Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никеля сульфат, определение кобальта

    Сульфирование п-изопропилтолуола (п-цимола) исследовано довольно обстоятельно. В старых работах [110] принималось, что в реакционной смеси содержится лишь одна моносульфокислота, и попытка обнаружить второй изомер, предпринятая Якобсеном [111], была безуспешна. Вскоре после этого [112] из продукта сульфирования я-цимола серной кислотой при 100° была выделена бариевая соль другой сульфокислоты, а впоследствии определен и выход последней [113] в указанных условиях (14,6%). При сплавлении с щелочью [114] из нее образуется тимол, и, следовательно, она представляет собой 1-метил-4-изопропилбензол-3-сульфокис-лоту. Было бы весьма интересно выяснить сравнительную эффективность направляющего влияния обеих алкильных групп в о-изо-пропилтолуоле. Тщательное исследование [115, 116] нроцесса сульфирования п-цимола серной кислотой при различных температурах, а также 15%-ным олеумом показало, что максимальный выход 3-сульфокислоты (15,6%) получается при действии серной кислоты, взятой в тройном количестве от веса углеводорода, при 400°. С олеумом при 0° выход этого изомера уменьшался до 2,5%, а выход бариевой соли — главного продукта реакции — достигал 90%. При температурах выше 100° становится заметным образование дисульфокислот. Добавка сульфатов калия, серебра, кобальта или никеля не изменяет выхода 3-сульфокислоты при сульфировании серной кислотой, но сульфаты меди и ртути снижают его с 15,6% соответственно до 9,4 и 9,7%. При сульфировании 1-моля п-цимола 2,8 молями серной кислоты [117] получены результаты, сходные [c.22]


    Принцип метода. Определение основано на окислении хрома (III) в сернокислой среде персульфатом аммония в присутствии катализатора — нитрата серебра или смеси растворов сульфатов кобальта и никеля. [c.63]

    Применение флуоресцеин-комплексона в качестве металл-флуоресцентного индикатора (при прямом и обратном комплексонометрическом титровании) и флуориметрического реагента дало возможность разработать методики определения щелочноземельных металлов, сульфатов меди, никеля, кобальта, марганца, хрома, железа, молибдена, галогенов, алюминия и титана 1, 54, 26]. [c.270]

    Метод основан на измерении светопоглощения продукта взаимодействия растворов платины с хлоридом олова (И) при 1 = 403 нм. Закон Бера выполним в области концентраций 50—70 мкг в 100 мл при использовании раствора сравнения, содержащего 50 мкг Pt. Определению мешают платиноиды, золото, хром, никель. Влияние железа, кобальта, меди, нитрат-, сульфат-, перхлорат- и бромид-ионов незначительно. Относительная ошибка определения составляет 0,5%. [c.137]

    ПРИМЕР 1. Различие в потенциалах полуволны и Со + на фоне НС1 и пиридина позволяет проводить определение никеля в солях кобальта. Навеску сульфата кобальта массой 2,500 г растворили, добавили необходимые реактивы — НС1, желатину, пиридин — и разбавили до 100,0 мл. [c.258]

    Определение кобальта в присутствии никеля основано на том, что трехвалентный кобальт образует комплексонат синего цвета, не реагирующий с цианидом калия [1207]. К слабокислому раствору солей никеля и кобальта добавляют определенный избыток раствора комплексона И1 и титруют раствором сульфата магния, определяя таким способом суммарное [c.126]

    Определение кобальта комплексоном III и перекисью водорода [564, 1059]. К 25 мл анализируемого раствора прибавляют 10 мл 1 М раствора комплексона, 4 мл раствора гидроокиси аммония (1 1) и 5 мл 3%-ного раствора перекиси водорода, разбавляют водой до 50 мл и через 5 мин. измеряют оптическую плотность при 580 ммк. Окраска устойчива в течение часа. Ионы железа, титана, никеля и меди мешают ионы сульфата и фторида мешают только при концентрациях, больших чем 100 мг на 50 мл. [c.162]

    Ре , его маскируют тартратом или пирофосфатом. Определению не мешают небольшие количества Мп , а также хлорид-, нитрат-или сульфат-ионы в концентрациях до 10% и фторид-, пирофосфат-, тартрат- и цитрат-ионы даже в больших концентрациях. Метод пригоден для определения кобальта в солях никеля и в различных сплавах, сталях и рудах. [c.31]


    Определение кобальта в сульфате никеля [c.133]

    Разряд ионов кобальта происходит при потенциалах более отрицательных, чем —1,0 в, тем не менее катодные полярограммы хорошо выражены (рис. 23). Анодные поляризационные кривые кобальта имеют четкий максимум тока (рис. 24), величина которого прямо пропорциональна концентрации ионов кобальта в растворе (рис. 25). Элемент можно определять на фоне солей, содержащих сульфат-, тиоцианат-, тартрат-ионы, ионы аммония н др. Аналогичные кривые после электрохимического осаждения при тех же потенциалах из тиоцианатного и аммиачного растворов дает никель, из сильнощелочных растворов, содержащих тартрат- или тиоциа-нат-ионы, никель не осаждается. Такие растворы, следовательно, можно использовать для определения кобальта в присутствии значительных количеств никеля. Определению кобальта не мешают обычно соизмеримые количества ртути, серебра, висмута, свинца, кадмия и ряда других элементов. [c.63]

    Никель определяется по высоте волны диффузионного тока восстановления на ртутном капельном электроде на фоне 1М сульфата натрия.. На этом фоне Е /г никеля составляет 0,9 в, Е V2 кобальта — 1,3 в, что делает возможным определение никеля в присутствии кобальта. Железо, восстанавливающееся при том же потенциале, как и никель, связывается фторидом натрия. Поправка на ток восстанавливающегося кислорода производится по высоте волны холостой пробы. [c.114]

    Не мешают определению Хп, АЕ, , Р6, , 86, Са >, сульфат, фосфат, купферон, умеренные количества никеля. Если содержание никеля превышает содержание кобальта, необходимо пере-осаждение. В присутствии железа и вольфрама вводят фторид натрия. [c.19]

    Определению не мешают алюминий, барий, кальций, кадмий, кобальт, калий, магний, марганец, молибден (VI), никель, теллур (IV), натрий, цинк, аммоний, бромид, хлорид, нитрат, фосфат, сульфат, цитрат, оксалат и тартрат. [c.383]

    Определению мешают также сульфаты, повышающие вес осадка [2903], и соли рубидия и цезия не мешают соли лития, магния, кальция, цинка, кобальта, никеля, железа, марганца, алюминия. [c.30]

    Осаждение урана пиридином позволяет определять его в присутствии щелочных и щелочноземельных элементов, магния, марганца (И), кобальта и никеля [181]. Нитраты и хлориды определению не мешают. Сульфаты, если они присутствуют в больших количествах около 10% сульфата аммония), затрудняют осаждение. В этом случае для достижения хороших результатов рекомендуется вместо 20%-ного раствора пиридина прибавлять на каждые 10 мг урана по 3,5—4,5 мл чистого пиридина [96]. [c.74]

    Молибден, хром и ванадий восстанавливаются свинцом, и так как продукты, их восстановления титруются иодом, то для олова получаются повышенные результаты. Присутствие этих элементов обнаруживается по изменению окраски раствора при восстановлении олова. Молибден, например, после восстановления окрашивает раствор в коричневый цвет, а ванадий — в пурпуровый. Малые количества мышьяка не мешают определению Из остальных веществ, не мешающих титрованию, можно отметить сульфаты, фосфаты, иодиды, бромиды, фториды, железо, никель, кобальт, цинк, марганец, уран, алюминий, свинец, висмут, магний и щелочноземельные металлы. [c.339]

    Определению Аэ мешает присутствие ртути, платины, серебра, палладия, никеля, кобальта и их солей, а также большого количества меди в виде сульфата. [c.117]

    Сульфидный осадок для окисления и выщелачивания сульфидов никеля и кобальта обрабатывается 3 ч слабым раствором серной кислоты и кислородом в автоклаве при температуре 120 °С и определенном давлении. В конце процесса жидкая фаза пульпы имеет pH 2 и содержит 60 г/л сульфатов никеля и кобальта, затем pH увеличивается до 5 добавлением аммиака для осаждения гидроксида железа (III), а следы меди осаждаются сероводородом. [c.159]

    II), кобальта и никеля [181]. Нитраты и хлориды определению не мешают. Сульфаты, если они присутствуют в больших количествах (около 10% сульфата аммония), затрудняют осаждение. В этом случае для достижения хороших результатов рекомендуется вместо 20%-ного раствора пиридина прибавлять на каждые 10 м,г урана по 3,5—4,5 мл чистого пиридина [96]. [c.74]

    Определение молибдена в катализаторах [468]. Метод применяют для определения молибдена в катализаторах Мо—А1, Мо—А1—Со, Мо—А1—N1. Алюминий маскируют фторидом, кобальт и никель отделяют в виде гидроокисей. Не мешают определению хлорид, сульфат, ацетат и тартрат. [c.179]

    В результате большой работы (например, при подборе реактива для обнаружения иона меди было перепробовано 16 реактивов) авторами были подобраны реактивы для обнаружения ионов меди, марганца, никеля, кобальта, железа, цинка, кадмия, магния и сульфат-иона. Результаты, полученные при определении предельных концентраций, показали, что таким путем в ряде случаев можно обнаруживать ионы при концентрациях значительно более низких, чем это возможно [c.219]

    Определению не мешают ионы ацетата, алюминия, аммония, бромида, кальция, хлорида, трехвалентного хрома, кобальта, двухвалентной меди, бихромата, фторида, трехвалентного железа, двухвалентного свинца, двухвалентного марганца, молибдата, никеля, оксалата, перхлората, перманганата, калия, серебра, натрия, сульфата, ванадата и цинка. Мешают ионы силиката, арсената, арсенита, германата и нитрита их следует удалять перед первой экстракцией. Допустимо присутствие не более 200 мкг мл нитрата и 20 мкг мл вольфрамата. [c.22]


    Определению не мешают следующие ионы ацетат, арсенит, борат, бромид, хлорид, цитрат, формиат, фосфат, силикат, сульфат, тартрат, тетраборат, роданид, алюминий, аммоний, барий, кадмий, кальций, двухвалентный кобальт, литий, магний, двухвалентные марганец и никель, калий, натрий, стронций, торий и цинк. [c.134]

    Присутствие ртути, платины, серебра, палладия, никеля, кобальта и их солей нежелательно. Нежелательно также присутствие большого количества меди в виде сульфата Все эти вещества перед определением должны быть удалены. Присутствие сурьмы в количестве менее 0,1 мг не оказывает вредного влияния большие же количества сурьмы должны быть отделены предварительно отгонкой мышьяка (III) в токе хлористого водорода, как это описано на стр. 304, но в приборе меньших размеров. [c.313]

    Этот метод применим в присутствии меди, кобальта, никеля, марганца, цинка, магния и ртути. Хорошие результаты получаются также в присутствии щелочноземельных металлов, алюминия, урана и кадмия, если осаждение проводить медленным добавлением ацетата аммония к горячему солянокислому раствору молибдена, содержащему небольшой избыток свинца. Соли щелочных металлов не препятствуют определению, за исключением сульфатов, которые должны быть удалены в случае наличия в растворе щелочноземельных металлов. В отсутствие последних небольшие количества сульфатов, такие, какие могут образоваться при растворении сульфида молибдена, не оказывают влияния на осаждение. При наличии в растворе сульфатов и хлоридов следует избегать введения в раствор большого избытка свинца. Свободные минеральные кислоты и винная кислота препятствуют количественному осаждению молибдена, а железо, хром (П1), алюминий, ванадий, вольфрам и кремний, если присутствуют в значительных количествах, загрязняют осадок. Фосфор, хроматы и арсенаты должны отсутствовать. К элементам, мешающим определению, относятся также олово, титан и другие элементы, соли которых легко гидролизуются. [c.366]

    Определение кобальта в виде сульфатов [1156, 1344], Пер-хлоратные и сернокислые растворы кобальта имеют максимум поглощения при 510 ммк. Это было использовано для прямого спектрофотометричбского определения кобальта в растворах хлорной кислоты [1156], а также для одновремеяного определения никеля и кобальта измерением оптической плотности растворов сульфатов этих элементов при 395 и 510 ммк П344]. Содержание никеля и кобальта устанавливают по специально составленной номограмме. [c.160]

    Определение кобальта в никеле высокой чистоты нитрозо-Yl-солью после отделения в виде диантипирилметанроданидного комплекса [88]. Никель растворяют в азотной кислоте, прибавляют серную кислоту и нагревают до появления белых паров. Остаток растворяют в 100—150 мл воды, прибавляют 10 мл серной кислоты (1 1), 15 мл 20%-ного раствора роданида аммония и 25 мл 2%-ного раствора диантипирилметана в 0,5. Ы растворе соляной кислоты и перемешивают 1 час. Осадок диантипирилметанроданидного комплекса кобальта в.месте с продуктом взаимодействия диантипирилметана с роданидом аммония отфильтровывают, промывают 1%-ным раствором роданида аммония и обрабатывают осадок вместе с фильтром смесью азотной и серной кислот до полного разрушения органического вещества. Раствор выпаривают досуха, образовавшиеся сульфаты растворяют в воде и в аликвотной части полученного раствора определяют кобальт фотометрически нитрозо-Н-солью [359]. Описанным способом можно определить до 0,0001% Со. [c.201]

    Принцип метсда.. В уксуснокислой среде двухвалентный кобальт в присутствии комплексона количественно окисляется раствором сульфата четырехвалентного церия. Титрование можно проводить потенциометрическим методом. Подобным образом ведет себя и двухвалентный марганец, который переходит в нестойкий комплексонат марганца. При цериметрическом определении кобальта нужно соблюдать ряд условий, так как сам комплексов легко и быстро окисляется сульфатом церия. Окисление, кроме того, катализируется незначительным количеством никеля (следами). Поэтому нельзя ожидать широкого применения этого метода. За подробностями отсылаем читателя, к оригинальной работе [110]. [c.140]

    Что происходит с окраской при добавлении нескольких капель воды Никель, железо, марганец, т. е. обычные спутники кобальта в природных соединениях, не мешают реакции. Поскольку проведение этой реакции и наблюдение окраски непосредственно на минералах, содержащих кобальт, не всегда удается, для определения кобальта прибегают к разложению солей сульфатом аммония или смесью солей NH4 I, NH4NO3, (NH4)2S04. [c.318]

    Определение щелочных металлов в солях Из раствора солей удаляют катион в виде соответствующего малорастворимого соединения, например, из раствора нитрата бария осаждают сульфат бария, из раствора нитрата свинца осаждают сульфид свинца и т. п. Фильтрат выпаривают досуха, остаток прокаливают и извлекают водой. К отфильтрованному раствору добавляют несколько капель H2SO4 и т. д. [425, 540] Можно также удалять катионы меди, кобальта, никеля и других элементов электролизом, и в оставшемся растворе определять сумму щелочных металлов в виде сульфатов [347]. [c.26]

    Определение в виде калий-бортетрафенила отличается простотой, хорошей воспроизводимостью и удовлетворительной точностью [1161, 1719]. Определению не мешают сульфаты и фосфаты [753, 2279], соли лития [2279], натрия, магяия [438, 805, 2279], кальция [438, 2699], бария, кадмия, хрома, кобальта, никеля, цинка, свинца, олова, уранила [2621]. Если в растворе присутствуют соли трехвалентного железа, то перед осаждением калия вводят NaF [2405]. [c.50]

    П. Н. Палей и А. В. Давыдов, изучая возможность применения методики определения урана с морином Алмаши и Нади [328], показали, что уран можно определять в присутствии трехкратных количеств никеля и кобальта, тысячекратных количеств нитрат- и сульфат-ионов, десятикратных количеств фтора и фосфатов. Изучалось также влияние ванадия. В присутствии пятивалентного ванадия получаются очень заниженные данные, так как ванадий окисляет морин. Добавлением 1 мл сернистокислого натрия восстанавливают ванадий, который в восстановленном состоянии связывается комплексоном HI, чем исключается окисление реагента и, таким образом, присутствие десятикратных количеств ванадия не мешает определению урана. [c.129]

    Методы, основанные на восстановлении шестивалентного молибдена металлическими железом, никелем или кобальтом. Есимура [1563] изучал восстановление шестивалентного молибдена в редукторе Джонса, заполненном мелкими стружками неактивированного или активированного железа. Активирование железа производилось пропусканием раствора сульфата меди в соляной кислоте. Полученный трехвалентный молибден титровали раствором железоаммиачных квасцов в присутствии роданида калия. При таких опытах не удалось установить каких-либо определенных преимуществ каждого редуктора вследствие трудности установления конечной точки титрования. [c.196]

    Фотометрическое определение в рудах в форме сульфата [745]. Навеску руды разлагают смесью азотной и соляной кислот и раствор выпаривают с серной кислотой. Осаждают медь раствором тиосульфата натрия. При этом железо восстанавливается до двухвалентного состояния. Измеряют оптическую плотность полученного раствора Со804 (после фильтрования) при 520 ммк. Не мешают мышьяк, сурьма, магний, алюминий, кальций, ци к, кадмий, натрий, калий и титан. Допустимо до 0,5 мг/мл марганца и 0,3 мг/мл вольфрама. Мешают хром и ванадий собственной окраской. При больших количествах никеля оптическую плотность измеряют при двух длинах волн— при 400 и 520 ммк и затем вычисляют содержание кобальта. [c.180]

    Никель осаждается количественно из аммиачных растворов, неполностью — из слабокислых растворов и совсем не осаждается из сильнокислых растворов. (Следовательно, для количественного отделения меди от никеля необходимо лишь поддерживать достаточно высокую концентрацию кислоты.) Серьезное мешаюшее влияние при определении никеля оказывают серебро, медь, мышьяк и цинк, которые, однако, можно удалить осаждением сероводородом. Присутствие железа (II) и хрома-тов нежелательно з , они могут быть удалены осаждением в виде гидроокисей. В присутствии кобальта осаждаются оба элемента, но для количественного осаждения кобальта необходимо добавить сульфит, препятствующий образованию аминов кобальта (III). Добавление сульфита, однако, приводит к загрязнению выделившихся металлов серой. Поэтому поступают следующим образом выделившийся осадок растворяют, никель определяют по реакции с диметилглиоксимом, серу — путем осаждения ее в виде сульфата бария, а содержание кобальта находят по разности. [c.349]

    Довольно часто в качестве светофильтров используют растворы определенных веществ и их смесей в воде и в других растворителях, в том числе растворы бихромата калия, сульфата кобальта, аммиаката меди, п-нитрозоди-метиланилина, сульфата никеля, хлорида кальция, хлорида меди, нитрата неодима и смеси различных веществ. Такие фильтры позволяют выделять излучение в узких [c.146]

    Этот метод применяется главным образом в тех случаях, когда концентрацию вспомогательного иона металла можно измерить потенциометрически, используя металлический или амальгамный электроды (см. гл. 7). Например, значения о ионов Hg(II), участвующих в конкурирующих реакциях с ами-нополикарбоксилатными ионами [3, 45, 47, 48] или с полиаминами [41, 42], определялись с помощью ртутного электрода. Так как константы устойчивости комплексов ртути (И) были определены, то оказалось возможным рассчитать концентрацию свободного лиганда и, следовательно, константы устойчивости комплексов ВА . Ртуть (И) не может использоваться в качестве вспомогательной центральной группы для изучения комплексов таких катионов, как кобальт (И) или железо (И), которые восстанавливают ее до ртути(I). Полуэлемент Ag+/Ag(тв) аналогично использовался для определения констант устойчивости в системах сульфата кадмия [36] и дипиридила [13], а ион Си(II) как вспомогательная центральная группа применялся при изучении полифосфатных комплексов никеля [26] и нат рия [32], замещенных 8-оксихинолинатов кобальта и никеля [57  [c.86]

    Максимумы светопоглощения экстрактов в изобутаноле находятся при 625 и 725 ммк. Оптимальные пределы концентрации фосфора составляют 0,2—1,5 мкг1мл. Определению не мешают ионы ацетата, бромида, карбоната, хлорида, цитрата, бихромата, фторида, йодата, нитрата, нитрита, оксалата, перманганата, сульфата, аммония, алюминия, бария, трехвалентного висмута, кадмия, кальция, трехвалентного хрома, двухвалентного кобальта, двухвалентной меди, двухвалентного железа, трехвалентного железа, двухвалентного свинца, лития, магния, двухвалентного марганца, двухвалентного никеля, калия, серебра, натрия, четырехвалентного тория, уранила и цинка. Концентрация ионов трехвалентного мышьяка, йодида и роданида не должна быть выше 50 мкг/мл, а концентрация силиката или четырехвалентного олова — выше 25 мкг/мл. Опре- [c.15]

    Анализируемый раствор должен быть свободен от азотистой кислоты,, хлорида серебра и сульфатов. Первая образует окрашенное в красный цвет соединение с роданистоводородной кислотой хлорид серебра до некоторой степени реагирует с роданидом, а в присутствии сульфатов образуется смешанный осадок роданида и сульфата серебра 1. Кроме концентрированных растворов солей, мешающ их определению своей окраской, вредны главным образом соединения ртути (II) и палладия. Медь (I), образующая также нерастворимый роданид (стр. 290), обычно-не присутствует, так как предварительной обработкой вся медь окисляется до двухвалентной. Медь (II) не мешает определению, если отношение меди к серебру не превышает 7 10. Не мешают также мышьяк,, сурьма, свинец, висмут, кадмий, железо, марганец, цинк, никель, и кобальт. - X [c.239]


Смотреть страницы где упоминается термин Никеля сульфат, определение кобальта: [c.165]    [c.474]    [c.312]    [c.198]    [c.20]    [c.66]    [c.127]    [c.478]    [c.268]   
Колориметрический анализ (1951) -- [ c.312 ]




ПОИСК





Смотрите так же термины и статьи:

Кобальт определение

Кобальт сульфат

Никель определение

Определение никеля сульфата

Сульфат никеля

Сульфаты, определение



© 2025 chem21.info Реклама на сайте