Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сродство элементарное

    Обозначим (Ху химический потенциал вещества у, а через А1 и Аг — величины сродства общих реакций по схеме (9.146) и через А1, Ап, Ац1—величины сродства элементарных реакций в схеме (9.147). Из определения химического сродства (А = —2vy[iy) получим  [c.365]

    Аналогичный процесс имеет место и при взаимодействии магния с рядом других элементарных веществ, атомы которых имеют значительное сродство к электрону, Наиример, магний сгорает в струе хлора, реагируя с ним, как и с кислородом, по урап.чению [c.54]


    Таким образом, скорость производства энтропии в стехиометри-ческом химическом процессе пропорциональна произведению движущей силы процесса (химического сродства реакций) на скорость реакции. Существенно, однако, что в реальных сложных химически реакционноспособных системах в качестве стехиометрических химических процессов обычно можно рассматривать лишь элементарные химические реакции, те. реакции, осуществляемые в одну стадию и поэтому не имеющие промежуточных продуктов — интермедиатов (см. подразд. 16.4.1). [c.300]

    Сходные линейные соотношения имеют место и для обратимых элементарных химических процессов, а также брутто-процессов, скорость которых пропорциональна разности термодинамических напоров исходной и конечной групп (см. разд. 16.4.2), вблизи термодинамического равновесия между реакционными группами // Действительно, когда для сродства реакции A J выполняется соот- [c.322]

    Выше было показано, что для химических преврашений строгое выполнение линейных соотношений взаимности Онзагера обеспечивается при очень малых значениях сродства этих преврашений даже на элементарных стадиях 1 КТ. Однако при протекании типичных лабораторных или промышленных химических реакций (например, прямого либо каталитического синтеза разнообразных соединений) значения сродства для брутто-процессов составляют обычно 40—100 кДж/моль (см. гл. 4, 5), в то время как при комнатной температуре ЯТ 2,5 кДж/моль. Даже для большинства биохимических превращений у4,у 4 8 кДж/моль. Таким образом, офомное число практически важных химических превращений осуществляется обычно вдали от термодинамического равновесия (вдали от области применимости соотношений линейной неравновесной термодинамики), что значительно усложняет их термодинамическое рассмотрение, и нередко для описания системы требуется использовать прямые кинетические методы, базирующиеся на дифференциальных уравнениях. [c.348]

    В общем случае для произвольной элементарной химической реакции или сводимого к элементарной реакции стационарного брутто-процесса у (см. разд. 16.4.2) изменение сродства реакции в результате флуктуации концентрации промежуточного компонента а выразится как [c.353]

    Учение о дискретности химического сродства, установленная Фарадеем связь валентности с количественными закономерностями электролиза, обнаружение двух типов связи, диссоциирующей и недиссоциирующей в растворах на ионы, все это подводило многих естествоиспытателей, в том числе Максвелла, Гельмгольца, к идее квантов электричества. В 1891 г. Стони ввел термин электрон , вычислил на основе данных электролиза его примерный элементарный заряд и предположил их важную роль в образовании химической связи. [c.31]


    Все силы в природе сводятся к элементарным силам, поэтому и силы химического сродства должны сводиться к электрическим, магнитным или гравитационным. Однако расчеты показывают, что по порядку величины магнитные и гравитационные силы слишком малы и их нельзя привлечь к объяснению химических сил. Таким образом, силы химического сродства так или иначе сводятся к силам электрического взаимодействия. [c.463]

    Взаимодействие металлов и металлоидов с элементарными окислителями. При взаимодействии металлов и металлоидов с элементарными окислителями атомы последних восстанавливаются, притягивая к себе электроны. В идеальных условиях (газовое состояние восстановителя и продукта его окисления, атомарное состояние окислителя) реакция идет самопроизвольно, если энергия сродства к электрону атома окислителя превышает энергию ионизации атома восстановителя Е ан- Тепловой эффект реакции выразится разностью величин этих энергий. Однако в реальных условиях (твердое состояние восстановителя и продукта его окисления, молекулярное состояние окислителя) реакция осложняется процессами сублимации восстановителя, диссоциации молекул окислителя и кристаллизации продукта окисления. Энергии этих процессов субл. лисс и Е сказываются соответствующим образом на тепловом эффекте суммарного процесса, что в соответствии с законом сохранения энергии может быть выражено уравнением [c.46]

    Окислительная способность элементарных веществ. Окислительные свойства веществ обусловлены способностью их атомов притягивать к себе электроны извне. Окислительная активность атомов является функцией величины энергии сродства к электрону чем она выше, или чем больше электроотрицательность элементов, тем сильнее выражены окислительные свойства атомов. Из окислительных элементов самыми энергичными окислителями являются фтор, кислород, азот, хлор и бром, атомы которых характеризуются самыми большими значениями энергии сродства к электрону. Окислительными свойствами элементарных веществ обусловлена их способность вступать в реакции взаимодействия с различными восстановителями, в качестве которых могут выступать элементарные вещества, а также соединения. [c.47]

    Взаимодействие элементарных окислителей с различными соединениями. Различные элементарные окислители могут восстанавливаться при взаимодействии с соединениями, которые играют роль восстановителей как в сухом виде, так и в виде растворов, в том числе водных. Условием для протекания реакций между элементарными окислителями и сухими соединениями — восстановителями является меньшее значение энергии диссоциации соединения — восстановителя по сравнению с энергией образования продукта восстановления окислителя. Весь процесс взаимодействия складывается из ряда эндотермических и экзотермических стадий. Первая из них — диссоциация соединения — восстановителя, а вторая — образование продукта восстановления из элементарного окислителя и вещества, образовавшегося при диссоциации соединения — восстановителя. Окислительная активность элементарного вещества здесь также тем сильнее, чем больше энергия сродства к электрону его атома и чем меньше энергия диссоциации его молекулы. [c.48]

    Для ориентировочной оценки возможности протекания окислительно-восстановительной реакции между элементарными веществами можно воспользоваться значениями ионизационных потенциалов, сродства к электрону и электроотрицательности. [c.143]

    Окислительно-восстановительные свойства элементарных веществ определяются их энергетическими характеристиками — энергией ионизации / и сродством к электрону Е (см. стр. 69). Очевидно, чем меньше I атомов элемента, тем ярче выражены его восстановительные свойства, и, напротив, чем больше Е элемента, тем легче он присоединяет электроны и тем, следовательно, является более сильным окислителем. Поскольку обе энергетические характеристики — энергия ионизации и сродство к электрону (величина Е определена не во всех случаях) — носят периодический характер, то это и лежит в основе периодического изменения окислительновосстановительных свойств элементарных веществ. При сопоставлении подобных свойств различных элементарных веществ пользуются также величиной их электроотрицательности (/+ , см. стр. 69), особенно характерной для окислительных элементов. В реакциях между двумя элементарными веществами окислителем будет то из них, которое обладает большей электроотрицатель-ностью. [c.141]

    Группу VIA составляют О, S, Se, Те и Ро. На внешнем энергетическом уровне атомов этих элементов находится шесть электронов s p. Из них непарные только два р-электрона, что и объясняет их окислительное число —2 в нормальном состоянии. Элементы S — Ро, атомы которых содержат энергетический -подуровень, могут быть и четырех- и шестивалентными. Размеры атомов О — Ро соответственно меньше, чем в группе N — Bi. Поэтому атомы О — Ро не теряют электронов и не превращаются в элементарные катионы. Сродство же к электрону высоко и высока склонность к присоединению электронов. Однако ионы установлены только у простых соединений этих элементов с активными металлами в кристаллическом состоянии и в расплавах. В водных же растворах ионы Э неустойчивы и подвергаются гидролизу  [c.226]


    У. Одлинг отметил, что наряду с элементами, характеризующимися переменной валентностью (например, железо и олово), имеются и такие элементы, которые отличаются неизменной степенью валентности. К ним относятся, например, водород и кислород. Он впервые (1855) стал изображать валентность соответствующим количеством штрихов, например 1Г, К, О" С1, В1 . Двухвалентное железо он изображал символом Ре", а трехвалентное — символом Ре". Но главное в работе У. Одлинга заключалось в том, что понятие валентности или атомности радикалов он распространил на атомы элементов. Более последовательно эту идею развил А. Кекуле. К концу 50-х годов XIX в. ученые уже четко различали понятия атом и эквивалент . Это помогло А. Кекуле установить валентность элементарных атомов. В 1857 г. он сформулировал следующие положения Число атомов одного элемента или... радикала, связанное с атомом другого элемента, зависит от основности или величины сродства составных частей. [c.173]

    Мы уже говорили, что в теории Вант-Гоффа допускалась возможность свободного вращения вокруг простой связи. И. Вислиценус высказал мысль, что вращение вокруг простой связи должно происходить таким образом, чтобы действие специфического сродства , притяжения элементарных атомов, было бы наиболь-шпм, а это осуществляется, когда они ближе всего приближаются друг к другу. И. Вислиценус выдвинул важное для дальнейшего развития стереохимии положение, что различные заместители при двух атомах углерода, соединенных простой связью, могут препятствовать свободному вращению, что приводит к образованию соединений преимущественно определенной конфигурации (конформации).  [c.229]

    Фосфор на валентном уровне имеет незаполненные Зс1-орбитали, поэтому его валентность повышается до 5 и возможны sp d-, sp d- и sp - типы гибридизации. При химических реакциях азот и фосфор не теряют электронов и не превращаются в катионы. Незначительное сродство к электрону объясняет их неспособность превращаться в элементарные анионы. [c.68]

    Фтор — один из самых химически активных элементов. Поэтому долгое время после его открытия не удавалось получить элементарный фтор в заметных количествах. При нормальных условиях фтор представляет собой двухатомный газ, обладающий большим сродством ко многим веществам и являющийся сильнейшим окислителем. [c.331]

    Применение /-металлов. Использование f-металлов в технике ограничено вследствие их дефицитности, вызванной трудностью получения в свободном виде. Больщое сродство /-металлов к кислороду и другим элементарным окислителям (S, N, Р) делает их очень перспективными раскислителями в металлургии, однако из-за высокой стоимости их применяют в исключительных случаях. Например, легирование электродной проволоки мишметаллом позволяет вести сварку меди и ее сплавов на воздухе без всякой защиты. [c.323]

    Радиусы атомов, например, азота и фосфора меньше, а энергия ионизации больше, чем у атомов углерода и кремния незначительно и сродство к электрону. Поэтому азот и фосфор не образуют элементарных катионов и обычно не превращаются в элементарные анионы. Их химические связи с водородом и кислородом носят ковалентный характер. Азот и фосфор — неметаллы и более характерные, чем углерод и кремний. [c.226]

    Это правило, так же как и остальные закономерности теории взаимного влияния атомов, представляет собой частное положение принципа химического равновесия , сформулированного Марковниковым в следующих словах ...существование частицы с известными в данный момент свойствами есть результат взалмиого влияния ее атомов. При определенных условиях влияния эти должны уравновешиваться одинаковым образом, иначе мы не могли бы себе представить, почему при одних и тех же условиях частица является нам всегда с одними и теми же свойствами . В отчете о заседании Русского химического общества, на котором Марковников выступил с своим сообщением, говорится Взаимное влияние элементов химической частицы приводит к какому-либо химическому равновесию, выражающемуся в известном распределении сродств элементарных атомов частицы. Такое распределение отвечает определенным условиям, химическим и физическим. Поэтому Марковников предлагает ввести название принцип химического равновесия, понимая под этим всю совокупность влияний, как химических, так и физических  [c.68]

    В каждом сложном теле связаны или все единицы сродства, принадлежащие элементарным паям, или часть их — четная или нечетная, смотря по натуре элемента. Если часть сродства элементарных паев, составляющих сложное тело, осталась свободною, то тело это способно входить в прямое соединение с различными частицами, и причиною этой способно ( ти будет тот именно элемент, которого сродство не все потребилось при образовании сложного тела. В противном случае, сложное вещество способно лишь к двойным разложениям. [c.73]

    Здесь АО Л , — энергия образования хлорида натрия из элементарных натрия и хлора, взятых в их стандартных состояниях (твердый кристаллический натрий и газообразный моле кулярный хлор), равная 384 кДж.моль- ЛОсуб = 78 кДж-моль — энергия сублимации натрия АО оп=496 кДж-моль —энергия его ионизации А0дие=203 кДж-моль — энергия диссоциации молекулярного хлора Л(5ср=387 кДж-моль —эне )гия, характеризующая сродство электрона к газообразному атомарному хлору. Если цикл проведен обратимо и изотермически, то полное изменение энергии равно нулю, что приводит к уравнению, позволяющему найти энергию решетки  [c.45]

    Классификация на основе природы элементарного акта. Если неподвижной фазой является твердое вещество, то элементарным актом взаимодействия анализируемого вещества (сорбата ) с твердой фазой (сорбентом) может быть 1) акт адсорбции— адсорбционная молекулярная хроматография 2) обмен ионов, содержащихся в твердой фазе, на ионы из раствора — ионообменная хроматография 3) химическое взаимодействие с образованием труднорастворимого осадка — осадочная хроматография. При адсорбционной молекулярной хроматографии жидких или газообразных веществ хроматографическое разделение основывается на различии адсорбционного сродства между компонентами разделяемой смеси и веществом твердой фазы, называемым в данном случае адсорбентом. Этот вариант хроматографии относится к классическому цветовскому варианту. [c.12]

    Используя термодинамическую форму записи кинетических уравнений, можно показать, что вывод о пропорциональности между скоростью реакции и ее химическим сродством остается верным и в ситуации, когда вблизи термодинамического равновесия рассматривается не элементарная, но произвольная сложная стехи-ометрическая брутто-реакция, которой можно приписать определенное значение химического сродства [см., например, выражение [c.323]

    Классические уравнения Онзагера (17.4) являются основой для линейной неравновесной термодинамики и справедливы только в ситуации, когда система находится вблизи термодинамического равновесия. Как следует из разд. 16.4, для химических превращений это соответствует малости (относительно величины КТ) значений сродства сразу по всем возможным каналам процесса и, таким образом, близости значений термодинамических напоров всех взаимодействующих фупп реагентов. При таком очень жестком условии скорости всех элементарных химических превращений в системе действительно оказываются пропорциональными значениям их сродства. Очевидно, однако, что данное требование к линейности чрезвычайно офаничивало бы возможность последовательного и широкого анализа влияния термодинамического сродства различных каналов сложного химического процесса на скорость превращения по этим каналам методами неравновесной термодинамики. [c.333]

    Окислительной способности, как известно, лишены металлы и благородные газы. Окислительная активность элементарного вещества тем больше, чем больше энергия сродства к электрону соответствуЕО-щих атомов и чем меньше энергия диссоциации молекул элементарных окислителей. Очевидно, что каждый период начинается элементарными [c.50]

    Азот и фосфор являются элементами УА группы периодической системы Д. И. Менделеева. На внешнем энергетическом уровне атомов этих элементов находится пять электронов из них три р-электрона. Поэтому в нормальном состоянии они проявляют валентность, равную трем. Наибольшее изменение в химических свойствах элементов УА группы наблюдается при переходе от азота к фосфору. В атомах азота внешним энергетическим уровнем является второй, содержащий только 5- и р-поду ровни, а подуровень с1 отсутствует. Атомы азота при переходе в возбужденное состояние могут увеличить число непарныхэлектронов максимум до четырех и при этомза счет потери одного электрона. В этом случае образуется электронная конфигурация а азот становится четырехвалентным, как в ионе [ЫН4] . Поэтому азот не проявляет валентности, равной пяти. В атомах фосфора наружным энергетическим уровнем является третий, состоящий из трех подуровней з, р и й. При возбуждении атомов фосфора увеличение числа непарных электронов происходит за счет использования -подуровня с образованием электронной конфигурации поэтому фосфор в отличие от азота может проявлять валентность, равную пяти. Размеры атомов азота и фосфора меньше, а энергия ионизации этих элементов соответственно больше, чем углерода и кремния. В связи с этим азот и фосфор при химических реакциях не теряют электронов и не превращаются в элементарные катионы. Сродство к электрону этих элементов незначительно и поэтому они, как правило, не превращаются и в элементарные анионы. Азот и фосфор образуют соединения как с кислородом, так и с водородом, только с ковалентными связями. Таким образом, азот и фосфор являются неметаллами. Причем свойства неметаллов у них выражены сильнее, чем у углерода и кремния. [c.213]

    A j - текущее значение сродства для элементарной реакции / j Ацр - текущее значение сродства для брутго-реакции RU Р a - значение термодинамического параметра / [c.7]

    При взаимодействии металлов с элементарными окислителями атомы последних восстанавливаются, образуя отрицательные элементарные ионы. В идеальных условиях (газообразное состояние металла и продукта его окисления, атомарное состояние окислителя) реакция идет самопроизволь-ио, если энергия сродства к электрону окислителя (Е ср.) превышает энергию ионизации металла (Еион). Тепловой эффект реакции выразится разностью величин этих энергий, что может быть представлено следующими уравнениями  [c.72]

    Конструктивный принцип теории химического строения заключался в том, что четко провозглашался тезис об энергетической неравноценности химических связей в соединении. Отмечая, что каждому элементарному паю (атому.—/О. С.) прирождено определенное количество силы, производящей химические явления (сродство) , А. М. Бутлеров впервые подчеркнул два важных момента. [c.193]

    В 1861 г. в своем основополагающем докладе О химическом строении веществ А. М. Бутлеров ставил задачу выяснить, какое взаимное влияние могут оказывать два атома, находящиеся внутри одной и той же химической частицы, но химически не действующие непосредственно друг па друга . Оп указывал па перавноцениость единиц сродства, объясняемую взаимным влия-пием атомов, составляющих молекулу органического соединения. В 1862 г. А. М. Бутлеров писал ...говоря о различии единиц сродства, нельзя не указать на то влияние, которое оказывает на свойство одних единиц сродства натура паев (т. е. природа атомов.—/О. С.), связывающих другие единицы, и необходимо даже прибавить, что различие, быть может, условливается этим влиянием В статье О различных обт ясненпях некоторых случаев изомерии (1864) он развил мысль о взаимном влиянии атомов, входящих в состав данной молекулы ...элементарные атомы, находящиеся внутри молекулы, могут взаимно влиять иа химический характер друг друга, не будучи ири )том соединены непосредственно Различное распределение сродства по связям [c.201]

    Фазы внедрения образуют обычно плотнейшие упаковки, гексагональную (ГПУ) и кубическую (ГЦК), для которых реализуются большие координационные числа. Такие структуры характерны для металлоподобных фаз. Состав фаз внедрения определяется не взаимным сродством компонентов, а геометрическими соображениями. В плотнейших упаковках существует два типа пустот тетраэдрические, окруженные четырьмя атомами, и октаэдрические — шестью. Количество октаэдрических пустот на одну элементарную ячейку равно количеству атомов в этой ячейке, а количество тетраэдрических пустот в два раза больше, т. е. на один атом плотнейшей упаковки приходится одна октаэдрическая и две тетраэдрические пустоты. Если внедряемые атомы занимают октаэдрические пустоты, то ожидаемый состав фазы внедрения будет отвечать формуле АВ, если же занимаются тетраэдрические пустоты — АВг (А — металл, В — неметалл) . Поскольку размер тетраэдрических пустот меньше, то фазы типа АВа могут образовываться только при внедрении малых атомов водорода. Действительно, существуют гидриды TIH2, 2гНг и т. д. Для карбидов, нитридов и боридов более ха))актерны фазы внедрения состава АВ (Ti , TaN, HfN, ZrB и т. п.), что указывает на внедрение атомов неметалла в октаэдрические пустоты .  [c.384]


Смотреть страницы где упоминается термин Сродство элементарное: [c.128]    [c.42]    [c.365]    [c.125]    [c.753]    [c.181]    [c.120]    [c.221]    [c.253]    [c.48]    [c.108]    [c.245]    [c.276]    [c.203]    [c.593]    [c.17]    [c.76]   
Избранные труды (1955) -- [ c.110 , c.237 ]




ПОИСК





Смотрите так же термины и статьи:

Сродство



© 2025 chem21.info Реклама на сайте