Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды классические

    Были предложены специальные уравнения для отдельных классов или групп соединений. Из них наибольший интерес представляет выражение Уорда и Куртца [2010]. Тщательное рассмотрение имеющихся данных привело этих исследователей к выводу, согласно которому в случае изомеров углеводородов классическое уравнение Ньютона, связывающее плотность и удельную рефракцию [c.28]


    В заключение краткого обзора образования карбоний-ионов важно рассмотреть другой метод получения этих высокоактивных промежуточных форм. Метод основан на взаимодействии другого карбоний-иона с насыщенным углеводородом. Классическим примером такого процесса может служить реакция водородно-галоидного обмена, которая, как было показано, протекает быстрее чем за 0,001 сек. В одном из таких опытов [6] хлористый трет-бутил взаимодействовал с изонентаном в присутствии хлористого алюминия, образуя изобутан и хлористый, гере г-амил. Отдельные стадии этой чрезвычайно быстрой реакции могут быть представлены уравнениями  [c.12]

    Небольшая по объему глава XI посвящена расстояниям между атомами углерода в молекулах углеводородов. При современном научном уровне знаний по химии и физике углеводородов классическая теория строения углеводородов уже недостаточна и требует значительного развития на основе современных данньах. В частности, знание междуатомных расстояний в мо- [c.7]

    А. Алкилирование парафиновых углеводородов. Классические реакции усложнения молекул парафиновых углеводородов не выходили за рамки лабораторного эксперимента. Практическое значение получила лишь открытая В. Н. Ипатьевым [258] реакция алкилирования парафинов олефиновыми углеводородами, не связанная со сложной технологией. [c.273]

    Для химии углеводородов классические исследования Н. И. Зинина ознаменовались открытием двух новых веществ. Подробно изучая про- [c.144]

    Впервые Вертело [1], нагревая ацетилен над ртутью в запаянной стеклянной трубке, получил небольшое количество продуктов уплотнения и показал, что в них содержится бензол и целый ряд других ароматических углеводородов. Классический опыт Вертело положил начало дальнейшим работам в области полимеризации ацетилена (Муассан, Муре, Сабатье и др.). Ацетилен подвергали термической полимеризации, гидрогенизации и уплотнению в присутствии катализаторов. [c.258]

    Температура. Согласно классическим представлениям, если исключить влияние катализаторов, скорость химических реакций является функцией температуры и концентрации реагирующих веществ. По известному правилу Вант-Гоффа, повышение температуры на 10 градусов ускоряет реакцию в 2—3 раза. Это правило не является строгим, так как температурный коэффициент скорости реакции меняется с температурой. К. И. Ивановым [35 было показано, что температурный коэффициент окисления углеводородов, равный 2, наблюдается только для 140—150 °С. При температурах ниже 140 °С он во всех случаях гораздо больше, а выше 150°С он меньше. [c.69]


    Классическим примером азеотропной смеси углеводородов с минимальной температурой кипения являются циклогексан и бензол [14]. Эти вещества, кипящие соответственно при 80,8 и 80,1°, образуют азеотропную смесь, кипящую при 77,7°. Кривая давления пара этой смеси подобна кривой показанной на рис. 13. На рис. 14 показана х — г/-диаграмма для этой смеси. Состав азеотропной смеси соответствует точке пересечения кривой у = х) и прямой, образующей с осями координат угол в 45° (у = х). Если производить фракционную перегонку смеси бензола с циклогексаном, содержащей 20%о мол. циклогексана, то первым погоном будет [c.120]

    В результате последнего процесса мы имеем под водой образование и скопление твердых углеродных соединений и выделение над водой газообразного углеводорода — метана. Бурные выделения последнего с глубин болот являются причиною так называемых болотных извержений. Болотные извержения особенно распространены в Ирландии — классической стране болот. [c.24]

    Изучая полимеризацию и деполимеризацию несимметрично замещенных этиленов, С. В. Лебедев и И. А. Лившиц [24] в условиях распада полимеров изобутилена и амилена получили предельные углеводороды, в частности изобутан и пентан. При поверхностной оценке появление пентана и изобутана моншо было бы рассматривать как результат расщепления высокомолекулярного олефина по классической схеме [c.46]

    Согласно термокаталитической гипотезе в классическом виде, как ее предложил В.А. Соколов (1948, 1966 гг.), УВГ и нефть, образуются при деструкции органического вещества (OB) в условиях высоких температур и давлений. Только в начальной стадии литогенеза, которая выделяется В.А. Соколовым как биохимическая зона (рис. 1), УВГ генерируются в результате биохимических процессов. Мощность этой зоны 50 м. Ниже - в переходной зоне значительных количеств углеводородов (УВ) не образуется. Еще ниже располагается термокаталитическая зона -зона генерации нефти, под которой залегает газовая зона. [c.4]

    Классическими гомогенными катализаторами изомеризации олефинов, известными более 100 лет, являются неорганические и органические кислоты. В 50 гг. было найдено, что изомеризация активируется не только кислотами, но и основаниями, и работы 60 гг. посвящены преимущественно основному катализу. Однако в последнее десятилетие быстро растет интерес к новому направлению гомогенного катализа — катализу комплексами металлов. Эти разные, на первый взгляд, типы активирования имеют много общего, так как кислотно-основный катализ связан с координацией молекул растворителя, катализатора и олефина в активный комплекс, а при катализе комплексами металлов образование ионов углеводородов и их превращения представляют собой один из этапов изменения олефина. Оба типа активирования характеризуются общими корреляционными кинетическими закономерностями (уравнение Бренстеда применимо во всех случаях), сходным влиянием растворителя и т. д. [c.88]

    Старая классическая химия, основанная на ацетилене, уступает место новым процессам, базирующимся на олефиновых углеводородах—этилене, пропилене, бутиленах и других. [c.186]

    В основу количественных исследований заложена классическая схема начальных стадий окисления углеводородов [88]  [c.92]

    Масла гидрокрекинга вследствие почти полного удаления из них сернистых и азотистых соединений и большого содержания насыщенных углеводородов характеризуются значительной термической стабильностью. Так, при 385—400°С они разлагаются на 7—87о меньше, чем масла, полученные классическими методами [90]. [c.286]

    Все же для понимания проблем стереохимии углеводородов ряда циклогексана и тем более для углеводородов, находящихся в нефтях, следует иметь в виду, что шестичленный цикл в них имеет ставшую уже классической кресловидную конформацию с четко выраженной экваториальной или аксиальной ориентацией заместителей. Четкая ориентация заместителей связана с легкостью инверсии шестичленного кольца, при которой заместитель переходит из аксиальной ориентации в экваториальную (или наоборот). Инверсия кольца может быть названа конформационной изомеризацией и в отличие от конфигурационной изомеризации протекает без [c.27]

    Следующей, также достаточно хорошо изученной группой моноциклических углеводородов являются цикланы состава С,Н14. Они представлены пятью изомерами, из которых четыре принадлежат к гомологам циклопентана (в этой главе мы рассматриваем только структурные изомеры). Равновесные соотношения между ними были определены как экспериментальным, так и расчетным путем по значениям свободных энергий соответствующих углеводородов, приведенных в классической фундаментальной работе Россини с соавторами [9]. Сопоставление расчетных и полученных путем равновесной изомеризации данных приведено в табл. 30. Поскольку соотношения между геометрическими изомерами при осуществлении структурной изомеризации получаются естественно те же, что и при конфигурационной изомеризации, то мы, как в табл. 30, так и в последующих таблицах этой главы, будем приводить сумму пространственных изомеров данной структуры. Данные же о равновесных соотношениях геометрических изомеров уже рассматривались в главах 1 и 2. [c.103]


    Метод термодиффузионного разделения нефтяных углеводородов с успехом был использован в ряде работ, выполненных за последние 15—20 лет, в том числе и в классических исследованиях по проблеме № 6 Американского нефтяного института, проводившихся под руководством Россини 42]. [c.333]

    Из краткой характеристики специфических свойств высокомолекулярных соединений нефти видно, что эта группа веществ по химическому составу и строению, а также по размерам и неоднородности молекул резко отличается от низкомолекулярных соединений нефти, состоящих преимущественно из углеводородов. Для исследования высокомолекулярных соединений нефти неприменима большая часть классических методов, успешно используемых при изучении углеводородного состава бензино-керосиновых частей нефти. При разделении и исследовании наиболее тяжелой части нефти во много раз возрастает значение физических и физико-химических методов, которые позволяют изучать природу и свойства ее, не вызывая существенных химических изменений в объектах исследования. Именно физические и физико-химические методы разделения и исследования сыграли решающую роль в развитии химии высокомолекулярных органических соединений, определив возможность быстрого ее расцвета и выделения в самостоятельную область химической науки. Такую же роль призваны сыграть современные [c.15]

    Скорости, вычисленные с помощью (VII.2) и (VII.3), показаны на рис. 124. Вначале обе скорости сильно увеличиваются и затем, после достижения максимума, быстро уменьшавэтся. Используя обычный механизм окисления углеводородов классическую схему вырожденного разветвления, можно теоретически рассчитать скорости образования и расходования. [c.146]

    Позже М. Коновалов [2] и В. Марковников [3] начали, свои классические работы по нитрованию алифатических углеводородов, ставшие общепризнанными и широко известными. Особенно работами Коновалова в запаянных трубках впервые было показано, что парафиновые углеводороды могут нитроваться относительно легко и с хорошими выходами при определенных- условиях — высокие температуры и разбавленная азотная кислота. После этих первых успешных опытов изучение прямого нитрования парафиновых углеводородов не продолжа- [c.265]

    Классическими примерами [1] могут служить использование железа и переходных металлов в известном синтезе N113 из N2 и Нг по методу Габера, применение тонко размельченной платины в синтезе ЗОз (для НгЗО ) из 80г и О2, использование алюмосиликагелей при каталитическом крекинге нефти и применение кобальтового катализатора в синтезе (Фишера — Тропша) углеводородов из СО и Нг- [c.531]

    Следует иметь в виду, что, как показано далее, изучение каталитического гидрирования циклоалкенов и трактовка полученных результатов строились в основном на представлениях классической стереохимии, а конформационный подход использовался сравнительно мало. При гидрировании ароматических углеводородов конформационные свойства исходных и конечных молекул различаются гораздо более существенно, чем при гидрировании циклоалкенов, а потому для. понимания получаемых результатов приходилось учитывать конформационные особенности циклоалканов. Вследствие этого раздел, посвященный конформационным особенностям циклоалканов, непосредственно предшествует разделу, в котором рассмотрено гидрирование ароматических углеводородов ряда бензола. [c.20]

    Таким образом, сочетание модифицированного принципа геометрического соответствия [62] с моделью циклического переходного состояния, в состав которого входят и субстрат и катализатор, по-видимому, наиболее логично может объяснить механизм реакции Сз-дегид-роциклизации углеводородов на поверхности Pt/ . Что же касается некоторой модификации принципа геометрического соответствия, то здесь необходимо сделать небольшое пояснение. В тех случаях, когда переходное состояние близко по геометрическим параметрам к исходным молекулам и деформации невелики, наше толкование геометрического соответствия сливается с его толкованием в мультиплетной теории. В случае же Сз-дегидроциклизации и гидрогенолиза пятичленного кольца положение иное в свободном циклопентане все пять С—С-связей равны, а в переходном состоянии одна из них сильно растянута и валентные углы искажены. Поэтому положения мультиплетной теории в их классическом толковании здесь неприменимы. В связи с этим предложена [63] новая (в определенном смысле, более строгая) формулировка должно иметься геометрическое соответствие между молекулами в переходном состоянии и поверхностью катализатора. Такого рода де-формационно-мультиплетные представления позволили охватить несколько больший круг явлений, че.м это делала мультиплетная теория, не теряя ничего пз достижений последней. В частности, эти соображения хорошо согласуются с конформационными представлениями, благодаря которым можно объяснить ряд тонких эффектов, проявляющихся в ходе Сб-дегидроциклизации. [c.210]

    Эти классические схемы в дальнейшем претерпели существенные изменения. В большом цикле работ, проведенном Б. А. Казанским, М. И. Розенгартом, Г. В. Исагулянцем с сотр., было показано, что в присутствии алю-мохромокалиевого катализатора [8, 21, 145], а также других оксидных койтактов [146] Сб-дегидроциклизация н-гексана (и других н-алканов) протекает иначе. При исследовании превращений алкенов было обнаружено, что при малых временах контакта наряду с ароматическими углеводородами образуются алкадиены. Количество по.следних в указанных условиях превыщает количество аренов, причем с увеличением времени контакта выход алкадиенов проходит через максимум. Отсюда следует, что диены могут быть промежуточными продуктами при Сб-дегидроциклизации алкенов на оксидных [c.237]

    Вертело в своих классических исследованиях по nnporerfHaaiiHn углеводоро-дов показал, что ацетилен в контакте с железом при температуре темнокрасного каления подвергается быстрому разложению с образованием высших углеводородов, углерода и водорода, а также ацетиленовых производных желеа  [c.335]

    В классическом изложении общий механизм ценного окисления углеводородов оппсывается следующей схемой кинетических уравнений  [c.43]

    Состав и строение твердых углеводородов нефти начали изучать в конце прошлого века. Несмотря на многочисленные работы в этой области, среди которых нельзя не отметить классические исследования Энглера, Залезецкого, Харичкова, Ракузина, Маркуссона, Гурвича, Наметкина и др., вопрос о химическом составе твердых углеводородов и их кристаллической структуре до середины нашего столетия оставался спорным. [c.20]

    Обычно поправки к полученным данным основаны на уравнении (23). Они показаны на рис. 15, который является классической работой Катца с сотрудниками, позволяющей получить надежные результаты для смесей парафиновых углеводородов, содержащих молярную долю метана, равную 80—85%, и незначительные количества пентана -1- высших. Трудности возникают в тех случаях, когда давление в системе превышает 140,6 кгс/см , смесь содержит большое количество тяжелых углеводородов или ароматики, если система находится в критическом состоянии или в ней имеются полярные молекулы или [c.32]

    Механизм действия алифатических аминов и производных мочевины отличается от механизма действия классических ингибиторов окисления. Эти соединения почти не влияют на поглощение кислорода, но значительно снижают образование осадка в углеводородах. Такие присадки, как изопропилоктадециламин или содержащие азот в цикле, например сополимеры эфиров метакриловой кислоты с 5-винилпиридином или с р-диэтилэтаноламином, препятствуют превращению коллоидных часпщ в более крупные, выпадающие в осадок [217, 218]. [c.175]

    На основании результатов этих исследований можно сделать вывод, что прп использовании современной технологии в классическом процессе Фишера — Тропша всегда будет получаться широкий спектр углеводородов. Перед научными работниками сейчас стоит сложная задача определить, возможно ли существенно увеличить селективность процесса в отношении получения какой-нибудь одной фракции, например дизельного топлива. В настоящее время с очень большими выходами удается получать лишь СН4 и твердый парафин. В разд. VII обсуждается возможность увеличить выход определенного продукта за счет дальнейшей переработки веществ, синтезируемых по Фишеру — Тропшу. [c.184]

    Рассмотрим вначале распределение в нефтях классических регулярных изопреноидов состава Сд—Gjs, для которых имеется большой фактический материал. К таким углеводородам могут быть отнесены 2,6-диметилалканы Сд—С14 2,6,10-триметилалканы С 4— g 2,6,10,14-тетраметилалканы С д-С24 и 2,6,10,14,18-пентаметилэйко-зан. Концентрации всех перечисленных углеводородов в нефтях [c.61]

    По содержанию и относительному распределению изопреноидных алканов нефти категорий А и Б несколько различны. В нефтях типа А обычно преобладают пристан или фитан (соотношение этих углеводородов — важный генетический показатель, зависяш ий от ряда причин, которые будут рассмотрены ниже) присутствуют также в заметных концентрациях и другие изопреноиды состава Сд—С25. На рис. 21 приведены типичные кривые распределения изопреноидов в нефтях типа А (в одной из них преобладает пристан, в другой — фитан). Хорошо заметны также провалы в концентрациях псевдорегулярных структур С1, и С17. Это так называемый классический тин распределения изопреноидных алканов в нефтях. Данные об относйтёльных концентрациях изопреноидных алканов в нефтях категории А приведены также в табл. 19. [c.62]

    Конформации колец в стереоизомерах I—V — кресло. В углеводороде VI среднее кольцо находится в форме ванны. Некоторые свойства стереоиаомеров, а также данные об их термодинамической устойчивости (как экспериментальные, так и расчетные) приведены в табл. 26. Хорошее совпадение расчетных и экспериментальных данных указывает на то, что в стереохимическом отношении данная трициклическая система является простой, а циклы в ней имеют неискаженную] классическую конформацию кресел (за исключением, конечно, среднего цикла в транс,син, траке-изомере). [c.80]

    Особенно успешно этот метод стал применяться в последние годы в связи с успехами в области анализа сложных углеводородных смесей. Этот метод может быть применен к углеводородам различного молекулярного веса и строения и, в отличие от старых классических методов определения термодинамических характеристик, не требует больших количеств углеводородов высокой степени чистоты. В то же время при помощи этого метода можно определять составы равновесных смесей значительно более точно, чем это достигается на основании предварительно определенных данных по свободным энергиям отдельных изомеров. Важной особенностью экспериментального метода (может быть, отчасти и его недостатком) является то, что в данном случае определяется лишь относительная устойчивость углеводородов, составляющих основу равновесных смесей. Углеводороды же, концентрации которых в условиях равновесия незначительны, т. е. ниже, чем это определяется аналитическими возможностями, автоматически исключаются из рассмотрения состава равновесных смесей. Эта особенность важна при исследовании равновесия в смэсях, состоящих из углеводородов достаточно большого молекулярного веса, т. е. как раз в тех случаях, когда большое количество теоретически возможных изомеров затрудняет использование расчетных методов. [c.102]

    Современные методы анализа, в частности такие, как газовая хроматография, молекулярная и масс-спектрометрия и т. д., невозможны без использования эталонных углеводородов. Поэтому значение индивидуальных углеводородов в настоящее время возросло как никогда. В дополнение к обычным, классическим методам органического синтеза появились новые методы (метиле-нирование, равновесная изомеризация), позволяющие легко и быстро получать смеси эталонных углеводородов определенного троения, используемые затем при газохроматографическом анализе. (Эти методы будут изложены несколько позже.) Вначале рассмотрим обычные пути синтеза циклических углеводородов, позволяющие получать вещества определенной структуры в количествах, достаточных для определения их важнейпшх физикохимических характеристик, в том числе и для определения различных параметров реакционной способности. Добавим, что значительная часть всех описанных далее синтезов была экспериментально проверена в лаборатории автора. [c.250]

    Цепная теория является логическим развитием рассмотренных выше классических теорий окисления. Ни одна из этих теорий не в состоянии объяснить некоторые характерные особенности автоокисления углеводородов, например существование индукционного периода, предшествующего видимой реакции, резкое действие иногда ничтожных количеств тех пли иных примесей на скорость процесса, аналогичное влияние стенок сосуда, явлэния отрицательного катализа ири окислении и т. д. Истолкование этих фактов может быть проведено [c.349]

    Выделенные в чистом виде н-парафины или изопарафнны могут быть идентифицированы с помощью газо-жидкостной хро.матогра-фии для окончательной идентификации необходимо получить в чистом виде индивидуальные парафиновые углеводороды с помощью препаративной хроматографии, либо четкой ректификации. Индивидуальные углеводороды анализируются определяются их простые и комбинированные константы, проводится элементны анализ, иногда спектральный анализ если это необходимо, проводят хи.мическую идентификацию. Классические примеры химической идентификации можно найти в работах В. В. Марковникова но исследованию кавказских нефтей. Так пз фракции 80—82° бакинской нефти Марковников выделил химическим путем метановый углеводород, общей формулы СтН , константы которого были близки к константам триметилпропилметана (/кип 78,5—79 "). Этот углеводород был идентифицирован следующим образом. [c.57]


Смотреть страницы где упоминается термин Углеводороды классические: [c.60]    [c.126]    [c.204]    [c.13]    [c.118]    [c.274]    [c.446]    [c.488]    [c.10]    [c.7]    [c.75]    [c.99]    [c.63]   
Теория молекулярных орбиталей в органической химии (1972) -- [ c.224 ]




ПОИСК





Смотрите так же термины и статьи:

Классические



© 2025 chem21.info Реклама на сайте