Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм ионизационный

    Все рассмотренные выше реакции представляют собой мономолекулярные процессы распада. Генерация ионов в ходе электронной бомбардировки часто приводит к потере наименее прочно удерживаемого электрона, и ионы часто образуются в колебательно возбужденных состояниях с избытком внутренней энергии. В некоторых молекулах образца происходит потеря низкоэнергетического электрона, что приводит к иону в электронно возбужденном состоянии. Ион в возбужденном состоянии может подвергаться внутренней конверсии энергии, в результате чего он переходит в основное электронное состояние с избытком колебательной энергии. Молекула может диссоциировать в любое из возбужденных состояний, участвующих во внутренних конверсиях с безызлучательным переносом энергии. В этом случае ион фрагментирует, как только он начинает колебаться. Таким образом, в данном образце получаются ионы с широким энергетическим распределением, и фрагментация может происходить по различным механизмам. Полезно рассмотреть временные шкалы для некоторых обсужденных процессов. Время одного валентного колебания составляет 10 с, максимальное время жизни возбужденного состояния — около 10 с и время, которое ион проводит в ионизационной камфе масс-спектрометра, равно 10 —10 с. Следовательно, для перехода иона с избыточной электронной энергией в более низкое электронно возбужденное состояние с избытком колебательной энергии времени вполне хватает. Поэтому мы наблюдаем процессы в ионизационной камере через регистрируемые молекулярные ионы в различных энергетических состояниях, которые подвергаются быстрой внутренней конверсии энергии, образуя индивидуальные ионы с различным количеством избыточной энергии. Фрагментация протекает по первому порядку с различными [c.319]


    НЕКОТОРЫЕ ОСОБЕННОСТИ МЕХАНИЗМА ИОНИЗАЦИОННО-ПЛАМЕННОГО ДЕТЕКТИРОВАНИЯ  [c.417]

    Пламенно-ионизационный детектор (ПИД). Работа ПИД основана на том, что органические вещества, попадая в пламя водородной горелки, подвергаются ионизации, вследствие чего в камере детектора, являющейся одновременно ионизационной камерой, возникает ток ионизации, сила которого пропорциональна количеству заряженных частиц. Предполагалось, что механизм образования заряженных частиц в пламени водорода основан на термической ионизации. Однако некоторые данные показывают, что роль термической ионизации в общем механизме ионизации, по-видимому, невелика. [c.186]

    Все известные реакции изотопного обмена атомов водорода в связи С—Н можно считать идущими по одному аз следующих двух механизмов ионизационному или электрофильному. [c.32]

    Обмен в связях С—Н может идти по ионизационному или ассоциативному механизмам. Ионизационный обмен протекает через промежуточную стадию образования ионов в соответствии со схемами [А. И. Бродский, 1957]  [c.350]

    Точная форма кривой в значительной степени зависит от природы иона. Для молекулярных и осколочных ионов, образующихся при простом механизме ионизации, начальный участок кривой меньше и угол линейного участка больше, чем для ионов, образующихся по сравнительно сложному механизму. Если сравнивать ионы одного типа, то различия в форме их ионизационных кривых невелики. Так ионизационные кривые для молекулярных ионов криптона, аргона, двуокиси углерода, метана, ацетилена, этилена, водорода и воды обычно располагаются параллельно, особенно в области низких энергий [130], если в масс-спектрометр они вводятся [c.175]

    Инерционность детектора является следствием ограниченной скорости физических или физико-химических процессов, определяющих механизм детектирования. Так, относительно большая инерционность детектора по теплопроводности определяется скоростью процесса теплопередачи, которая значительно меньше скорости образования и сбора зарядов в ионизационных детекторах. Ионизационные же детекторы практически мгновенно реагируют на изменение состава газа. [c.43]

    И вызывающие возбуждение аргона. Для веществ, энергия ионизации которых ниже 11,6 эв, чувствительность определения на основе изложенного механизма ионизации в аргоновом ионизационном детекторе на несколько порядков выше, чем у детектора по сечениям ионизации. [c.144]


    ПРЕДЕЛЬНЫЙ СЛУЧАЙ - МЕХАНИ.ЗМ ИОНИЗАЦИОННОГО ЗАМЕЩЕНИЯ (МЕХАНИЗМ S vl) [c.169]

    Реакция замещения характеризуется согласованной инверсией, а двухстадийный ионизационный механизм - рацемизацией (с некоторой инверсией). Однако имеется особый класс соединений, которые реагируют с основаниями, давая [c.81]

    Нуклеофил участвует в образовании переходного состояния, поэтому скорость должна зависеть как от концентрации, так и от природы нуклеофила, что резко отличает согласованную -реакцию от ионизационного механизма 5з/1. [c.711]

    НЕКОТОРЫЕ ОСОБЕННОСТИ МЕХАНИЗМА ИОНИЗАЦИОННО-НЛАМЕННОГО ДЕТЕКТИРОВАНИЯ  [c.417]

    НОСТИ их галогенангидридов, в значительной мере является дискуссионным [50—53]. Трудность установления механизма возникает из-за того, что существенную роль играют свойства реакционной среды и строение галоидангидрида. Сейчас общепринято, что сольволиз хлорангидридов в зависимости от условий реакции может протекать по двум механизмам — ионизационному (5jvl)  [c.333]

    Дальнейшее изучение реакций в газовой фазе хгривело к созданию Боденштейном первых механизмов неразветвлеНных цепных превращений. Несмотря на то что предложенные им для объяснения ненормально большого фотохимического выхода хлористого водорода механизмы — ионизационных и энергетических цепей — не получили развития в кинетике газовых реакций работы Боденштейна сыграли большую роль в создании теории цепных процессов и развитии химической кинетики. Проведенное Боденштейном детальное изучение стадий цепных реакций (инициирование, развитие и обрыв цепей) углубили представление химиков о ходе сложных реакций, а метод стационарных концентраций , позволивший выразить в кинетическом уравнении концентрации исходных реагентов, помог исследовать кинетику большого числа сложных превр.ащений. Впоследствии этот метод был обобщен Н. Н. Семеновым для случая стационарных концентраций части активных промежуточных соединений . [c.300]

    Изучение солевых эффектов дает возможность выяснить подробности механизма ионизационно-диссоциационного процесса органических соединений (реакции мономолекулярного сольеоли-ва,3 1, Скорость ионизации связи углерод-галоид в [c.299]

    Реакции оптически активных в го/ -бутилпроизводных с ароматическим кольцом были критически изучены Борвелом и сотрудниками [72]. Получаемый 2-фенилбутан был сильно рацемизовап — около 99%. Этот результат заставляет предположить, что реакция должна пдти через карбоний-ионный механизму, причем ароматическое соединение принимает лишь незначительное участие, если вообще принимает участие в стадии разрыва связи. Так как условия благоприятствуют механизму замещения, если он возможен, то представляется вероятным, что с вторичными алкил-производными предпочтительно будет идти реакция по карбоний-ионному механизму. В заключение можно сказать, что в реакции Фриделя-Крафтса механизм замещения, по-видимому, будет предпочтителен энергетически только для первичных галоидалкилов н родственных им производных, в то время как ионизационный механизм предпочтителен для вторичных и третичных алкилпроизводных. [c.441]

    На нонизацпонном эффекте, производимом радиоактивным излучением, основан принцип работ следующих типов детекторов ионизационной камеры, пропорционального счетчика и счетчика Гейгера — Мюллера. Все эти детекторы представляют собой наполненные той или иной газовой смесью сосуды, которые имеют два электрода. Схема включения детектора показана на рис. 125. Механизм ионизации газов излучением различного типа и энергии не одинаков, но энергия, затрачиваемая на образование пары ионов во всех случаях составляет около 34 эв. Величина первичной ионизации, т. е. ионизация, производимая ядерной частицей непосредственно, зависит только от доли энергии, [c.334]

    Широко распространен в газо-жидкостной хроматографии пламенно-ионизационный детектор. При работе этого детектора происходит ионизация анализируемых веществ в процессе вх сгорания в пламени водорода. Образовавшиеся ионы рекомбинируют на электродах. Возникающий при этом ионный ток пропорционален концентрации ионов и напряжению, приложенному к электродам. Механизм образования ионов в пламени водорода вклрочает стадию термодеструкции (С последующим окислением, в результате которого и происходит образование ионов. Чувствительность пламенно-ионизационных детекторов примерно пропорциональна числу атомов углерода в молекуле. Особенно четко эта пропорциональность наблюдается в ряду углеводородов. Чувствительность детектора снижается при анализе кислородсодержащих соединений. Детектор удобен для анализа проб, содержащих пары воды, но мало пригоден для анализа неорганических соединений. Пламенно-ионизационные детекторы имеют высокую чувствительность, которая сильно снижается при наличии паров органических веществ в потоке водорода и газа-носителя. Ионизационные токи чистого пламени водорода порядка —10 А, поэтому даже одна капля малолетучего оргаиическог-о соединения, лопавшая в линию водорода, может вызвать большой фоновый ток в течение длительного времени, что проявится в дрейфе нулевой линии. Чувствительность детектора можно понизить и неправильно выбранной температурой анализа, приводящей к испарению жидкой стационарной фазы. [c.299]


    Бор. Особенности бора. Электронная формула атома бора s 2s 2p . Наличие одного неспаренного электрона могло бы обусловить существование одновалентных соединений, что мало характерно для бора. Объясняется это тем, что один из спаренных 2 -электронов сравнительно легко промотирует (343,0 кДж/моль) на 2р-орбиталь и тогда бор функционирует как трехва 1ентный дополнительно образующиеся две ковалентные связи дают больший выигрыш в энергии, чем ее затрачивается на промотирование. Реже бор проявляет валент ность 4 с привлечением вакантной 2р-орбитали по донорно-акцепторному механизму. В соединениях бора химические связи малополярны. Вследствие малого размера атома бора и кайносимметричности 2р-орбитали ионизационные потенциалы бора намного больше, чем у его аналогов по группе. Кроме того, значение ОЭО бора сильно превышает значения ОЭО других элементов III группы. Все это вместе взятое определяет неметаллическую природу бора. В то же время по химической активности бор уступает следующим за ним элементам 2-го периода (кроме неона). Как известно, бор обнаруживает диагональную аналогию с кремнием. Для бора и кремния наиболее характерны производные, в которых эти элементы поляризованы положительно. Для обоих элементов их низшие гидриды малоустойчивы и газообразны. Много общего имеет химия кислородных соединений бора и кремния кислотная природа оксидов и гидроксидов, стеклообразование оксидов, способность образовывать многочисленные полимерные структуры и т.д. [c.325]

    Масс-спектр метилового эфира салициловой кислоты приведен на рис. 102. Точно таким же образом предполагаемый механизм распада зачастую может быть также подтвержден появлением ника метастабильного иона. Метаста-бильными называют такие ионы, которые по путн от ионизационной камеры к регистрирующему устройству распадаются с отщеплением нейтральной частицы. Эти ионы не могут быть зарегистрированы ни как исходный ион с массой mi. нн как образовавшийся нон с массой ffij. Они обнаруживаются как частицы с кажущейся массой [c.153]

    Прибор ИПК-1 (рис. 15) состоит из двух основных частей блока ионизационных камер 1 и механизма прибора 2. При конструировании ионизационных камер использованы резуль таты исследований, приведенных в работах [1, 8, 25, 26], в ко торых рассмотрены вопросы повышения эффективности и на дежности регистрации -у-излучения. Обе ионизационные каме ры — рабочая и компенсационная (см. рис. 15, соответственно нижняя и верхняя) —одинаковы. [c.44]

    Блок электрометрической ламиы (рис. 17) состоит из корпуса 2, предохраняющего ламиу 5 типа ЭМ-6 и высокоомный резистор 4 от светового излучения и загрязнения. Корпус блока герметически закрывается крышкой 6. Блок установлен в корпусе механизма на изоляторе 1 из фторопласта-4. Ось электрометрической ламиы совпадает с осью трубы, в которой проходит электрод собирающих пластин. Через посеребренный контакт 3 сигнал ионизационных камер подается на вход электрометрического каскада. В корпусе механизма предусмотрены направляющие для фиксации илаты. [c.47]

    Ионизационный механизм нуклеофильного замещения включает стадию, определяющую скорость всей реакции, гстеролитической диссоциации субстрата на трехкоординационннн карбокатнон (карбоние-вый ион нли карбениевый ион) и уходящую группу. За диссоциацией [c.169]

    Поэтому важны структурные эф- фекты как субстрата, так и нуклео- g фнла. Так как степень координации возрастает по мере того, как углерод- ё ный атои дост(иает переходного со- е стояния, то скорость прямого замещения будет зависеть от величины присоединенных групп и объема нуклеофила. Оптимальным субстратом, соответствующим этому механизму, был бы СНзХ легкость атаки углерода понижается по мере того, как водородные атомы замешаются на алкильные группы. Как п в случае ионизационного механизма, чем лучше уходящая группа может принять электронную пару, тем легче ее отщепление. Отщеплению уходящей группы в переходном состоянии 5 2 содействует нуклеофил однако мы можем ожидать, что влияние уходящей группы на скорость при механизме прямого замещения будет проявляться меньше, чем ири ноиизацноипом механизме. [c.171]

    Природа уходящей групиы влияет на скорость реакции нукле-офН Льного за.мещеиия, протекающей как по механизму прямого заме щения, так и по ионизационному механизму. Поскольку уходящая группа отходит с парой электронов ее ковалентой связи с субстратом, можпо ожидать корреляции ее влияния с ее электроотрнцательностью. Если непосредственно связанный с субстратом атом один н тот же,, то такое соотношение обычно наблюдается. Так, показана линейная зависимость между ионизацией замещенных бензойной кислоты и скоростями реакции замещенных этиларилсульфоиатов с этоксид-ионом в эта-1голе [56 . В отличие от пуклеофилыюстн нет общепринятого подхода к определению эффективности уходящей группы в виде одного параметра обычно такие корреляции представляют в виде сводки относительных скоростей. [c.191]

    Мономолекулярный механизм становится предпочтительнее бимолекулярного, когда промежуточный карбокатион стабилизируется делокализацией электронов и(или) уменьшением стерического напряжения. Так, в реакциях замещения хлора на гидроксид первичные алкилгалогениды реагируют с гидроксид-анионом по механизму согласованного замещения, а третичные алкилгалогениды-преимущественно по двухста дийному ионизационному механизму. Изменение механизма в этом случае связано как с полярными, так и со стерическими эффектами. Бимолекулярному замещению препятствует большой объем третичной группы и, кроме того, подход атакующего аниона затруднен наличием электроноотталкивающих групп, т.е. реакция бимолекулярного замещения будет нехарактерной для третичных алкил-галогенидов. В то же время ионизационный механизм будет преобладать, когда заряд рассредоточен, т.е. реакционный центр разветвлен если реакционный центр сдавлен, то образование карбокатиона будет способствовать снятию стерического напряжения. В некоторых случаях карбокатионы стабилизируются резонансом, например трифенилметил-ка-тион, для которого наблюдается только двухстадийный кар-бокатионный механизм. [c.81]

    Обмен в связи С—Н идет лишь в тех, впрочем, нередко встречающихся случаях, когда значительно нарушается симметрия распределения электронной плотности около атома углерода. Подобное нарушение происходит в системах, где обменивающимся партнером выступает сильный протонодонор (рильная кислота), либо сильный протоно-акцептор (сильное основание). В этих случаях протекает обмен по ионизационному механизму с промежуточным образованием карбкатионов или карбанионов. Так, например, наблюдается обмен водородом между бензолом и серной кислотой (в условиях, когда не происходит суль-фировацие бензола), являющийся следствием последовательно и обратимо протекающих процессов  [c.136]

    Тем не менее реакции сольволиза, когда роль нуклеофила играет сам растворитель, концентрация которого в ходе реакции ирактически не изменяется, подчиняются кинетическому уравнению первого порядка даже в том случае, когда истинный механизм сольволиза относится к 5 2-тину. Такие реакции называются процессами псевдопервого порядка. Следовательно, отсутствует кинетический критерий выбора механизма сольволгаа. Стереохимия нуклеофильного замещегшя также не всегда дает однозначный ответ ири выборе между ионизационным и со- [c.715]

    На рис. 206 показана зависимость относительного сдвига от сдвиговой деформации, приложенной к чистому монокристаллу льда при Т=—70° С и для кристалла льда с разным содержанием НР. Отсюда видно, что примеси уменьшают максимально возможные значения деформации, т. е. ослабляют кристалл. Влияние деформации сжатия на и л, где ге — статическая диэлектрическая постоянная и X — электропроводность, было исследовано в работе Хигаши (1969). Предварительные результаты, показывающие зависимость ез н X от Т для двух значений деформации сжатия, представлены на рис. 21. Из представленного рисунка видно, что деформация сжатия приводит к увеличению ея, что само по себе можно объяснить увеличением плотности кристалла. Однако увеличение X в деформированном кристалле по всей вероятности связано или с ростом числа ионизационных дефектов или с ростом их подвижности. Дальнейшие работы по исследованию свойств деформированных кристаллов, по-видимому, смогут пролить свет на механизм образования дефектов кристалла льда. [c.57]

    Ионизация определяемого вещества осуществляется либо путем химической ионизации с использованием растворителя, либо за счет термораспыления. В первом случае используются электроны с распылительного электрода или нити накала для ионизации молекул растворителя, что затем инициирует перенос заряда на определяемое вещество. Другой вариант основан на механизме ионного испарения из капель, в которые включен летучий растворитель. В зависимости от того, используется ли разрядный электрод, изменяется механизм ионизации, что сильно изменяет селективность. Ионное испарение обычно приводит к ионам [М-ЬН]" " для проб с высоким сродством к протону. Или же детектируются ионы [М4-КН4] , если в буфере присутствует, например в форме ацетата аммония. Если детектируют отрицательно заряженные ионы, обнаруживаются либо ионы [М+Н] , либо отрицательно заряженные кластерные ионы, образуемые молекулами определяемого вещества и растворителя или анионами буфера. Однако оба варианта ионизации являются мягкими, поэтому приводят лишь к ограниченной фрагментации. Тем не менее, для получения характеристичного спекара фрагментации в ТРС-ЖХ-МС-анализе часто используют двойные квадрупольные приборы. В отличие от одинарных квадрупольных приборов, МС/МС-приборы позволяют получать фрагментационный спектр молекулярных ионов, выделяемых первым квадру-полем (рис. 14.3-3). Ионы вводятся через отсекатель с маленьким отверстием, который достигает непосредственно ионизационной камеры. Это позволяет достигать высокого вакуума, требуемого для разделения ионов. [c.623]

    Влияние анионов на эмиссию и абсорбцию натрия (анионный эффект). Этот вопрос имеет большое практическое значение для правильной подготовки пробы к анализу [32—34, 72, 74—76, 99, 149, 403, 453, 486, 488, 497, 545, 584, 620, 713, 728, 872, 875, 1031, 1208, 1284J. Механизм взаимного влияния при определении элементов атомно-эмиссионным и атомно-абсорбционным методами в пламенах трактуется по-разному с точки зрения физических свойств раствора, особенно при введении органических кислот с позиций изменения условий атомизации за счет образования новых термически более устойчивых соединений натрия при десольватации частиц аэрозоля смещения равновесия атомизации в пламени за счет ионизационных процессов с участием анионов. [c.123]

    Метод матричной десорбционно-ионизационной времяпро-летной масс-спектрометрии (МАЬВТ-ТОР М8) используется для характеристики молекулярно-массового распределения олигомеров (полистирола, полиметилметакрилата, полиэтиленгликоля и др.), а также для изучения различных механизмов инициирования и обрыва цепи при синтезе полимеров, с характеристикой концевых групп [48]. Этот же метод успешно применен [49] для измерения молекулярной массы и ММР в полидисперсньЕХ полимерах и сополимерах в данном случае масс-спектрометр выступает как детектор для гельпроникающей хроматографии [50]. [c.147]


Смотреть страницы где упоминается термин Механизм ионизационный: [c.292]    [c.461]    [c.300]    [c.110]    [c.63]    [c.138]    [c.33]    [c.168]    [c.170]    [c.170]    [c.172]    [c.30]    [c.154]    [c.90]    [c.95]   
Современная общая химия (1975) -- [ c.2 , c.295 , c.297 ]




ПОИСК







© 2025 chem21.info Реклама на сайте