Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соединения меди с белками

    У животных медь (входящая в состав некоторых белков и ферментов) концентрируется в печени недостаток ее ведет к появлению анемий. Соединения меди оказывают также влияние на синтез гемоглобина и фосфолипидов. [c.437]

    На основе оксидов меди получены сверхпроводящие керамические материалы. Медь важна для всех форм жизни, хотя встречается в организмах в небольших количествах. Медь входит в состав ряда белков и некоторых ферментов, концентрируется она преимущественно в печени. Соединения меди необходимы для синтеза гемоглобина и фосфолипидов. [c.409]


    В щелочной среде в присутствии солей меди белки дают фиолетовое окрашивание. Окраску дает комплексное соединение меди с пептидными группами —СО—ЫН—. Биуретовая реакция получается также с продуктами неполного гидролиза белка — пептонами и полипептидами. [c.9]

    Описание опыта. 2—3 мл раствора белка нагревают с 2—3 мл 20% раствора едкого кали или натра и несколькими каплями раствора медного купороса. Появляется фиолетовое окрашивание вследствие образования комплексных соединений меди с белками. [c.95]

    Подгруппа В. В небольших количествах, входя в состав комплексных соединений организма, медь стимулирует функции некоторых эндокринных желез и активность ферментов недостаток меди в пище приводит к анемии. Избыток же меди токсичен. Соединения меди, попадая в желудок, вызывают тошноту, рвоту, понос, появление гемоглобина в моче, анемию, желтуху, появление белка в моче — уремия и, наконец, жировую инфильтрацию сердечной мышцы и дегенеративные изменения почек. Среднее содержание меди в почвах 2-10 % в растениях 1 мг на 1 кг свежей массы. У бес- [c.283]

    Наибольшей устойчивостью из положительных состояний окисления меди обладает Си". Соединения меди (III) являются сильными окислителями, хотя в последнее время устойчивые соединения Си" обнаружены в некоторых биологических системах так, образование комплексов меди(III) с белками снижает стандартный потенциал Си " от +1,8 В до +0,45—1-1,05 В [12]. Свободный ион Си+ склонен самопроизвольно диспропорционировать [ср. потенциалы переходов u +- u+ (+0,153 В) и u+->- u (+0,521 В)]. Однако соединения Си, такие, как малорастворимые в воде галогениды СиХ или комплексы, например [ u( N)2]", являются достаточно устойчивыми. [c.399]

    СЕЛЕН. 8е. Химический элемент VI группы периодической системы элементов. Атомный вес 78,96. Имеются стабильные и радиоактивные изотопы С. Встречается в природе в виде минералов, содержащих серу, мышьяк, медь, серебро и др. По химическим свойствам близок к сере, но менее активен. Соединения С. ядовиты. Входит в состав многих растений и животных организмов, а также почв в незначительных количествах (тысячные-миллионные доли процента). Некоторые растения накапливают до десятых долей процента С. При отсутствии С. в почве растения заболевают. В некоторых растениях С. вытесняет серу из органических соединений (например, у видов семейства крестоцветных, у бобовых). С. входит в состав резервных белков зерновых злаков. Он образует соединения с белками крови, молока и др. В районах с большим содержанием С. в почве у животных нарушается обмен серы, развивается малокровие, которое сопровождается разрушением белков — кератинов, в результате чего происходит размягчение рогов и копыт, выпадение волос. Биохимическая роль С. слабо изучена. Изучаются методы синтеза и условия применения органических соединений С. в сельском хозяйстве. [c.257]


    Споры постепенно адсорбируют медь до летальных доз. Токсичность соединений меди обусловлена способностью их осаждать белки, что вызывает коагуляцию протоплазмы. Медь взаимодействует с сульфгидрильными группами ферментов и коферментов, с аминогруппами кислот и других соединений. [c.240]

    В наибольшей степени в медных удобрениях нуждаются осушаемые болотные почвы, в которых находится очень мало меди. В отсутствие медных удобрений подобные почвы не отзываются на остальные виды удобрений. Внесение в почву соединений меди большей частью способствует повышению качества сельскохозяйственной продукции (увеличивается содержание белка, сахара, жиров, витаминов в пищевых продуктах, улучшаются свойства волокна и т. д.). Потребность в медных удобрениях ощущается и на дерново-подзолистых, песчаных, дерново-глеевых и гравийных почвах. [c.294]

    Биуретовая реакция открывает пептидную связь в белке. Ее способны давать вещества, которые содержат не менее двух пептидных связей. При добавлении сернокислой меди к сильнощелочному раствору белка или полипептида образуются соединения меди с пептидной группировкой, окрашенные в красно- или сине-фиолетовый цвет в зависимости от длины полипептидной цепи. Раствор белка дает сине-фиолетовое окрашивание, а продукты неполного его гидролиза (пептоны) — розовое или красное. [c.24]

    Белки, аминокислоты и молочная кислота сыворотки реагируют с соединениями меди, образовавшимися в результате коррозии, и получаются растворимые прочные комплексы меди сложного состава. [c.108]

    Одним из медьсодержащих белков является гемоцианин (ГЦ). Это сложное внутрикомплексное соединение с белком, центральным атомом которого является ион меди в степени окисления +1 (см. также главу 5). Он содержится в крови некоторых морских животных (ракообразные и моллюски) и участвует в процессе связывания и освобождения кислорода  [c.193]

    Ряд тканевых структур способен активна связывать определенные химические вещества. Например, ткань щитовидной железы накапливает соединения меди, костная ткань тетрациклины и т. д. Многочисленные исследования показали, что закономерности связывания лекарств белками сыворотки крови, жидкости волдыря, асцитической жидкости практически не отличались друг от друга. [c.134]

    В производное кобальта(П) [41]. Исследования показали, что медь(П) и кобальт(П) конкурируют за одно и то же место в белке. Поскольку спектры соединений, содержащих кобальт(П), интерпретировать легче, чем спектры производных меди(П). авторы смогли прийти к выводу кобальт находится либо в центре искаженного тетраэдра, либо в пятикоординационном окружении. Интенсивная линия переноса заряда указывает на существование связи Со — SR. Отнесение всех линий спектра нативного медьсодержащего белка было проведено по аналогии. Существование порфириновых комплексов в ферментных системах можно установить по наличию в спектре характеристической полосы Соре в области 25 000 см . Эта полоса обусловлена связанным с лигандом переходом я -> я типа перехода с переносом заряда (см. гл. 5). В электронных спектрах порфириновых комплексов обнаружены также две другие полосы низкой интенсивности. Существование этих полос и их сдвиги при введении заместителей в циклы можно понять, проведя расчеты по методу МО [42]. Положения этих полос использованы для классификации цитохромов. [c.109]

    Как мы уже указывали, Лавуазье и Берцелиус впервые установили, что при построении органической материи важнейшую роль играют элементы углерод, водород, кислород и азот. Поэтому их иногда называют органогенными элементами. Однако в природных органических соединениях могут встречаться также и другие элементы так, например, во многих видах белка содержится сера в лецитинах и фосфатидах (составных частях клеточного ядра и нервной ткани)—фосфор, в гемоглобине — железо, в хлорофилле — магний, в синей крови артроподов и некоторых моллюсков — комплексно связанная медь. [c.4]

    Белки относятся к высокомолекулярным соединениям. Молекулярная масса их 20 000 и даже 15 000 000 у. е. Они растворяются в воде, образуя коллоидные растворы (вследствие огромных размеров молекул). Белки устойчивы лишь в определенных условиях. При повышении температуры происходит необратимая коагуляция белков, а под действием электролитов — обратимая. Первая характерная для белков реакция ксантопротеиновая—реакция с азотной кислотой. Под действием азотной кислоты белок свертывается, образуя сгусток оранжевого цвета. Вторая характерная реакция на белки — это биуретовая реакция — фиолетовое окрашивание белка при взаимодействии его с гидроксидом меди. [c.371]


    Цветные реакции белков 1) если к небольшому количеству раствора белков прилить немного гидроксида натрия и по каплям добавлять раствор сульфата меди (II), то появляется красно-фиолетовая окраска. Такая же реакция происходит и с другими соединениями, которые содержат пептидные группы  [c.20]

    Все известные ферменты представляют собой длинные цепи из а-амино-кислот (относительная молекулярная масса порядка 0,5 млн), свернутые в компактную форму, в которых имеется несколько реакционноспособных участков. Изучение природы ферментов показало, что, помимо белка, многие из них содержат и другие соединения. Так, например, в составе окислительных ферментов были обнаружены органические соединения железа. Эти соединения у различных окислительных ферментов оказались одинаковыми по составу. Кроме того, было выяснено, что такие же соединения железа входят и в гемоглобин крови, переносящий кислород в организме человека и животных. Комплексное соединение железа (гем) можно отделить от белка. Однако после этого ни белок, ни гем не проявляют ферментативных свойств. Отсюда следует, что высокая активность и специфичность свойственны только сложной системе, состоящей из белка и гема. В состав различных ферментов входят и комплексные соединения других металлов. В некоторых ферментах обнаружены медь, цинк, марганец, хром и другие элементы. Для некоторых ферментов уже известна первичная структура, т. е. последовательность аминокислот в длинной цепи. Вторичная структура — общий характер спирали, образуемый цепью, приближенно установлена для нескольких ферментов. О третичной структуре, т. е. природе реакционноспособных поверхностных участков молекулы, известно очень мало. [c.149]

    Растения кроме главных питательных веществ — азота, фосфора и калия — нуждаются в небольших количествах многих других элементов, так называемых микроэлементов. К микроэлементам относятся бор, медь, молибден, марганец, цинк, кобальт, иод и некоторые другие. Установлено, например, что применение небольшого количества соединений бора (0,5 кг на 1 га) дает прибавку урожая свыше 15%, а применение солей молибдена увеличивает примерно на 70% связывание азота из воздуха, повышает скорость синтеза аминокислот, белков и витаминов. Использование микроудобрений способствует увеличению количества и улучшению качества сельскохозяйственной продукции. [c.7]

    Двадцать из первых тридцати элементов периодической системы, а также четыре более тяжелых элемента необходимы для жизни. Водород, углерод, азот и кислород присутствуют в организме в виде многих соединений. Натрий, калий, магний, кальций и хлор присутствуют в виде ионов в крови и межклеточных жидкостях. Фосфор в виде фосфат-иона обнаружен в крови эфиры фосфорной кислоты содержатся в фосфолипидах и других соединениях гидроксиапатит содержится в тканях костей и зубов. Сера — важная составная часть инсулина и других белков. Фтор, содержащийся в виде фторид-иона в питьевой воде, необходим для образования прочных зубов и костей он необходим также для нормального роста крыс. Кремний, ванадий, хром, марганец, железо, кобальт, медь, цинк, селен, молибден, олово и иод в небольших количествах необходимы для жизни (микроэлементы). Сведения о некоторых из этих элементов были получены только в опытах с животными (особенно с крысами), однако весьма вероятно, что полученные данные относятся также и к человеку. [c.418]

    Медь - один из важнейших микроэлементов. Медьсодержащие удобрения содействуют синтезу белков, жиров и витаминов растительными организмами. Физиологическая активность меди связана с включением её в состав активных центров окислительно-восстановительных ферментов. В нриродньк водах наиболее часто встречаются соединения меди (II). В области 7 < pH < 9 образуется в основном моногидроксокомилекс [СиОН] , нри pH и 9 наиболее вероятно выпадение гидроксида меди (II) Си(ОН)2. Из соединений меди (I) наиболее распространены труднорастворимые в воде Си,0, СигЗ, СиС1. [c.42]

    Эти простетические группы также, как и их способы соединения с белками, могут быть очень различными. Так, в фосфопротеидах собственно белок соединен с фосфорной ли пирофосфорной кислотами эфирообразно через гидроксильные группы оксиаминокислот. В хромопротеидах простетической группой является красящее вещество гем, представляющее собою соединение порфиринового ряда, содержащее металл. В гемоглобине (красящем веществе крови), который является переносчиком кислорода у позвоночных, гем содержит железо в гемоцианине, содержащемся в крови и гемолимфе некоторых беспозвоночных животных, гем содержит медь. Железо содержат и ряд других представителей этой обширной и важной группы белков, например, цитохром С — катализатор клеточного дыхания, каталаза и пероксидаза — окислительные ферменты и т. д. Различен также и характер связи простетической группы с белком в хромопротеидах. Согласно современным представлениям, белок (глобин) в гемоглобине связан с гемом водородными связями, возникающими между атомом железа гема и имидазольным кольцом гистидиновых остатков в белке. В цитохроме связующим звеном, по-видимому, является тиоэфирная группа (см. рис. 10). [c.533]

    Белки дают ряд цветных реакций, обусловленных наличием определенных аминокислотных остатков нли общих химических группировок. Эти реакции широко используются для аналитических целей. Среди них широко известны нингидриновая реакция, позволяющая проводить количественное определение аминогрупп в белках, пептидах и аминокислотах, а также биуретовая реакция, применяемая для качественного и количественного определения белков и пептидов. (При нагревании белка или пептида, но не аминокислоты, с Си 01 в щелочном растворе образуется окрашенное в фиолетовый цвет комплексное соединение меди, количество которого можно определить спектрофотометрически.) Цветные реакции на отдельные аминокислоты используются для обнаружения пептидов, содержащих соответствующие аминокислотные остатки. Для идентификации гуанидиновой группы аргинина применяется реакция Сакагучи — при взаимодействии с а-нафтолом и гипохлоритом натрия гуанидины в щелочной среде дают красное окрашивание. Индольное кольцо триптофана может быть обнаружено реакцией Эрлиха — красно-фиолетовое окрашивание при реакции с п-диме-тиламинобенэальдегидом в Н 804. Реакция Паули позволяет выявить остатки гистидина и тирозина, которые в щелочных растворах реагируют с диазобеизолсульфокислотой, образуя производные, окрашенные в красный цвет. [c.32]

    К хро .юпротеидам относятся также окрашенные геминовые соединения с белками, такие как миоглобин (миохром) поперечнополосатых мышц, эритрокруорины беспозвоночных, каталаза н пероксидазы, цитохром с. Некоторые хромопротеиды представляют собой не содержащие железа или меди соединения желчных пигментов с белком. Кроме того, к хромопротеидам могут быть отнесены и окрашенные соединения белков с каро-тиноидами.. [c.177]

    Известное представление о наличии определенных типов связи в молекуле белка дало изучение химизма одной из известных цветных реакций на белки, так называемой биуретовой реакции. Эта реакция состоит в том, что при добавлении к щелочному раствору любого белка нескольких капель очень слабого раствора USO4 появляется характерное фиолетовое или красно-фиолетовое окрашивание, обусловленное образованием комплексных соединений меди. Биуретовая реакция удается и с рядом соединений, не имеющих никакого отношения к белкам. К таким соединениям относятся прежде всего биурет NHg — СО — NH — СО — NHg, откуда возникло и название этой реакции. [c.37]

    Роль переходных металлов в жизнедеятельности организмов в основном опеределяется их каталитическими свойствами. Многие ферменты представляют собой белок как таковой (т. е. являются полипептидами), тогда как другие состоят из белка (называемого в этом случае апоферментом ) и одной или более малых молекул или ионов (кофактор, кофермент или простетическая группа), которые вместе образуют весь фермент или холофермент. Кофермент может представлять собой органическую молекулу, например флавин, пиридоксаль, пнридиннуклеотид и др., соединенную с белком ковалентной связью, водородными связями или за счет вандерваальсовых взаимодействий. Кофактор может быть простым ионом металла, например ионом меди, или комплексом металла с одним или несколькими лигандами, например железопорфирины, кобальт-корриноиды. Если с ионом металла координируется один или несколько анионов аминокислот, то лигандом может служить сам белок, хотя это лиганд необычного типа. Очевидно, такие металлоферменты можно рассматривать как особую группу ферментов или как особую группу комплексов металлов и сопоставлять каталитическую активность ферментов, содержащих и не содержащих металл, или каталитическую активность комплексов переходного металла с белком и без белка. В рамках этого обзора мы не будем рассматривать металлоферменты, в которых ион металла выступает главным образом как льюисовая кислота (как в некоторых гидролитических ферментах [59]). Предметом обзора являются такие металлопротеины, которые сами претерпевают определенные (например, окислительно-восстановительные) превращения в ходе каталитического процесса и в которых в качестве лигандов принимают участие некоторые специфические компоненты, например молекулярный кислород, которые характерны для комплексов переходных металлов. [c.133]

    Появление цветного окрашивания при биуретовой реакции вызвано образованием комплексного соединения меди с белком или пептидом, причем в образовании комплекса участвуют пептидные связи. [c.51]

    Рассмотрим три основных вида крови, в которую входят молекулы, переносящие О2. Наиболее общей является красная кровь, в которой Ог-пере-носящий компонеит содерл ит келезо в группе гема (которая в свою очередь присоединена к белку). Омары и крабы имеют голубую кровь, цвет которой обусловлен гемоцианином—соединением меди, а фиолетовый цвет некоторых морских червей вызван белком, содержащим же.лезо (но не содержащим группу гема), гемеритрином. Эти системы переносят кислород к ряду катализаторов, которые окисляются кислородом. Существует много таких катализаторов, и они также являются координационными соединениями, например цитохромы и оксидазы меди. Естественно, эти системы представляют значительный интерес, но механизм этих реакций еще не выяснен. Однако известно, что металл является активным центром для обратимого присоединения кислорода, и в связи с этим здесь интересно рассмотреть синтетические Ог-переносчики. Были синтезированы переносчики кислорода иа основе кобальта [51] и иридия [52]. Предполагается [53], что анион lsReORe lj может соединяться обратимо с Og. Подобные предположения были сделаны для диметилглиоксимных комплексов Fe(H) [54] и Ni(H) [55]. Сейчас, по-видимому, можно считать доказанным, что фталоцианин Мп(П) не обладает Ог-переносящими свойствами [56]. [c.554]

    Токсическое действие соединений меди обусловлено тем, что ионы меди взаимодействуют с тиольными —5Н-группа-ми (связывание) и аминогруппами —ЫНг (блокирование) белков. При этом могут образовываться биокластеры хелат-ного типа  [c.290]

    По данным Кубовиц (Kubowitz, 1938), этот фермент представлен в растении соединением специфического белка с двухвалентной медью и восстанавливается до меди одновалентной субстратом  [c.150]

    Вторая реакция — это реакция реактива Фолина с тирозино-выми и цистеиновыми радикалами молекулы белка. Это реакция восстановления смеси фосфорно-вольфрамовой и фосфорномолибденовой кислот (реактив Фолина) с образованием комплексного соединения синего цвета. Полагают, что в реакции восстановления принимают участие комплексные соединения меди, возникающие при взаимодействии белка со щелочным раствором сульфата меди. Эта реакция не очень специфична, но высо- [c.233]

    БИУРЕТОВАЯ РЕАКЦИЯ — цветная реакция, которую дают с солями меди в щелочной среде биурет H2N ONH ONH2, амиды и имиды кислот, полипептиды, белки и другие соединения, содержащие группировки —СО—NH—, Б. р. — цветная реакция на белок — лежит в основе его количественного колориметрического определения. Если к щелочному раствору белка прибавить раствор uSO , появляется фиолетовое окрашивание. Чувствитель-1юсть Б. р. невысока. [c.45]

    Клеточные белки, способные катализировать различные биохимические реакции, называют ферментами или энзимами. Ферменты по химическому строению, могут быть трех видов состоящие только из сложных белковых соединений содержащие, кроме белковых молекул, ионы одного из металлов (меди, железа, цинка и др.) содержащие активные группы, без которых белковая часть молекулы становится инертной. В образовании ферментов могут участвовать витамины. Молекулярная масса ферментов колеблется от нескольких тысяч до 500 000 (изомеразы). Клетки микроорганизмов имеют большой набор ферментов, например грибы рода Aspergillus содержат до 20 различных ферментов. [c.14]

    Лигандообменную хроматографию применяют для разделения в водной среде соединений, представляющих большой интерес для органической химии и биохимии аминов, аминокислот, белков, нуклеотидов, пептидов, углеводов. При этом в вчестве комплексообразующих используют ионы меди, цинка, кадмия, никеля, серебра и железа. Ионы ртути и серебра в неполярной среде алифатических углеводородов образуют лабильные комплексы с ненасыщенными и ароматическими углеводородами. Большими достоинствами лигандообменной хроматографии является ее селективность и отсутствие жестких требований к сорбенту, который может быть прочно связан ионами металла или только пропитан солями металла. [c.82]

    Биуретовая реакция (реакция Пиотровского). В щелочной среде белки, а также продукты их гидролиза — полипептиды дают фиолетовое или красно-фиолотовос окрашивание с солями меди. Реакция обусловлена наличием пептидных связей. Положительная биуретовая реакция проявляется у соединений, содержащих не менее двух [c.6]


Смотреть страницы где упоминается термин Соединения меди с белками: [c.30]    [c.37]    [c.432]    [c.211]    [c.307]    [c.356]    [c.206]    [c.121]    [c.79]   
Химия и биология белков (1953) -- [ c.17 , c.88 , c.192 , c.210 , c.240 , c.241 ]




ПОИСК







© 2025 chem21.info Реклама на сайте