Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Возмущение межмолекулярное

    На рис. 5.7 представлены ИК спектры одного и того же силикагеля с удельной поверхностью 5 300 м /г до и после модифицирования различными органохлорсиланами. Модифицирование проводилось после предварительной откачки силикагеля при 200°С раствором органохлорсиланов в толуоле в присутствии триэтиламина как донора электронов. В спектре 1 немодифицированного силикагеля видна широкая полоса поглощения в области 3700—3000 см-, обусловленная валентными колебаниями силанольных групп, возмущенных межмолекулярным взаимодействием с молекулами ССЬ и внутримолекулярной ассоциацией (см. лекцию 3). Полосы поглощения в спектрах 2—6 соответствуют оставшимся силанольным и привитым органическим группам. Таким образом, ИК спектры показывают, что модифицирующие группы, привитые по реакциям типа (5.10), прочно удерживаются поверхностью силикагеля. Определению поверхностной Концентрации модифицирующих групп помогает исследование образца с помощью С, Н, Ы-анализатора. Содержание углерода в модифицированном образце можно определить в [c.99]


    В жидком и твердом состоянии на спектр молекулы влияет межмолекулярное взаимодействие. При растворении или сжижении происходит беспорядочное возмущение уровней энергии молекулы за счет силового поля среды. Это приводит, с одной стороны, к исчезновению вращательной структуры и расширению полос, с другой — к смещению частот в спектре. Ослабление химических связей под влиянием взаимодействия молекул выражается в уменьшении силовых постоянных и, следовательно, частот в спектре на величину Av, называемую низкочастотным сдвигом (Av 1 — 10 м ). В кристаллическом состоянии низкочастотный сдвиг меньше, чем в растворе. Так, для молекулы СОа в ИК-спектре кристалла и водного раствора [c.178]

    При вычислении термодинамических свойств жидких смесей неэлектролитов методами теории возмущений [1] используется сферически симметричный потенциал межмолекулярного взаимодействия. Между тем потенциальная энергия взаимодействия молекул полярных веществ зависит от их взаимной ориентации. Для того, чтобы теорию возмущений можно было применять к полярным веществам, предлагается использовать эффективный сферически симметричный потенциал [2], полученный усреднением реального, зависящего от ориентаций молекул, потенциала по углам в соответствии с выражением  [c.41]

    Возмущенные размеры цепи - размеры макромолекулы в данном растворителе, определяемые межмолекулярным взаимодействием между макромолекулами и растворителем (см. Сольватация). [c.397]

    Квантовомеханические расчеты показывают, что энергия межмолекулярного взаимодействия в случае дальнодействующих сил складывается из энергии возмущения первого порядка — электростатической, и второго порядка — индукционной и дисперсионной. [c.94]

    В различных условиях существования углеводородные системы, нефти, газовые конденсаты и продукты их переработки могут рассматриваться в виде многокомпонентных нефтяных дисперсных систем. Изменение термобарических условий приводит к превращениям инфраструктуры указанных систем, которые наиболее выражены в области фазовых переходов. При этом важнейшими параметрами, которые характеризуют систему на микроуровне, являются дисперсность, энергия межмолекулярных взаимодействий, размеры, конфигурация, поверхностная и объемная активность структурных образований, представляющих дисперсную фазу, степень их сольвати-рования компонентами дисперсионной среды. Изменение указанных параметров отражается на основных макрохарактеристиках системы, например плотности, вязкости, упругости пара, агрегативной и кинетической устойчивости. Причем, как правило, при отклике на внешние или внутренние возмущения на нефтяную дисперсную систему изменение этих характеристик сопровождается нелинейными и неаддитивными эффектами. Отклонения от аддитивности различных свойств нефтяных дисперсных систем в процессе их превращений характерны не только для смесей различных углеводородов, но могут проявляться даже в пределах одного гомологического ряда. [c.302]


    Растворы, образованные сферическими неполярными молекулами (смеси простых жидкостей), интенсивно исследуются различными теоретическими методами, оперирующими потенциалами межмолекулярного взаимодействия. Эти методы упоминались выше. В частности, большое внимание уделяется применению теории возмущений к так называемым конформным растворам, т. е. растворам, где взаимодействия всех типов (1—1, 2—2 и 1—2) описываются потенциалами одинаковой формы (допустим, потенциалом Леннард-Джонса, но с разными значениями ег/ и ац-, I, / = 1. 2). [c.249]

    При исследовании жидкости методами теории возмущений исходят из того, что свойства некоторой стандартной системы известны, различие же в термодинамических функциях исследуемой и стандартной систем связывают с различиями в функциях потенциальной энергии межмолекулярного взаимодействия. [c.383]

    Окраска эта более интенсивна именно в жидком кислороде, где чаще, чем в газе, происходят столкновения молекул Ог и образование коротко живущих молекул О4. Для такого возмущения даже не обязательно образование молекулы О 4 (т. е. энергии взаимодействия 0,5 ккал) и достаточно простого столкновения молекул (энергия межмолекулярного взаимодействия порядка 0,015 ккал)-, правда, при этом мала вероятность того, что фотон ударит о пару молекул именно в момент столкновения, которое длится всего около 10" сек. [c.192]

    При переходе к более тонким приближениям необходим учет в возмущении и тех членов, которые связаны с наличием спина и магнитных моментов у заряженных частиц. В общем, разнообразие отдельных составляющих при рассмотрении межмолекулярных взаимодействий оказывается весьма и весьма богатым. [c.478]

    Возмущенные размеры — это размеры цепи в данном растворителе, где проявляются межмолекулярные взаимодействия между макромолекулами и растворителем. [c.57]

    Как уже отмечалось, межмолекулярные силы имеют малый радиус действия. Однако по ряду причин силы взаимодействия с поверхностью раздела могут простираться на довольно большое расстояние. Предполагается [1], что наблюдаемые эффекты Дальнодействия связаны с возмущениями, передаваемыми ог [c.89]

    Нередко возникает вопрос — правомочно ли оперировать структурой белка в кристалле, в то время как в реальных условиях белковая молекула находится в растворе нлн в среде со сложным составом и именно в таких условиях выполняет свою биологическую функцию Хотя дискуссии не прекращаются, многочисленные экспериментальные данные позволяют утвердительно ответить на этот вопрос. Во-первых, кристаллы белков весьма своеобразны по своей природе, они содержат большое количество растворителя (воды), иногда свыше 60% общей массы кристалла, и даже в кристалле молекулы белка оказываются в плавающем состоянии. Во многих случаях показано, что структура белка в кристалле соответствует его предпочтительной конформации, ибо межмолекулярные взаимодействия в кристаллической решетке не вносят существенных возмущений в структуру. Во-вторых, многие белки даже [c.99]

    Исследования аддитивности энергии межмолекулярного взаимодействия двух молекул с локализованными электронами по энергиям парного взаимодействия их силовых центров производились в первом и втором порядках теории возмущений. Потенциальная энергия взаимодействия двух молекул в первом порядке теории возмущений содержит в себе энергию электростатического взаимодействия и обменную энергию первого порядка, обусловливающую энергию отталкивания. Электростатические силы взаимодействия двух молекул являются локально аддитивными, т. е. электростатическую энергию можно записать в виде двукратного интеграла по элементам объема в одной молекуле и по элементам объема в другой молекуле [157]. При взаимодействии неполярных молекул электростатические силы равны нулю и единственными не равными нулю силами в первом порядке теории возмущений являются обменные силы первого порядка. [c.250]

    Поскольку решить уравнение Шредингера для системы молекула — твердое тело невозможно, прибегают к различным, довольно грубым, приближениям. Первое приближение — разделение межмолекулярного потенциала взаимодействия на несколько составляющих, а именно, на энергию отталкивания, дисперсионную энергию, индукционную и электростатическую энергию. Следующее приближение заключается в том, что адсорбционный потенциал представляют как сумму парных взаимодействий. Предположение об аддитивности обосновано только для взаимодействий, описываемых во втором приближении теории возмущений, а не для взаимодействий первого порядка, к которым относится энергия отталкивания. Поэтому применение адсорбционного потенциала в виде суммы парных взаимодействий может быть оправдано лишь тем, что, во-первых, такая запись потенциалов более удобна для вычислений и, во-вторых, рассчитанные величины достаточно хорошо соответствуют результатам эксперимента. [c.28]


    Использование для решения рассматриваемой задачи метода возмущений основано на следующих рассуждениях. Представим полный гамильтониан системы, в которой осуществляется межмолекулярное взаимодействие, в виде [c.487]

    Расчет методом возмущений первого порядка с использованием волновой функции (17.17) приводит к выражению для энергии отталкивания Е° ) этот вклад преобладает в области малых межмолекулярных расстояний. В области средних расстояний может отчетливо проявиться интересный эффект — перенос электрона из одной подсистемы (донора) в другую подсистему (акцептор) в этом случае говорят о переносе заряда (Е ). Оба последних вклада имеют очень важное значение, [c.489]

    В некоторых случаях донорно-акцепторное взаимодействие может протекать внутри молекулы. Этот процесс заключается в частичном переносе электронов от одной части молекулы к другой ее части. В большинстве случаев полученный результат является тривиальным вариантом межмолекулярного донорно-акцепторного взаимодействия. Однако когда две реакционные области, участвующие в процессе, либо соединены, либо сопряжены, то применяются специфические методы и теория возмущений также дает возможность описания механизма этой реакции. [c.100]

    До сих пор мы рассматривали теоретические вопросы, связанные с молекулярными колебаниями. Теперь мы остановимся на использовании экспериментальных данных. К этим данным относятся частоты полос в инфракрасных спектрах поглощения и частоты в спектрах комбинационного рассеяния (разности между частотами возбуждающей линии, и линий спектра), а также их поляризуемости. Строго говоря, эти данные нужно было бы получить для образцов, находящихся в газообразном состоянии, чтобы избежать возмущений, вызываемых межмолекулярным взаимодействйем. Однако ввиду того, что этот эффект для углеводородов обычно мал, часто пользуются спектрами, полученными для жидкого вещества, особенно спектрами комбинационного рассеяния. [c.300]

    Наиболее полная информация о состоянии поверхностных силанольных групп и других адсорбционных центров, об их возмущении при адсорбции и образовании поверхностных комплексов разной прочности, а также о межмолекулярных взаимодействиях адсорбированных молек(ул с поверхностью твердого тела и друг с другом может быть получена, если спектры отдельных частей адсорбционной системы не перекрываются. Однако на сильно гидроксилированной поверхности кремнезема силанольные группы, расположенные друг от друга на расстоянии, меньшем 0,33 нм, возмущены образовавшимися между ними внутримолекулярными водородными связями. Дополнительное возмущение этих гр упп вызывает адсорбция воды. В результате этого спектр поглощения в области валентных колебаний гидроксильных групп молекул адсорбированной воды перекрывается со спектром силанольных групп, что затр(удняет интерпретацию поглощения в этой области. Для упрощения спектра и его интерпретации надо исследовать дегидратацию кремнезема, т. е. удаление молекулярно адсорбированной воды (хотя бы с поверхности пор, размеры которых достаточно велики по сравнению с размерами молекул воды). [c.56]

    Ван-дер-ваальсово взаимодействие двух молекул на сравнительно больших расстояниях имеет характер возмущения электронного облака одной молекулы электронным облаком другой. При этом энергия системы понижается на величину энергии возмущения, называемую энергией межмолекулярного взаимодействия. Она состоит, как показывает квантовомеханический расчет, из энергии возмущения первого порядка, так называемой электростатической, и энергии возмущения второго порядка — индукционной и дисперсионной. Электростатическое взаимодействие возникает между электрически заряженными атомами (ионами), постоянными дипольными моментами полярных молекул, квадрупольными, октупольными и другими электрическими моментами молекул. Взаимодействие между ионами рассматривается особо. Для нейтральных же молекул в электростатическом взаимодействии важно так называемое ориентационное взаимодействие постоянных дипольных моментов молекул. Ориентационное, индукционное и дисперсионное взаимодействия— три важнейшие составляющие ван-дер-ваальсовых сил притяжения. Эти силы называют дальнодействующими, так как энергия взаимодействия довольно медленно спадает с расстоянием и пропорциональна г ", где н<6. [c.255]

    В соответствии с основной идеей теории возмущений волновая функция реагирующей системы строится из волновых функщ1Й исходных (невозмущенных) реагентов. Полная энергия этой системы склады вается из энергий отдельных реагентов и членов возмущения, составляющих так называемую энергию взаимодействия. Знак и величина последней определяются конкретным видом параметра возмущения в выражении типа (1.85) для полной энергии. В общем случае этот член должен включать все виды энергетических взаимодействий между двумя сближающимися молекулами (ионами, радикалами) кулоновские, индукционные, обменное отталкивание, перенос заряда, дисперсионные. Конкретный вид получаемых при этом уравнений зависит также и от особенностей принятого расчетного приближения (МОХ, ППП, NDO и пр.). Рассмотрим наиболее простой вариант, основанный на применении МО Хюккеля, — метод межмолекулярных орбиталей (ММО). [c.512]

    Расчеты корреляционных функций для раствора проводятся теми же методами, что и для жидкостей решение интегральных уравнений, расчеты методами Монте-Карло и молекулярной динамики, применение теории возмущений. В настоящее время теоретически сравнительно хорошо исследованы смеси твердых сфер, отличающихся по размеру, смеси леннард-джонсовских жидкостей. В последние годы объектом изучения строгих теорий становятся не только смеси простых жидкостей, но также растворы с нецентральными межмолекулярными взаимодействиями (случай полярных молекул, молекул асимметричной формы). [c.248]

    Объектом изучения теории жидкостей до настоящего времени являлись в основном жидкости, называемые простыми это системы из сферически симметричных неполярных частиц, взаимодействия между которыми носят дисперсионный характер. К простым жидкостям, строго говоря, относятся только сжиженные благородные газы. С некоторым приближением можно включить в группу простых жидкостей также чистые жидкие металлы, жидкости, состоящие из двухатомных молекул (по-видимому, эти молекулы становятся подобными сферически симметричным благодаря вращению), В последние годы появились работы, в которых строгими методами (в частности, с помощью теории возмущений) изучают жидкости, образованные несферическими частицами, полярными молекулами. Особое положение в теории жидкостей занимает вода — система с межмолекулярными взаимодействиями чрезвычайно сложного характера (водородные связи, сильные ван-дер-ваальсовы взаимодействия). Интерес к изучению воды и водных растворов необычайно возрос в последнее время в связи с тем, что имеется непосредственная связь между проблемой состояния воды в растворах и проблемой биологических структур. Теории жидкой воды и водных растворов основаны почти исключительно на модельных представлениях. Такой подход в большой степени оправдывается явно выраженной квазикристалличностью воды при невысоких температурах, [c.362]

    Помимо указанных составляющих межмолекулярного взаимодействия существует и ряд других, которые мы по существу только лищь упомянем. Не говоря уже о более высоких порядках теории возмущений, можно напомнить, что волновые функции системы в целом должны быть антисимметричны относительно перестановок индексов электронов (перестановки тождественных ядер практически не сказываются). При больших Л вклад в энергию, обязанный своим появлением антисимметризации функций вида Ч доЧ вц, достаточно мал, однако по мере уменьшения К он быстро возрастает. Так, при взаимодействии двух молекул этилена этот вклад составляет 0,04 от электростатического при Я = 10 а.е., а при К = 5 а.е. он уже достигает относительной величины 4. Поскольку антисимметризация волновой функции связана с обменом индексов электронов, то этот вклад в энергию межмолекулярного взаимодействия носит название обменного. [c.478]

    Найти изменение волновых ф-ций щ и отвечающих им энергий ( стационарных состояний невозмущенной системы, удовлетворяющих ур-нию Шрёдингера — Е ф , под действием возмущения (задача о сдвиге уровней). Решение этой задачи применяют для анализа межмолекулярных взаимод., в теориях кристаллич. поля и поля лигандов, для изучения изменения молекулярных орбита-лей при изменении строения молекул. [c.412]

    Модельные межмолекулярные аотенциалы. При больших расстояниях между молекулами (Л Г) зависимость потенциала парного М. в. от К определяют методами возмущений теории, напр, ф-лы (1)-(3). При расстояниях, близких к равновесному зависимость от Л м. б. определена численными методами квантовой химии. Вместе с тем для решения мн. практич. задач важно знать аналит. зависимость К(Л). Предложено неск. разл. модельных ф-ций. Эти ф-ции должны удовлетворять трем условиям общего характера 1) при Я = оо К= О, 2) при Я = У (Я) имеет минимум, 3) при Я < Я У быстро возрастает (отталкивание). Параметры, входящие в выражение для модельного потенциала, выбирают так, чтобы вычисленные с его помощью значения физ. величин, зависящих от М. в., совпадали или были достаточно близки к значениям, определяемым экспериментально. [c.14]

    Ионно-молекулярный подход основан на рассмотрении в явном виде как ионов, так и молекул р-рителя. Главные результаты получены в 70-80-х гг. 20 в. на базе расчетных методов, интенсивно развиваемых в теории жидкостей. Это в оси. метод интегральных ур-ний для корреляц. ф-ций, метод кластерных разложений, теория возмущений, а также компьютерное моделирование. Благодаря явному учету ионно-молекулярных и межмолекулярных взаимод. возможно описание не только термодинамич., но и структурных св-в Р. э. В частности, важньш результат - описание сольватации ионов в зависимости от концентрации и др. параметров р-ра, объяснение концентрационных, температурных и барич, зависимостей св-в в широких интервалах состава, т-ры и давления. [c.192]

    В этом отношении наиболее перспективной представляется характеристика 0 Н -группировок по их колебательным спектрам Во-первых, этот метод, будучи чувствительным к числу внутренних степеней свободы группировки и ее г.имметрии, позволяет получать разнообразную информацию о ее строении. Во-вторых, имея в своем распоряжении монотонно меняющиеся спектральные характеристики полос поглощения, метод колебательной спектроскопии сам по себе не требует разделения всех ОтН -группировок на какие-либо дискретные группы. И, наконец, в-третьих, поскольку некоторые спектральные параметры О ,Н -группировок оказываются чувствительными к возмущению последних различными межмолекулярными взаимодействиями, колебательный спектр позволяет судить о строении молекул, входящих в первую координационную сферу ОтН -группировки. Таким образом, колебательная спектроскопия принципиально позволяет получать довольно обширные и разнообразные сведения как о строении самих О Н -груннировок, так и о их влиянии на те соединения, в которые они входят. В связи с этим строгая количественная оценка реальных возможностей метода инфракрасной спектроскопии и разработка конкретных приемов исследования, позволяющих получать более полные сведения о природе оксигидрильных группировок, в настоящее время являются весьма актуальными. Ряду таких разработок, равно как и анализу их применимости к конкретным системам, будут посвящены следующие главы этой книги. [c.13]

    Рассмотренные межмолекулярные силы (за исключением кулонов-ских сил, действующих между изолированными зарядами), по-видимому, не играют важной роли иа расстояниях, больших нескольких диаметров молекул, И тем не менее, как показано в следующем разделе, имеется миого данных, подтверждающих возможность дальнего взаимодействия на поверхностях и в коллоидных системах. Факт существования дальнодействия объясняется одной важной особенностью дисперсионных сил, а именно их приблизительной аддитивностью. Качественно аддитивность объясняется тем, что дисперсиошюе взаимодействие связано со сравнительно небольшими возмущениями движения электронов и поэтому м ногие такие возмущения могут складываться без серьезного взаимного влияния. Некоторые вытекающие из этого следствия, а также более подробное рассмотрение теории дисперсионного взаимодействия даны в разд. У1-3. [c.250]

    В химии основное внимание уделяется взаимодействиям между атомами, ионами и молекулами, приводящим к образованию (или разрыву) химических связей. Вместе с тем уже более ста лет изучаются слабые и очень слабые взаимодействия систем с замкнутой оболочкой, между которыми в обычных лабораторных условиях не осуществляются реакции в химическом смысле этого слова. Существование жидкого (а в случае молекулярных кристаллов) и твердого состояния обусловлено наличием сил притяжения между молекулами. Равновесное расстояние между молекулами, образующими ассоциаты в жидкой и твердой фазах, определяется компенсацией сил притяжения и отталкивания. Экспериментально установлено, что силы отталкивания очень быстро ослабевают с увеличением межмолекулярного расстояния (приблизительно обратно пропорционально его двенадцатой степени), тогда как возрастание сил притяжения при уменьшении межмолекулярного расстояния происходит не так быстро (грубо говоря, обратно пропорционально шестой степени расстояния). Это обстоятельство имеет важное значение в то время как силы отталкивания на расстояниях порядка длины химической связи оказываются почти неощутимыми, силы притяжения не могут считаться пренебрежимо малыми вплоть до расстояний 0,4 нм, и поэтому о них говорят как о дально-действующих силах. Среди таких сил важная роль принадлежит дисперсионным силам в разд. 17.2 рассматривается их квантовомеханическое обоснование в рамках простой модели. В данной главе будут выведены выражения, основанные на теории возмущений и пригодные для описания межмолекулярного взаимодействия. Но прежде чем перейти к их выводу, скажем несколько слов о происхождении кулоновских, индукционных и дисперсионных сил. Для кулоновского взаимодействия обе влияющие друг на друга системы могут формально рассматриваться как состоящие из ряда мультиполей. Во втором случае происходит взаимодействие между постоянным и индуцированным мультиполями двух систем. В третьем случае мы имеем дело с взаимодействием между системами, не имеющими постоянных диполей однако и в этих системах в результате флук- [c.482]


Смотреть страницы где упоминается термин Возмущение межмолекулярное: [c.145]    [c.145]    [c.30]    [c.59]    [c.29]    [c.251]    [c.475]    [c.477]    [c.155]    [c.375]    [c.376]    [c.18]    [c.251]    [c.488]    [c.489]    [c.46]   
Теория молекулярных орбиталей в органической химии (1972) -- [ c.250 , c.264 ]




ПОИСК





Смотрите так же термины и статьи:

Возмущения

Межмолекулярные



© 2025 chem21.info Реклама на сайте