Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Резонанс и ароматичность

    Соединениям с додеценилянтарным ангидридом гибкая метиленовая цепь придает пониженную прочность. Анализ зависимостей, приведенных на рис. 25, дает основание полагать, что хотя энергия резонанса ароматичности и играет значительную роль в снижении эффективности действия облучения, но жесткость структуры смолы в отвержденном состоянии вносит определенную степень ограничений в рекомбинационный уровень актив- [c.40]


    Предложены различные критерии ароматичности [139—141] энергия делокализации или энергия резонанса энергия резонанса, отнесенная к числу я-электронов [142] энергия резонанса, рассчитанная методом молекулярных орбиталей в самосогласованном поле (ССП МО) [143] длина углерод-углеродной связи [144] делокализация электронов в виде анизотропии диамагнетизма (кольцевых токов в спектрах ПМР) [145]. [c.236]

    Все это позволило Крэгу сделать вывод о том, что свойством ароматичности обладают любые циклические соединения, стабилизированные энергией резонанса. Молекулу бензола можно рассмотреть формально как заключающую в себе три простых и три двойных углерод-углеродных связи. Энергии этих связей определены для алифатических и этиленовых углеводородов. Воспользовавшись этими дан- [c.84]

    Самый простой способ оценки ароматичности заключается в расчете энергии делокализации ОЕ, или энергии резонанса, т. е. разности между полной электронной энергией молекулы и энергиями изолированных двойных связей, включенных в состав молекулы. Эта разность характеризует выигрыш в энергии (стабилизация молекулы) за счет делокализации тг-электронов  [c.304]

    ДЬЮАРОВСКАЯ ЭНЕРГИЯ РЕЗОНАНСА. СОВРЕМЕННАЯ ФОРМУЛИРОВКА АРОМАТИЧНОСТИ И АНТИАРОМАТИЧНОСТИ [c.284]

    Термодинамическая стабильность (нли низкое содержание энергии) бензола и соответственно его малая реакционная способность являются отличительными признаками ароматичности. Вычисления на основе термохимических данных показывают, что бензол вследствие резонанса стабильней гипотетического нерезонансного циклогексатриена на 36 ккал/моль (Полинг, 1933). [c.129]

    Превращение ацетиленов в производные бензола в результате реакции циклоприсоединения было рассмотрено в гл. 1, разд. 3. Осуществить обратный процесс труднее, вследствие стабилизации в результате резонанса бензольных циклов. Можно было предположить, что эту обратную реакцию удастся осуществить при облучении, если не в этом случае, то, возможно, в случае соединений, обладающих меньшей ароматичностью. Такой пример приведен ниже [10]  [c.196]

    Энергетические критерии ароматичности. Энергия резонанса. Для определения количеств, меры А., характеризующей повыш. термодинамич. устойчивость ароматич. соед., было сформулировано понятие энергии резонанса (ЭР), или энергии делокализации. [c.201]

    Как будет показано, на лимитирующей стадии реакции нуклеофильного замещения в ароматическом ряду нуклеофил присоединяется к атому углерода, несущему галоген этот углерод становится тетраэдрическим, а кольцо приобретает отрицательный заряд. Подобная реакция затрудняется, ибо в ходе ее нарушается ароматичность кольца и резонанс между кольцом и галогеном, а также, если справедливо предположение Дьюара (разд. 10.18), потому что при этом необходимо затратить энергию для изменения гибридизации углерода от sp до sp . [c.789]


    Нафталин окисляется или восстанавливается легче, чем бензол, но лишь до стадии образования замещенного бензола дальнейшее окисление или восстановление требует более жестких условий. Энергия стабилизации нафталина вследствие резонанса составляет 61 ккал (255,39-10 Дж), а для бензола — 36 ккал (150,72-10 Дж). Нарушение ароматичности одного из колец нафталина требует затраты лишь 25 ккал (104,67-10 Дж) на следующей стадии требуется уже 36 ккал (150,72-10 Дж). [c.987]

    Использование спектроскопии ядерного магнитного резонанса (ЯМР) как критерия ароматичности уже обсуждалось (см. гл. 2.4). Относительно большие времена релаксации ароматических ядер и наличие в той же области химических сдвигов сигналов С олефинов затрудняют точные структурные отнесения для ароматических систем при использовании спектроскопии ЯМР С, если только не имеется подходящих модельных соединений [7]. Химический сдвиг ядер бензола равен 128,5 м. д. (относительно тетра-метилсилана), а для класса аренов в целом химические сдвиги лежат в области ПО—170 м. д. Теоретическая обработка химических сдвигов ароматических систем проведена достаточно полно, и имеются сводные данные 1Ю влиянию заместителей на химиче-сдвиги С в замещенных бензолах. [c.321]

    С позиций метода валентных связей фуран рассматривается как резонансный гибрид канонических структур (1) — (5). Направление диполя в молекуле фурана (0,72 Д) в противоположность распространенным ошибочным взглядам таково, что отрицательный заряд сосредоточен на атоме кислорода, который, таким образом, индуктивно оттягивает электроны кольца. То же наблюдается в случае тиофена, но не в случае пиррола [3]. Для фурана было выполнено много расчетов по методу МО, но их результаты расходятся в широких пределах [4]. Значения энергии резонанса фурана, определенные термохимическими методами, составляют 66—96 кДж/моль [5]. Валентные углы и длины связей для тиофена, пиррола и фурана были определены методом микроволновой спектроскопии. В качестве критерия ароматичности было использовано соотношение длин 2,3- и 3,4-связей, но обоснованность этого подхода подвергалась сомнению. [c.117]

    Другим предметом дискуссий является вопрос об энергии резонанса и ароматичности тиофена. В обзоре [17] на основе всех известных критериев сделан вывод о следующем порядке убывания ароматического характера бензол > тиофен > пиррол > [c.231]

    Ароматичность—совокупность свойств, отражающих структурные и энергетические особенности, а также реакционную способность плоских циклических систем, содержащих (4п + 2) л-электронов, которые вовлечены в замкнутую цепь сопряжения. Ароматичность характеризует повышенную термодинамическую устойчивость ароматического соединения, обусловленную делокализацией л-электронов. Мерой ароматичности является энергия резонанса (или энергия делокализации), которую необходимо дополнительно затратить на разрушение циклической системы делокализованных сопряженных двойных связей. Следовательно. энергия резонанса характеризует вклад циклического сопряжения в теплоту образования соединения. См. также Бензол. [c.36]

    НЫХ расчетов основных состояний по сравнению с расчетами реакционной способности, переходных состояний и скоростей реакций. Успешный расчет энергии резонанса подтверждает в основном пригодность простых квантовомеханических методов, и это несмотря на то что их применение к проблемам, явным образом связанным с ароматическим характером (таким, как реакционная способность и электронные спектры), никогда не приводило к такому простому и ясному соответствию с экспериментом, как расчет энергий-резонанса для рассмотрения проблем ароматичности разрабатывались все более и более усложняющиеся приближенные методы расчета. Однако ароматический характер отражается уже в тех квантовомеханических свойствах электронов, которые описываются даже простейшими методами, поэтому в настоящей главе пришлось прибегать к более разработанным методам только в отдельных случаях. [c.8]

    Соответствует ли число я-электронов в моле-1сулах антрацена и фенантрена формуле ароматичности Хюккеля Изобразите предельные структуры антрацена (четыре структуры) и фенантрена (пять структур). Какое из приведенных ниже значений энергии сопряжения (резонанса) относится к антрацену и какое — к фенантрену 385,10 кДж/моль и 351,69 кДж/моль  [c.217]

    Еще в XIX столетии было признано, что ароматические соединения [34] сильно отличаются от ненасыщенных алифатических соединений [35], но в течение многих лет химикам не удавалось прийти к взаимно приемлемому удовлетворительному определению ароматического характера [36]. В качественном отношении серьезных разногласий никогда не существовало, и определение сводилось к следующей форме ароматические соединения характеризуются особой устойчивостью и легче вступают в реакции замещения, а не в реакции присоединения. Трудность состояла в том, что такое определение было не слишком ясным и не подходило для пограничных случаев [37]. В 1925 г. Армит и Робинсон [38] установили, что ароматические свойства бензольного ядра связаны с наличием замкнутого кольца электронов, ароматического секстета (ароматические соединения, таким образом, являются своеобразными примерами делокализованной связи), но в то время еще нельзя было определить, обладают ли другие циклы, отличные от бензола, таким электронным кольцом. С развитием магнитных методов исследования, главным образом ядерного магнитного резонанса, появилась возможность экспериментально определять наличие или отсутствие в молекуле замкнутого электронного кольца, и теперь ароматичность можно охарактеризовать как способность удерживать индуцированный кольцевой ток. Соединения, обладающие такой способностью, называют д агро/г-ными. Сегодня это определение является общепринятым, хотя оно не лишено недостатков [39]. Существует несколько методов, позволяющих установить, способно ли соединение удерживать кольцевой ток, но наиболее важный из этих методов основан на химических сдвигах в спектрах ЯМР [40]. Чтобы это понять, необходимо вспомнить следующее как правило, величина химического сдвига протона в ЯМР-спектре зависит от электронной плотности его связи, и чем выше плотность электронного облака, окружающего или частично окружающего протон, тем в более сильное поле смещается его химический сдвиг (т. е. тем меньше величина б). Однако из этого правила имеется несколько исключений, и одно из них касается протонов, расположенных вблизи ароматического цикла. При наложении внешнего магнитного поля (как в спектрометре ЯМР) в ароматических молекулах возникают кольцевые токи л-электронов, которые (при расположении плоскости ароматического [c.63]


    Следует подчеркнуть, что необязательно существует параллель между старым и новым определением ароматичности. Если соединение диатропно и потому ароматично, в соответствии с новым определением оно более устойчиво, чем каноническая форма наинизшей энергии, но это ие означает, что оно будет устойчиво к действию воздуха, света или обычных реагентов, поскольку такая устойчивость определяется не энергией резонанса, а разностью свободных энергий между реальной молекулой и переходным состоянием соответствующей реакции эта разность может быть очень мала даже при большой энергии резонанса. Развита единая теория, связывающая кольцевые токи, энергии резонанса и ароматический характер [43]. [c.65]

    Один из первых критериев ароматичности четного углеводорода с 2п атомами углерода в сопряженной части основывался на сопоставлении полной энергии я-электронов рассматриваемой молекулы с полной я-электронной энергией гипотетической системы, состоящей из изолированных я-электронных систем молекулы этилена. Разность между Е и я-электронной энергией п изолированных двойных связей называется энергией резонанса (ЭР) и определяется по формуле ЭР = Е — 2га(а 4- р), где и — кулоновский и резонансный интегралы. Однако ЭР определена недостаточно корректно, так как, например, для гепталина ЭР = 3,62 , а для бензола ЭР = 2,0 . Кроме того, ЭР при большом числе атомов пропорциональна п. Следующий существенный шаг в развитии критериев ароматичности был сделан Дьюаром, который исходил из кекулев-ских структур, сопоставляя их с бензоидными углеводородами. При этом каждой простой и двойной связям приписывались значения эмпирически найденных параметров 81 и 82. Энергия резонанса по Дьюару (ДЭР) определяется формулой ДЭР = — ( 282 + 181), где 1 и 2 — число простых ж двойных связей в кекулевской струк- [c.57]

    Во-вторых, сравнивая ароматические соединения, мы, казалось бы, можем оценить их относительную энергию резонанса, зная число формул Кекуле, которые можно нарисовать для каждого из них. В целом, чем больше число возможных формул Кекуле, тем выше энергия резонанса соединения. Этот подход совершенно закопомерпо приводит к мысли, что бензол, для которого возмолшы только две формулы Кекуле, менее резонансно стабилизирован, чем нафталин, для которого возмолшы три формулы Кекуле (табл. 15-1). Но нафталин вовсе не ароматичнее бензола, потому что энергия резонанса, приходящаяся на один л-электрон системы, для бензола больше, чем для нафталина. [c.577]

    Ароматичность. Значительное нонигкенпе запаса энергии молекулы (иона, радикала), вызываемое делокализацией ее я-электронов. Эталоном для сравнительных расчетов величины уменьшения энергии служит такая же молекула, но без делокализации п-электронов. Энергия, которую теряет молекула в результате происходящей делокализации, называется энергией резонанса этой молекулы. Следствием этого является необычная термодинамическая устойчивость ароматических соединений. [c.585]

    Наиб, существенной особенностью сопряженных систем с делокализованными связями является их повьпп. термодинамич. устойчивость. В ароматич. системах теплоты образования значительно вьппе, чем значения, найденные с учетом аддитивности локальных параметров, а связи характеризуются полной выравненностью длин (см. Ароматичность). Количеств, мера повыш. термодинамич. устойчивости таких систем-энергия резонанса (сопряжения, делокализации). В сопряженных системах правилам аддитивности не подчиняются также параметры ИК спектров, величины дипольных моментов и поляризуемости, диамагнитной восприимчивости и др. в этих случаях при расчете разл. характеристик вводят поправочные члены экзальтации и т. п. [c.388]

    Ароматический характер гетероциклических соединений проявляется в ультрафиолетовых и инфракрасных спектрах. Спектральные исследования, особенно в УФ и видимой области, а также спектроскопия ядерного магнитного резонанса имеют чрезвычайно важное значение для оценки степени ароматичности соединений, определения положения таутомерного равновесия и изучения невьщеляемых интермедиатов различных превращений. [c.25]

    Выигрьш энергии за счет делокализации я-элекгронов по всей замкнутой цепи сопряжения является необходимым и достаточным условием ароматичности и должен служить самым надежным термодинамическим критерием при количественной оценке ароматичности. Сложность использования энергетических критериев заключается в несовершенстве самих термодинамических методов определения степени ароматичности сопряженного циклического полиена. Главная трудность состоит в том, что энер ГИЮ реального ароматического соединения приходится сопоставлять с энергией несуществующей гипотетической частицы, имеющей локализованные двойные и простые связи. Разность энергий ароматического и соответствующего ему циклического соединения с локализованными связями называют эмпирической энергией резонанса, или эмпирической энергией деюкализации. Рассмотрим этот подход на конкретном примере оценки ароматичности бензола. 23 -1178 357 [c.357]

    При использовании энергии делокализации как критерия ароматичности возникают две проблемы. Одна из них связана с не- определенностью в оценке теплоты образования гипотетическо-, го циклического полиена, а другая заключается в корректной оценке вкладов сжатия а-связей и л-делокализации в значение общей энергии делокализацни. Решение первой, более важной [ проблемы состоит в разумном выборе модельных соединений, которые позволяли бы рассчитать энергию неароматического стандарта. Чтобы избежать неопределенности при расчете энер- Гии гипотетических циклических полиенов как объектов сравне-(-Иия, решено было заменить их реальными ациклическими поли-%нами с открытой цепью. Для расчета теплот атомизации (теп- Лот, необходимых для фрагментации на отдельные атомы) Сопряженных циклических полиенов был использован метод ССП, а для расчета теплот атомизации линейных полиенов — ирование энергий двойных и простых углерод-углеродных [зей, постоянных для ациклических полиенов. Разность теп-атомизации сопряженного циклического и ациклического Юлиенов называют энергией резонанса Дьюара. Деление на число (-электронов дает величину энергии делокализации в пересчете 1а один электрон (ЭДОЭ). Этот параметр гораздо лучше, чем личина энергии делокализации (ЭД) по Хюккелю (также в перелете на один электрон), согласуется с фактическими данными. [c.359]

    Электронный парамагнитный резонанс (ЭПР) исследует парамагнитные вещества, магнитный момент которых обусловлен наличием неспаренных электронов. Все окисленные битумы характеризуются парамагнитными свойствами. С повышении температуры размягчения битума парамагнетизм увеличивается. Возрастает он и с увеличением ароматичности мальтенов, в связи с чем допускается возможность свободнорадикального механизма структурообразоваиия битумов. Основными носителями неспаренных электронов в битумах являются асфальтены. Концентрация неспаренных электронов в смолах ниже, а в маслах они отсутствуют. Содержащиеся в битумах свободные радикалы очень стабильны. При нагреве битумов и выделенных из них групповых компонентов парамагнетизм увеличивается в 2-3 раза. [c.758]

    Ясная концепция характерных черт химического поведения ароматических молекул эмпирически была развита очень давно, а в двадцатых годах нашего столетия начала интерпретироваться и находить свое выражение в понятиях электронных теорий химии, развитых Ингольдом [27] и Робинсоном [4]. Возникновение понятия ароматичность связано с химическим поведением некоторых соединений в самых разнообразных реакциях, а также, в некоторой степени, с физическими свойствами, такими, например, как диамагнитная восприимчивость, характерными для ароматических молекул. Ароматический характер обычно связывался с различными типами реакционной способности, а не со свойствами изолированной молекулы в ее основном состоянии, и наиболее ранняя удовлетворительная теория, а именно теория мезомерии, подчеркивала эту типично химическую точку зрения. Затем, в короткий период около 1930 года, история которого хорошо известна, Хюккель, Полинг и другие показали совместимость теории мезомерии и ароматического секстета с квантовой физикой электронов. Исходным пунктом являются два основных метода приближенного количественного описания ароматических систем метод валентных схем (ВС) и метод молекулярных орбит (МО), основные достоинства которых в том, что они хорошо обоснованы с физической точки зрения и что при помонди их можно вычислить термохимическую энергию резонанса — величину, которая может быть измерена. Энергия резонанса является свойством основного состояния изолированной молекулы, оказывающим лишь второстепенное влияние на реакционную способность, и концентрирование на ней внимания типично для физической точки зрения. В теории ароматичности центр тяжести сместился с химического поведения на физические свойства, и это отражает значительно большие успехи (по крайней мере вплоть до последнего времени) полуколичествен- [c.7]

    Бензол и его гомологи намного устойчивее термохимически и значительно менее реакционноспособны, чем можно ожидать от молекул с чередующимися простыми и двойными связями. Вообще говоря, бензол на 36 ккал1моль стабильнее, чем если бы он имел три двойные связи циклогексенового типа энергия резонанса сложных ароматических молекул увеличивается примерно пропорционально числу и-электронов, но в то же время высшие члены ряда обычно более реакционноспособны, что подчеркивает различие между химической и физической точками зрения и указывает на необязательность параллельного изменения инертности и резонансной стабилизации. Со времени развития квантовых методов большая энергия резонанса считается характерным признаком ароматичности, и этот термин следует, несомненно, применять к любому циклическому соединению, обладающему заметной энергией резонанса вследствие циклического строения. Однако более широкая задача установления общих особенностей строения, необходимых для появления ароматического характера, не решается простыми теориями энергетики к-электронов. Например, особый интерес представляет класс до сих пор неизвестных молекул типа пенталена (I) и гепталена (И) (см. раздел 1-4). Эти молекулы содержат чередующиеся простые и двойные связи и, согласно обоим методам ВС и МО, должны обладать большими энергиями резонанса и, следовательно, удовлетворять требованиям ароматичности, однако их не удается синтезировать обычными методами синтеза ароматических молекул, и этот неоспоримый, хотя и отрицательный, факт показывает, что эти молекулы ни в каком случае не являются нормальными ароматическими молекулами. Более тщательное рассмотрение объясняет этот факт и показывает, почему простые теории не могут его отразить. И действи- [c.8]


Смотреть страницы где упоминается термин Резонанс и ароматичность: [c.301]    [c.85]    [c.69]    [c.58]    [c.552]    [c.156]    [c.18]    [c.55]    [c.978]    [c.322]    [c.231]    [c.550]    [c.222]    [c.365]    [c.213]    [c.213]    [c.154]    [c.22]    [c.11]   
Электронные представления в органической химии (1950) -- [ c.180 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматичность



© 2025 chem21.info Реклама на сайте