дисперсном состоянии. А дисперсная фаза в дизельных топливах существует в виде плотной сетчатой структуры, под микроскопом она выглядит в виде волнистой поверхности и при окислении подвергается действию кислорода [112]. Установлено, что при введении (или образовании) соединений с полярными группами структура дизельного топлива разрушается на отдельные фрагменты, которые коагулируют, что приводит к смолообразованию в системе. В свою очередь, присутствие в дизельном топливе частиц размером 0.2-1.2 мкм резко ухудшает его качество. [c.146]

    В основе У. лежит дифракция света на колловдных частицах, размер к-рых меньше половины длины световой волны, в результате чего система начинает светиться. Частицы можно наблюдать в УМ как яркие дифракц. пятна, изучать их природу, оценивать концентрацию, однако изображений частиц микроскоп не создает. Яркость свечения, а следовательно, и видимость частиц зависят от разности показателей преломления частицы и дисперсионной среды. Если она велика (напр., взвесь металлич. частиц в воде), то отчетливо фиксируются частицы размерами 2-4 нм (т.е. значительно меньше предела разрешения обычных микроскопов). Если эта разность мала (взвесь орг. частиц в воде), то обнаруживаются только частицы размерами не менее 20-40 нм. В лиофильных коллоидах (напр., гелях желатины, декстрина) пов-сть частиц вследствие сольватации не обладает заметной разницей в показателях преломления относительно дисперсионной среды (воды), поэтому свечение в них знач1ггельно слабее. [c.36]

    Во вторую группу входит определение гранулометрического состава по числу частиц (микроскопия, кондуктометр и я) и по массе частиц (ситовой анализ, седиментометрия и сепарация). [c.219]

    Определение гранулометрического состава, так называемой подситовой фракции порошков, под которой обычно подразумевают фракцию с размерами частиц менее 40—60 мкм, выделенную просеиванием, может быть произведено с помощью микроскопа. Микроскопический анализ (в том числе с электронной оптикой) заключается в измерении условных размеров и в подсчете числа частиц в заданном интервале размеров либо визуально, либо по микрофотографиям препарата. Микроскопия дает надежные и воспроизводимые результаты только при тщательных измерениях (точность пропорциональна корню квадратному из сосчитанного числа частиц). Микроскопия с обычной световой оптикой применяется для частиц с размерами выше 0,5 мкм, а с электронной — в интервале 0,001—10 мкм. Нижняя граница размеров зерен, которые еще могут быть измерены микроскопом, определяется его предельной разрешающей способностью. [c.28]

    Как было показано в работе [60], определение ао по течению в вязкостном режиме с газом при диаметрах частиц, меньших 60 мкм (применялись микросферы из полистирола), дает резко заниженное значение против непосредственно определенных значений о из замеров под микроскопом. -В этих же условиях измерение ао в молекулярном режиме течения дало хорошее совпадение с результатами прямого расчета [60]. При условии введения поправок на молекулярный режим предел измерения ао с применением газа и расчетом по (П. 55) снижается до диаметра частиц 10 мкм и ао 0,6 м /см Жидкостные приборы также могут быть использованы примерно до этих же значений. При использовании вязкостного режима, верхний предел дисперсности определяется еще диаметром ячейки (аппарата) (d < 0,05 >ап, см. ниже) и чувствительностью прибора, замеряющего перепад давления в зернистом слое. Удельную поверхность частиц диаметром более 1 мм обычно определяют в интервале скоростей,- где перепад давления линейно зависит от скорости, пропускаемой через слой жидкости [26, R. В. M Mul-lin 36]. [c.51]

    Поверхность частиц первой группы можно найтк по приближенным геометрическим зависимостям с предварительным обмером линейных размеров частиц по главным осям. Так, Вилли и Грегори [26 определяли размеры сфероидальных частиц с номинальным диаметром 0,279 и 0,127 мм обмером под микроскопом и с помощью проектора, а также методом измерения длин отрезков зерен, пересекаемых бросаемой на шлиф стальной иглой. Результаты измерений усреднялись по данным 200— 600 опытов. Для более мелких частиц с номинальным диаметром 0,028 мм удельную поверхность Оо измеряли по адсорбции азота. Полученные различными методами значения oq совпадали как друг с другом, так и с ао, определенной по перепаду давления из соотношения (П. 55) при Ki = 4,8 с точностью 5%. [c.57]

    Чистое вещество всегда однородно, смеси же могут быть однородными или неоднородными. Однородными наз ывают смеси, в когорых ни непосредственно, ни при помощи микроскопа нельзя обнаружить частиц этих веш.еств вследствие ничтожно малой их величины. Таки.мн смесями являются смеси газов, многие жидкости, некоторые сплавы. [c.14]

    При растворении в воде кристаллов сахара и хлорида натрия образуются, соответственно, молек) лярные и ионные растворы. Таким образом, одно и то же вещество может находиться н ()аз-личной степени раздробленности макроскопически видимых частим, (> 0,2—0,1 мм, разрешающая способность глаза), микроскопически видимых частиц (от 0,2—0,1 мм до 400—300 нм ", разрешающая способность микроскопа при освещении белым светом) и в молекулярном (или 1Юином) состоянии. [c.305]

    В этом случае земля уже насып1 ена под микроскопом ее частицы имеют вид темнокоричневых масс. Она непригодна уже для дальнейшей обработки и должна быть регеперована одним из следующих способов  [c.222]

    При образовании шариков в керосине и смесях керосина с трансформаторным маслом это явление не наблюдается. Однако н])и исследовании шариков нод микроскопом видна разница во внешнем виде катализатора. Шарики, полученные в трансформаторном масле, имеют ]ф 1вильную сферическую форму частиц неправильной формы очень мало. В керосине происходит склеивание шариков, в результате чего появляется много частиц несферической формы. В смеси трансформаторного масла с керосином (1 1) склеенных шариков не было количество несферически частиц незначительное. [c.210]

    Измерение скорости электрофореза выполняли в специально сконструированной кювете, схема которой дана на рис. 12.1. Рабочую стеклянную кювету 1 в виде прямоугольного парал-лепипеда с открытыми торцами длиной 20 мм и поперечным сечением 20x0,8 мм помещали между двумя сосудами 2 также прямоугольного сечения, изготовленными из оргстекда. Толщина стенок измерительной ячейки составляла 0,2 мм, что обеспечивало надежную визуализацию микрообъектов при работе с темнопольным микроскопом. Боковые емкости 2 в месте их сочленения с кюветой имели ряд отверстий диаметром 0,5 мм эти емкости прочно закреплялись на основании 3, в котором было высверлено отверстие для вхождения темнопольного объектива 4. Б нижнюю часть емкостей 2 помещали гель агар-агара 5, приготовленный на 1 н. растворе КС1 сверху заливали 0,1 и. раствор USO4 (б) и помещали медные электроды 7. Такая установка удобна в обращении в ней обеспечена герметичность сочленения боковых емкостей с измерительной камерой и возможность тщательной очистки последней после проведения исследований. На основании данных о подвижности частиц дисперсной фазы вычисляли -потенциал по формуле Гельмгольца — Смолуховского без учета поправки на поверхностную проводимость [59]. [c.202]

    Важной практической проблемой является трансформация глобулярной модели с учетом реального строения пористых тел. Экспериментальные данные исследования морфологии пористых тел, основанные на методе электронной микроскопии, показывают, что вторичные частицы в зависимости от химической природы и способа синтеза катализатора (адсорбента) могут представлять собой глобулы, пластины, иглы и пр. различных размеров. Трансформация глобулярной модели на реальную осуществляется на основе следующих предпосылок а) соотношение плотной фазы и сформированного ею объема пор не зависит от строения первичных и вторичных частиц (суммарный объем пор и вес единичной гранулы катализатора не зависят от типа аппроксимации ее строения) б) суммарная поверхность первичных частиц при данном геометрическом размере зависит только от их числа (находится из экспериментально определенной удельной поверхности и веса единичной гранулы образца) в) число первичных частиц во вторичных зависит от типа их аппроксимации (в силу необходи- [c.146]

    Тонкость отсева может быть непосредственно определена микроскопическим анализом и, косвенно — седи-ментациоиным анализом фильтрата. Несмотря на достоинства пер1В0Г0 метода, как прямого способа измерения, он применяется ограниченно, вследствие своей трудоемкости, которая усугубляется при малой концентрации частиц в фильтрате. Для анализа пригоден наиболее распространенный тип учебного, биологического микроскопа с 600-кратным и меньшим увеличением. Капля исследуемой суспензии наносится на предметное стекло и закрывается покровным стеклом. В качестве предметного стекла удобно использовать камеру Горяева или Бюркера, которые применяются в практике медицинских исследований, и обеспечивают толщину рассматриваемого слоя суспензии 0,1 мм. Крестообразный столик СТ-5, в держателях которого закрепляется предметное стекло, и вместе с которыми оно может перемещаться в двух направлениях, позволяет просматривать в проходящем свете последовательно отдельные участки слоя суспензии. В окуляр микроскопа предварительно помещается окулярная сетка — стекло с нанесенной на него сеткой. Цена деления окулярной сетки при выбран-НО.М увеличении микроскопа определяется по объект-микрометру, помещаемому на предметный столик микроскопа. Цена деления на стекле объект-микрометра 0,01 мм. [c.43]

    При рассматривании в микроскоп слоя суспензии на фоне окулярной сетки измеряется наибольший размер частиц числом делений сетки занимаемых ими. Число полей, подвергающихся просмотру, зависит от концентрации частиц и диапазона изменения их размеров и может достигать нескольких десятков. При просматривании мотут применяться простейшие счетные устройства для [c.43]

    В катализаторах на носителях необходимо следить аа структуроД слоя активного компонента, покрывающего носитель. Так, Шехтер, Рогинский и Исаев [43] показали съемкой в электронном микроскопе, что в платино-асбестовом катализаторе платина находится на асбесте в виде сферолитов различной величины. Адлер и Кивней [441 нашли для платино-глиноземного катализатора, что в зависимости от метода нанесения платина различным образом располагается на окиси алюминия, образуя монослой при пропитке и сферические дискретные частицы при соосаждении. В общем, дисперсность активного компонента в нанесенных катализаторах может варьироваться в достаточно широких пределах и тем самым определять свойства катализатора. Поэтому для таких катализаторов нужно иметь [c.197]

    После проведения экспериментального исследования кинетики кристаллизации аллюмоаммонийных квасцов можно было сделать выводы 1) с увеличением времени пребывания кристалла в аппарате размер его увеличивается 2) во всех экспериментах с увеличением числа оборотов средний размер кристаллов увеличивается, что свидетельствует о росте кристалла, происходящем в диффузионной области 3) во всех экспериментах с меньшей скоростью охлаждения (расходом охлаждающей воды) функция распределения кристаллов по размерам двугорбая, что свидетельствует о наличии вторичного зародышеобразования. Из рассмотрения кристаллов квасцов под микроскопом МБИ следовало, что они не дробятся и не агрегируют. Наличие не очень сильного второго горба в функции распределения и отсутствие явлений явного дробления свидетельствует в пользу гипотезы вторичного зародышеобразования путем истирания кристаллов несущей фазы 4) почти во всех экспериментах с большей скоростью охлаждения функция распределения с одним горбом . Причина отсутствия второго горба в следующем а) мелкие кристаллы более устойчивы к истиранию (критерий Вебера мал), б) быстрое снятие пересыщения в начальные моменты свидетельствует о том, что пересыщения недостаточно для роста вторичных центров (частицы не растут). Увеличение данного микроскопа недостаточно для фиксирования этих вторичных центров. [c.313]

    При определенных условиях (постоянные пересыщение и температура) производили отбор продукта (напыление на стеклянную пластинку при постоянном времени выдержки) по высоте стеклянной трубы. С целью определения размеров частиц пробы фотографировали иа микроскопе МБИ-15У. На рис. 3.22—3.24 представлены кривые распределения частиц по размерам, полученные после обработки фотографий. Кривые /, 2 соответствуют отбору из средней н нпжней частей стеклянной ячейки-трубы. Эксперименты проводились при различных значениях исходных концентраций НС1 и при различных пересыщениях в течение 20—30 мин (время каждого эксперимента). [c.318]

    То же явление рассеяния света коллоидными частицами положено в основу особого метода исследования коллоидных систем — ультрамикроскопии. В пучке света, проходящем в темной ком-н ате, мы видим иногда простым глазом сверкания отдельных крупных пылинок. Наблюдая этот эффект при помощи микроскопа, можно обнаружить и сверкания, вызываемые отдельными коллоидными частицами. Небольшой плоскостенный сосуд — кювету / с коллоидным раствором освещают сбоку проходящим через линзу 3 интенсивным пучком света от электрической дуги 2 и рассматривают с помощью микроскопа 4 на темном фоне (рис. 187). В этих условиях каждая коллоидная частица представляется светящейся точкой. С помощью ультрамикроскопа можно определять [c.535]

Рис. I. Последовательность просмотра полей эреаия микроскопа прн определении числа и размера частиц загрязнений в масле а — метод параллельных полос 6 — метод обратных треугольников в — метод Рис. I. <a href="/info/1821984">Последовательность просмотра</a> полей эреаия микроскопа прн <a href="/info/3582">определении числа</a> и <a href="/info/135648">размера частиц загрязнений</a> в масле а — <a href="/info/642562">метод параллельных</a> полос 6 — <a href="/info/10661">метод обратных</a> треугольников в — метод
    Прибор, выпускаемый американской фирмой Sperry Produ ts, позволяет осуществлять анализ при больших скоростях потока и высокой концентрации частиц, причем возможность повторного подсчета одних и тех же частиц исключается благодаря наличию специального электронного счетчика. Ультразвуковые приборы по точности определения размеров частиц не уступают оптическим микроскопам, а подсчет числа частиц осуществляется ими значительно точнее, так как идет не выборочно (с последующей обработкой результатов методами математической статистики), а фиксирует все частицы, находящиеся в масле при использовании же микроскопа подсчитываются лишь частицы, попавшие в определенное число полей зрения. Однако, как ультразвуковые, так и фотоэлектронные приборы для гранулометрического анализа загрязнений в нефтяных маслах еще не получили достаточно широкого распространения из-за сложной конструкции и высокой стоимости. [c.34]

    Идеи фрактального строения частиц дисперсной фазы были развиты в работах [4, 8]. Электронная микроскопия с применением криотехники позволила экспериментально показать фрактальное строение растворов асфальтенов в толуоле и смесях толуола с гептаном [13]. [c.7]

    Высокомолекулярные соединения (продукты уплотнения и смолисто-асфальтеновые соединения), изначально содержащиеся в топливах, при их коагуляции образуют нерастворимую фазу. Для предотвращения этого нежелательного процесса используют диспергирующие присадки (дисперсанты). Методом электронной микроскопии было показано, что ионол проявляет свойства диспергирующей присадки, при концентрации 0.1% масс, уменьшаются размеры частиц от 0.8 мкм до 3-15 нм и увеличивается число частиц от 10 до 10 в 1 мм [101]. Введение ионола (0.2% масс.) в дизельную [c.183]


Смотреть страницы где упоминается термин Частицы микроскопия: [c.77]    [c.23]    [c.305]    [c.317]    [c.318]    [c.22]    [c.45]    [c.46]    [c.208]    [c.31]   
Аэрозоли-пыли, дымы и туманы (1964) -- [ c.0 ]

Аэрозоли - пыли, дымы и туманы Изд.2 (1972) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Микроскоп

Микроскопия

Частицы микроскопия см Микроскопия



© 2025 chem21.info Реклама на сайте