Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молибден растворение в кислотах

    Галиды -металлов VI группы образуются при непосредственном взаимодействии, а также в результате обменных реакций и при растворении металлов в кислотах. Галиды высшей степени окисления (+6) для хрома не характерны и очень неустойчивы (СгР ). Молибден и вольфрам образуют фториды и хлориды с ковалентно-полярной связью. Шесть валентных орбиталей гибридизируются и молекула получает симметрию октаэдра (рис. 178). Галиды молибдена и вольфрама в высшей степени окисления егко-летучие вещества, которые не могут пассировать поверхность металла. Поэтому [c.344]


    Метод, описанный на стр. 196, может быть также применен для определения молибдена и вольфрама, если содержание в тантале каждого элемента составляет 2-10 —2-10 о. Для большего количества молибдена и вольфрама применяют методы, описанные на стр. 195 и 200. Пробу растворяют в смеси 5 мл фтористоводородной и 0,5 мл азотной кислот и осторожно нагревают для ускорения растворения. Добавляют 3. л концентрированной серной кислоты, выпаривают раствор досуха и сплавляют остаток с гидросульфатом калия (в присутствии серной кислоты, когда определяют молибден) и продолжают, как описано в методиках на стр. 194, 195 или 200. Когда применяют мето- [c.208]

    Медь, кобальт, железо, никель и висмут могут быть легко отделены сплавлением минерала с едким кали или натром с последующим растворением плава и центрифугированием щелочного раствора. Вольфрам и ванадий, которые переходят в раствор вместе с молибденом, маскируются фосфорной кислотой, с которой они образуют комплексные соединения. [c.155]

    Осадок вольфрамовой кислоты, образующийся при обработке вольфрамсодержащих сталей кислотой, соосаждает часть молибдена. Растворение осадка вольфрамовой кислоты в 1,5 N аммиаке и подкисление раствора не позволяет выделить молибдена. Поэтому молибден отдельно определяют в щелочном растворе вольфрамовой кислоты пирокатехин-3,5-дисульфокислотой при 420 ммк, как описано. [c.235]

    Насыщенный на холоду раствор хлористоводородного морфина частично осаждается концентрированной соляной кислотой. 5 мл водного раствора (1 50) синеют от прибавления 1 капли раствора хлорного железа. Если нагревать кристаллик хлористоводородного морфина с 5 каплями крепкой серной кислоты в течение 15 минут на кипящей водяной бане, а по охлаждении добавить немного азотной кислоты, то смесь немедленно окрашивается в кровяно-красный цвет. Если к смеси 1 ч. хлористоводородного морфина и 4 ч. сахарозы прибавить серную кислоту, то смесь окрашивается в красный цвет, окраска усиливается при прибавлении одной капли бромной воды. При растворении кристаллика хлористоводородного морфина в смеси одной капли формалина и 1 мл крепкой серной кислоты смесь окрашивается последовательно в красный, затем фиолетовый и, наконец, в фиолетово-синий цвет. При смачивании азотной кислотой хлористоводородный морфин окрашивается в красный цвет. Раствор хлористоводородного морфина в серной кислоте окрашивается в коричнево-черный цвет от прибавления азотнокислого висмута. Молибден-серная кислота (раствор 0,05 г молибденовокислого аммония в 1 лл серной кислоты (реактив Фреде) окрашивается хлористоводородным морфином в переходящий фиолетовый цвет, а затем в синий. При растирании смеси 8 ч. хлористоводородного морфина и 1 ч. гидрастина с серной кислотой смесь окрашивается в фиолетовосиний цвет. О других качественных реакциях см. у Мегс к а.  [c.457]


    Соляная кислота отличается высокой агрессивностью по отношению к большинству металлов и сплавов. Реальное применение для изготовления оборудования и деталей оборудования, подвергающихся воздействию соляной кислоты, находят лишь титан и его сплавы, никель и его сплавы, тантал и молибден, а также кремнистый чугун. Нелегированный титан обладает ограниченной стойкостью в кислоте даже при комнатной температуре (рис. 7-3) 261]]. Наличие в растворе окислителей (в частности, растворенного хлора) расширяет пределы применимости титана в соляной кислоте. Хорошей стойкостью обладает легированный палладием (0,2 масс.%) или молибденом (30 масс.%) титан. [c.103]

    Определение титана при наличии молибдена (при содержании последнего более 0,02%). Навеску пробы 1,0 г помещают в коническую колбу емкостью 150 мл, добавляют 5 г гидросульфата калия и 5 мл концентрированной серной кислоты. Нагревают на плитке до полного растворения пробы, охлаждают, окисляют 1 мл концентрированной азотной кислоты и упаривают раствор до появления паров серной кислоты. Продолжают упаривать раствор еще 10 мин, охлаждают, добавляют 40 мл воды и осторожно нагревают до полного растворения плава, переливают в делительную воронку емкостью 250 мл и к еще теплому раствору (приблизительно при 30 °С) добавляют 50 мл концентрированной соляной кислоты, затем экстрагируют молибден четырьмя порциями изоамилацетата по 25 мл. Органические фазы отбрасывают. [c.159]

    Катализаторы для гидрогенизации под давлением, например сернистый молибден, регенерируют нагреванием до температуры не выше 750° в присутствии воздуха, с последующим растворением в 50% серной кислоте и разбавле-нием раствора до содержания кислоты, равного 20%, после чего осаждают трехсернистый молибден. Трехсернистый молибден фильтруют и высушивают в отсутствии воздуха в инертной или восстановительной атмосфера [413]. [c.311]

    Молибден, вольфрам, уран, цинк, алюминий или их смеси высокоактивный молибденовый контакт получается растворением молибдена в азотной кислоте и прокаливанием нитрата при 350— 400° (обычное давление) [c.151]

    В растворе наиболее устойчивыми являются соединения шестивалентного молибдена (молибдаты). При растворении сплавов, содержащих молибден, если добавление окислителей не приводит к полному разложению карбидов, следует раствор, содержащий серную кислоту, выпарить до выделения паров 50з( 200°) и, не прекращая нагревания, прибавлять небольшими количествами персульфат калия или аммония. [c.347]

    Чернова и Томашов [13], изучавшие анодное растворение железа, хромистых сталей (25% Сг), легированных никелем или молибденом (0,5%), показали, что в этом случае наблюдается логарифмическая зависимость скорости растворения от потенциала с коэффициентом Ь" = = 0,05 0,10. Иофа и Вэй Бао Мин [14] при исследовании процесса растворения кобальта в серной кислоте установили, что Ь = 0,10- 0,18, а Ь" =0,026- 0,042. [c.29]

    Из рис. 2, где представлена зависимость скорО Сти коррозии от потенциала, полученная в 25%-ном растворе соляной кислоты при 100° С на сплавах титан — молибден, видно, что на кривых имеются две области растворения сплавов. Такая форма потенцио статических кривых типична для сплавов системы титан — молибден, снятых в растворах всех неокислительных кислот. В области отрицательных значений потенциалов растворение сплавов связано с неустойчивостью титана, а в области положительных значений — неустойчивостью молибдена. [c.68]

    Одновременно было проведено определение азота в молибдене растворением навески в серной кислоте с дальнейшей дистилляцией аммиака по методу Кьельдаля и объемометрическим измерением. В этом случае навеску молибдена в 0,5—1,0 г растворяют в 20—40 мл H2SO4 (1,84) при нагревании 20— 30 мин. [c.223]

    Для растворения стали, содержащей в своем составе примесь молибдена, применяют смесь концентрированных хлористоводородной и азотной кислот, при этом образуются соединения молибдена (VI). Максимум поглощения молибдена (VI) расположен примерно в области X = 230 нм. Это дает возможность определять молибден в растворе спектрофотометрическим методом в ультрафиолетовой области спектра Концентрацию молибдена устанавливают по значению мoляpнofo коэф фициента поглощения раствора. [c.259]

    Выполненные ранее исследования анодного поведения благородных, редких и цветных металлов в некоторых азот-, серосодержащих растворах показали перспективность использования этих растворов в качестве электролитов для разделения метачлов. В продолжении этих работ изучена анодная поляризация Р1, Рё, 1г, КЬ, Ре, РЬ и Мо в сернокислых растворах тиокарбамида. Показано, что все исследованные платиновые метатлы анодно растворяются в изученных растворах. Повышение концентрации тиокарбамида, а также снижение концентрации серной кислоты в растворе увеличивают скорость растворения платиновых металлов. Установлено, что железо и молибден также растворяются в кислых тиокарбамидных растворах, свинец во всех исследованных электролитах не растворяется. Таким образом, селективное отделение благородных металлов путем их анодного растворения может быть осуществлено только от свинца. Показана также возможность отделения золота и серебра от меди в условиях нотенцио-статического электролиза и определены условия электрохимического процесса. [c.85]


    Высокая стойкость молибдена обусловлена образованием на его поверхности защитной пленки. Кинетика растворения молибдена характеризуется кривой, интенсивность подъема которой постоянно уменьшается (рис. 82), т.е. соответствует кривой типа 1 на рис. 50, что свидетельствует об образовании защитной пленки. Продолжительность испытаний в кипящих кислотах была принята равной 96 ч, в закрытых контейнерах - 24 ч. На рис. 83 ][1редставлены результаты испытаний молибдена в серной кислоте различной концентрации. Видно, что при концентрации кислоты до 50-60% молибден устойчив против коррозии, а в кислотах более высоких концентраций скорость его коррозии резко увеличивается. [c.89]

    Фтористый водород и плавиковая кислота быстро действуют на молибден, переводя его во фториды. Разбавленная H2SO4 (d=l,3) слабо действует на молибден даже при 110°. Концентрированная H2SO4 ( =1,82) на холоду действует слабо за 18 ч потеря массы 0,24%. При 200—250° растворение идет быстрее. Фосфорная и органические кислоты воздействуют на металл слабо, но в присутствии окислителей (в том числе воздуха) растворимость заметно увеличивается. Растворы щелочей и аммиака действуют на молибден медленно, но их действие усиливается окислителями с повышением температуры. Газообразный аммиак при высокой температуре переводит молибден в черную порошкообразную смесь нитридов с общим содержанием азота до 3%. Азот растворяется в молибдене незначительно. Окислы азота окисляют молибден. Фтор образует летучие фториды молибдена. Хлор и бром реагируют с ним при температуре красного каления иод реагирует очень медленно. В присутствии влаги галогены взаимодействуют с молибденом на холоду. Сера не реагирует с ним до 400—450°, а при более высокой температуре образует дисульфид M0S2. Сероводород взаимодействует с молибденом при высокой температуре, образуя [c.161]

    В присутствии фосфорной кислоты можно отделить плутоний от урана и продуктов деления экстракцией ТБФ. Шевченко, По-вицкий и Соловкин [247] описали метод переработки облученных тепловыделяющих элементов первой атомной электростанции СССР. Получаемые после растворения тепловыделяющих элементов азотнокислые растворы содержали уран (от 100 до 120 г/л), плутоний, молибден, магний, осколочные элементы и фосфорную кислоту (до 46 г/л). Кислотность растворов составляла 5 М НМОз. Метод заключался в раздельном экстракционном извлечении сначала урана, а затем Ри(1У) 20%-ным раствором трибутилфосфата в гидрированном керосине. [c.324]

    Очень распространенным методом переведения в раствор различных металлов и их сплавов и соединений является обработка смесями HNO3 и НС1. Так растворяют медь и сплавы на ее основе [381, 1188], никель [1183], чугун, железо и сталь [48, 943], сурьму [198, 894], олово [379], хром [198], германий [669], молибден [459]. Для растворения сурьмы предложена НС) с добавлением брома [837]. Чаш,е в качестве окисляюш,ей добавки при растворении в H l используют H.jOj, избыток которой довольно легко удаляется простым нагреванием раствора. Таким образом растворяют уран [928], олово [307], медь и ее сплавы [515, 1043], сурьму [172]. Соляную кислоту с добавлением нитрита натрия предложено использовать для растворения никеля [402]. [c.157]

    Раствор ниобия и молибдена в конц. H2SO4 объемом 5 мл помещают в центрифужную пробирку емкостью 80 мл, используя для промывания небольшие количества (1—2 мл) серной кислоты (1 I). После небольшого разбавления водой прибавляют 5 г хлор ида аммония, перемешивают до растворения осторожно (при перемешивании) прибавляют аммиак (уд. в. 0,88) до слабощелочной реакции, охлаждая пробирку погружением в холодную воду. После охлаждения производят центрифугирование 5 мин., а жидкость над осадком сливают через бумажный фильтр Ватман № 40. В центрифужную пробирку прибавляют 50 мл раствора хлорида аммония и аммиака (содержащего 5% хлорида аммония и 2% аммиака), осадок взмучивают стеклянной палочкой и снова центрифугируют. Таким путем промывают осадок ниобия несколько раз. В центрифугате находится молибден. Осадок ниобия растворяют в [c.112]

    Выделение молибдена р-нафтохинолином разработано применительно к анализу сталей, ферромолибдена (101, 363]. Навеску стали растворяют в разбавленной серной кислоте, а навеску ферромолибдена — в смеси соляной ч азотной кислот, производят окисление азотной кислотой, раствор вымаривают до паров Н2 04. По растворении сухого остатка отфильтровывают кремневую и вольфрамовую кислоты. Отделяют железо избытком щелочи. Из аликвотной части фильтрата осаждают шестивалентный молибден р-нафтохинолином из слабосернокислого раствора (по лакмусу). Отфильтрованный и промытый осадок осторожно озоляют в муфеле при 400—450°С до МоОз. Метод дает удовлетворительные результаты. [c.158]

    При изучении влияния мышьяка на результаты определения молибдена [760] раствор молибдата в 1,5 N Н2804, содержащий различные количества мышьяка, восстанавливали жидкой амальгамой цинка, затем титровали его 0,1 N КМПО4. При этом для молибдена всегда получали слишком высокие результаты, а конечная точка титрования была неотчетливой. Таким образом, мышьяк мешает определению молибдена. При растворении сталей в соляной кислоте мышьяк, улетучивается в виде АзНз и, таким образом, не мешает определению молибдена. Но при высоком содержании мышьяка в сталях (более 0,16%) необходимо произвести отгонку его в виде АзНз перед тем, как отделять шестивалентный молибден от железа при помощи бЛ NH40H. [c.183]

    А. И. Лазарев и В. И. Лазарева [183] определяли молибден в сплавах и легированных сталях с использованием аскорбиновой кислоты в качестве восстановителя. Ванадий, хром, никель и кобальт не мешают. Вольфрам удерживают в растворе при помощи лимонной или щавелевой кислот. Ниобий после растворения стали и добавления лимонной или щавелевой кислот отфильтровывают в форме ЫЬгОб пНгО. [c.214]

    Присутствие хлоридов, сульфатов, фосфатов в титруемом растворе исключается, так как эти ионы также образуют малорастворимые осадки с закисной ртутью. Равным образом исключается применение органических кислот — винной, щавелевой или лимонной, которые иногда применяются для связывания вольфрама (VI) в комплексное соединение с тем, чтобы в его.присутствии определять молибден (например, при колориметрических определениях) с этими кислотами ртуть также образует осадки. Что касается катионов, то их влияние на определение молибдена и вольфрама обусловлено растворимостью соответствующих вольфраматов и мо-либдатов в данной среде. Так, например, в присутствии бария определение вольфрама делается практически невозможным, так как вольфрамат бария отличается весьма малой растворимостью в разбавленных кислотах и, следовательно, увлечет вольфрам в осадок до титрования, а более сильное подкисление приведет, как уже упоминалось, к растворению вольфрамата ртути. [c.193]

    Молибден в безводных уксуснокислых растворах пассивируется, его растворение происходит лишь после достижения обратимого потенциала образования оксида М0О3 и протекает с образованием ионов высокой степени окисления (в ацетатных и хлоридных растворах средняя степень окисления составляет 5,8-[-, в растворе ЫаС104 — 4,854-). Специфическое влияние анионов на кинетику анодного растворения и пассивацию отсутствует. Кислородные соединения молибдена образуются за счет кислорода молекул уксусной кислоты. По полярографическим данным растворение протекает в основном по реакциям [c.118]

    Анодные кривые для титана и хрома одинаковы. На кривой можно отметить следующие характерные точки — стационарный потенциал, внешний ток равен нулю, V — потенциал начала пассивации соответствует максимальному току анодного растворения металла. При потенциалах более положительных, чем потенциаоЧ начала пассивации, скорость анодного растворения металла уменьшается —потенциал полной пассивации, при котором устанавливается минимальный анодный ток. При потенциалах, более положительных, чем потенциал полной пассивации, металл находится в пассивном состоянии, поддерживаемом внешней анодной поляризацией. Различие в анодном поведении титана и хрома состоит в следующем при высоких положительных потенциалах пассивное состояние титана не нарушается, в то время как у хрома наступает состояние перепассивации [10—12], в котором он начинает растворяться в виде шестивалентных ионов. Анодный ток, соответствующий началу пассивации, для хрома значительно больший, чем для титана. Потенциал полной пассивации у хрома более отрицательный, чем у титана. Перенапряжение водорода на хроме несколько более низкое, чем на титане. Стационарный потенциал молибдена в 40%-ной H SO равен +0,3 в, т. е. значительно более положителен, чем потенциал полной пассивации титана в этой среде. Поэтому в области потенциалов, где титан активно анодно растворяется на молибдене, протекают катодные процессы. Анодное растворение молибдена наблюдается только при значительном смещении его потенциалов в положительную сторону. Сопоставлением весовых потерь и количества пропущенного электричества установлено как в наших опытах, так и в работе [13], что растворение молибдена происходит в виде шестивалентных ионов. Молибден является коррозионностойким металлом в серной кислоте. Поэтому растворение молибдена в виде ионов высшей валентности при анодной поляризации можно трактовать как состояние перепассивации. Перенапряжение водорода на молибдене значительно более низкое, чем на титане. Палладий в серной кислоте анодно не растворяется. Рост анодного тока при высоких положительных потенциалах соответствует реакции выделения кислорода. Перенапряжение водорода на палладии значительно ниже, чем на титане. [c.179]

    При содержании фосфора более 0,015% рекомендуется гравиметрический молибдатно-свинцовый метод. После растворения навески хрома в смеси НС1 и Вга и окисления его хлорной кислотой фосфор отделяют от r(VI) с коллектором Ге(ОН)з в аммиачной среде. Фосфор осаждают в азотнокислой среде в виде фосфоромолибдата аммония, который затем растворяют в NH4OH. Молибден, связанный с фосфором, осаждают из уксуснокислой среды раствором Pb(N0g)2 в виде РЬМо04. [c.138]

    Молибден. Ферроммибден растворяют в азотной кислоте (1 1) или в смеси соляной и азотной кислот если растворение не полное, то остаток отфильтровывают и сплавляют с карбонатом натрия. При высоком содержании кремния обрабатывают по каплям фтористоводородной кислотой и упаривают до выделения паров серной кислоты. [c.12]

    В табл. 19 показано, как изменяются плотность тока пассивации, плотность тока в пассивном состоянии, а также область максимальной запассивированности у сталей 18% Сг—8%К1 и 18%Сг—10% N1—2% Мо в зависимости от состава раствора, его концентрации и температуры. Наиболее агрессивной средой является Н2304, требующая больших токов для пассивации. Однако в пассивном состоянии плотность тока, характеризующая скорость растворения при анодной защите, и в растворах Н2304, невелика. У стали с молибденом плотность тока в пассивном состоянии и плотность тока пассивации меньше, чем у стали, нелегированной молибденом. Плотность тока в пассивном состоянии ( пп) так же как и плотность тока пассивации ( п), сильно возрастает с повышением температуры раствора, что можно видеть из данных для растворов серной и фосфорной кислот. Величина анодного тока в пассивном состоянии п— важный параметр для [c.116]

    Коррозионная стойкость хромоникелевых сталей в растворах неокислительных кислот и растворах, содержащих хлориды может быть повышена легированием их молибденом. При этом, как правило, снижается скорость активного растворения, увеличивается склонность сталей к пассивированию (снижается ток пассивации и ток в пассивном состоянии), повышается устойчивость пассивного состояния. Стали 18 rl2Ni, легированные 2—3 % Мо, устойчивее в средах, содержащих хлор-ионы при невысоких температурах. Для повышения стойкости сталей в растворах с хлор-ионами при повышенных температурах требуются большие концентрации молибдена (до 5—6%). В серной кислоте хромоникелевые стали устойчивы только в очень разбавленных растворах. Легирование молибденом повыо1ает их стойкость как вследствие возможности сохранения пассивного состояния в разбавленных растворах, так и в результате [c.183]

    При электролитическом растворении ниобиевого сплава с кремниевым покрытием (см. таблицу) была изолирована в анодный осадок коррозионностойкая фаза, не растворяющаяся в кислотах и не разлагающаяся при прокаливании и сплавлении с пиросульфатом калия. Ее можно разложить лишь сплавлением с содой или обработкой плавиковой кислотой. Рентгеноструктурным анализом установлено, что фаза представляет собой дисилицид ниобия N5512, а химическим методом определен ее состав (в ат., %) 31,14% МЬ, 1,80% Мо и 67,07% 51. Таким образом, примерная химическая формула изолированного дисилицида ниобия с растворенным в нем молибденом имеет вид (N5, Мо) 512,06. [c.93]

    Большая устойчивость одной из фазовых структур в ряде случаев может определяться большей ее термодинамической стабильностью. Так, например, обстоит дело в случае а-ьр-латуни, где а-фаза, содержащая меньшее количество цинка по сравнению с р-фазой, будет обладать большей термодинамической стабильностью и большей коррозионной устойчивостью, например в растворах кислот. Однако довольно часто повышенная устойчивость фазы определяется кинетическими факторами, например способностью одной из фаз гетерогенного сплава к более легкой пассивации. Это можно проиллюстрировать наблюденными закономерностями формирования поверхностной структуры при растворении сплайна —Мо [47, 49]. Здесь наблюдалось, что в условиях коррозии в активном состоянии (40% Н2504, 70° С), когда потенциал сплава устанавливается в активной области, преимущественно растворяется а-фаза, менее легированная молибденом по сравнению с р-фазой и поэто1му менее термодинамически стабильная. В этом случае при коррозии на поверхности накапливается р-фаза. Наоборот, если коррозия идет при более положительных потенциалах (за счет анодной поляризации или в более [c.23]

    Исследования, результаты которых приводятся ниже, касаются коррозионного и электрохимического поведения сплавов системы титан — молибден, а также нелегированных титана [32—34] и молибдена в растворах едкого кали при концентрациях от 40 до 50% и температурах 100—450° С. На рис. 8 представлена зависимость скорости коррозии титана от потенциала, полученная в 50%-ном растворе едкото кали. На потенциостатических кривых 1 я 2 имеются явно выраженные области активного растворения титана с максимумами при потенциале пассивации, равном —0,7 в. Повышение концентрации щелочи увеличивает скорость коррозии титана. По сравнению с растворами кислот в щелочных растворах активная область растворения титана смещена к более отрицательным значениям потенциала. [c.75]

    Малинек [72] подверг метод определения молибдена оксином дальнейшему изучению, применил его для анализа руд, шлаков и сплавов и считает его очень точным, надежным и быстрым. Определение проводится в 5 раз скорее, чем определение молибдена в виде РЬМо04 или потенциометрическим методом. Только у образцов со слишком большим содержанием железа или у образцов, которые необходимо сплавлять в железном тигле с перекисью натрия, наблюдалось незначительное соосаждение железа в виде оксихинолята железа. В этих случаях рекомендуется сначала осаждать молибден в виде сульфида и после растворения осадка определять молибден приведенным оксиновым методом. При осаждении молибдена в виде сульфида следует учитывать то, что в щелочной среде в присутствии комплексона сульфидом аммония не осаждаются железо, никель, кобальт, марганец и цинк, и поэтому автор рекомендует следующий ход определения к кислому раствору, содержащему молибден, железо и другие катионы, кроме катионов сероводородной аналитической группы, прибавляют в избытке комплексон и пропускают сероводород до обесцвечивания раствора. Подщелачивают аммиаком и опять пропускают сероводород до приобретения раствором темной окраски сульфосоли молибдена. После насыщения сероводородом раствор подкисляют серной кислотой (1 5) и нагревают на песчаной бане для свертывания осадка сульфида молибдена. Осадок отфильтровывают, промывают сероводородной водой и сульфид молибдена обрабатывают азотной кислотой. После растворения доводят раствор до требуемого pH и определяют молибден оксином в присутствии комплексона, как было указано. Единственный недостаток метода заключается в том, что при высоких концентрациях железа обработка сероводородом вызывает выпадение осадка серы, затрудняющего фильтрование. Этим методом было определено 10 мг молибдена в присутствии 1 г железа с точностью 0,2—0,3%. [c.113]


Смотреть страницы где упоминается термин Молибден растворение в кислотах: [c.154]    [c.161]    [c.160]    [c.165]    [c.212]    [c.166]    [c.167]    [c.347]    [c.41]    [c.48]    [c.144]    [c.71]    [c.27]    [c.75]    [c.181]    [c.200]   
Методы разложения в аналитической химии (1984) -- [ c.212 , c.387 ]




ПОИСК





Смотрите так же термины и статьи:

Молибдена нитрид растворение в серной кислот

Молибдена сульфид растворение в кислотах



© 2025 chem21.info Реклама на сайте